[go: up one dir, main page]

JPH05340501A - Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine - Google Patents

Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine

Info

Publication number
JPH05340501A
JPH05340501A JP17002392A JP17002392A JPH05340501A JP H05340501 A JPH05340501 A JP H05340501A JP 17002392 A JP17002392 A JP 17002392A JP 17002392 A JP17002392 A JP 17002392A JP H05340501 A JPH05340501 A JP H05340501A
Authority
JP
Japan
Prior art keywords
steam
turbine
gas turbine
accumulator
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17002392A
Other languages
Japanese (ja)
Inventor
Motohiko Sue
元彦 須恵
Yujiro Fujisaki
悠二郎 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP17002392A priority Critical patent/JPH05340501A/en
Publication of JPH05340501A publication Critical patent/JPH05340501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To supply superheated steam with a high-thermal efficiency by a method wherein an intermittent flow of saturated steam generated from a boiler is turned into a continuous flow of saturated steam, which fluctuates in flow rate and pressure, through an accumulator, and the saturated steam is converted to superheated steam by a gas turbine waste heat recovery heat exchanger. CONSTITUTION:A high-temperature gas intermittently discharged from a metal processing furnace 1 is sent to a waste gas treatment apparatus 2 where saturated steam is generated, and the saturated steam enters an accumulator 5 after passing through a steam drum 3. When the valve-lift of an inlet pressure regulating valve of a steam turbine 12 is kept constant, the steam discharged from the accumulator 5 enters a gas turbine waste heat recovery heat exchanger 6 with its flow rate fluctuating in proportion to the internal pressure of the accumulator 5, and is turned in to superheated steam which drives the steam turbine 12 to generate power. Thus, as the waste heat of the gas turbine 7 is utilized, the thermal efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、間歇運転される転炉等
の冶金炉から発生する高温の排ガス顕熱を、ガスタービ
ンと組み合わせることによって冶金炉の操業条件に係わ
りなく回収して高い熱効率のもとで発電させ得る発電設
備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention collects high-temperature exhaust gas sensible heat from a metallurgical furnace such as a converter operating intermittently by combining with a gas turbine to recover high thermal efficiency regardless of the operating conditions of the metallurgical furnace. It relates to a power generation facility that can generate power under

【0002】[0002]

【従来の技術】 転炉等の冶金炉から間欠的に発生する高温の熱エネ
ルギーは、排ガス処理装置により飽和蒸気を発生させ、
アキュムレータに蓄熱して10〜15bar 程度の低圧の
一定蒸気圧力で需要先に送っている実例はあるが、蒸気
プラントにより電力のようにより付加価値の高い有効エ
ネルギーとしては、未だ十分に利用されていない。
2. Description of the Related Art High-temperature heat energy generated intermittently from a metallurgical furnace such as a converter causes saturated steam to be generated by an exhaust gas treatment device,
There is an example of storing heat in an accumulator and sending it to a customer at a low constant steam pressure of about 10 to 15 bar, but it is not yet fully utilized as a high-value-added effective energy such as electric power by a steam plant. ..

【0003】 すなわち、上記10〜15bar の圧力
の飽和蒸気をそのまま使用して発電を行なった際には発
生電力量が小さく、一方、転炉排ガス冷却除装置(例え
ばOG装置)等から発生する一般的な蒸気圧力40bar
の蒸気をアキュムレータに導き、これによって圧力36
bar 一定の連続した蒸気を取り出すとすれば莫大な容量
のアキュムレータが必要になる。例えば吹錬工程=非吹
錬工程=15分、発生蒸気量100ton/hの場合、必要
アキュムレータの容量は約1,100m3 になる。
That is, when the saturated steam having a pressure of 10 to 15 bar is used as it is for power generation, the amount of generated electric power is small, while on the other hand, it is generally generated from a converter exhaust gas cooling / removing device (eg, OG device). Steam pressure 40 bar
Of steam to the accumulator, which results in a pressure of 36
bar If a constant continuous vapor is taken out, an enormous capacity accumulator is required. For example, when the blowing process = non-blowing process = 15 minutes and the generated steam amount is 100 ton / h, the required accumulator capacity is about 1,100 m 3 .

【0004】 アキュムレータから取出す蒸気量を変
動させたまゝとすればアキュムレータは小さくなり(上
記の例において22bargから35bargに変動させ39to
n/hrから60ton/hrの蒸気をとり出すとするとアキュム
レータ容量は200m3 になる。)、このアキュムレー
タからの蒸気を飽和蒸気の状態で蒸気タービンに供給
し、タービン発電機を駆動することは考えられる。(本
願発明者等が特願平3−230945号にて出願済
み。)
If the amount of steam taken out from the accumulator is changed, the accumulator becomes small (in the above example, it is changed from 22 barg to 35 barg and 39 to
If steam of 60 ton / hr is taken out from n / hr, the accumulator capacity will be 200 m 3 . ), It is conceivable to supply steam from the accumulator to the steam turbine in a saturated steam state to drive the turbine generator. (The inventors of the present application filed an application for Japanese Patent Application No. 3-230945.)

【0005】[0005]

【発明が解決しようとする課題】このように上記従来の
技術においても冶金炉から間欠的に発生する高温の熱エ
ネルギーを利用して蒸気を発生させ、それによってター
ビンを駆動させて発電を行なうことが可能であった。し
かしながら上記従来の技術においては尚、下記に示すよ
うな不具合を有するものであった。
As described above, also in the above-mentioned conventional technique, steam is generated by utilizing high temperature thermal energy generated intermittently from the metallurgical furnace, thereby driving the turbine to generate power. Was possible. However, the above-mentioned conventional technique still has the following problems.

【0006】まず、上記従来の技術の項に記載した方
法に基づく発電設備においては、 (i)飽和蒸気のため回収電力が小さいこと。 (ii)高圧飽和蒸気がタービンに入るため、タービン上
流段においてドレンエロージョン対策が必要であるこ
と。 (iii )タービン最終段出口における蒸気湿り度が許容
値を大きく越えるため、タービン途中で蒸気を取り出
し、ミストセパレータ等で湿分を分離し再びタービンに
流入さす方法が必要であること。 等がある。
First, in the power generation equipment based on the method described in the above-mentioned prior art, (i) the recovered power is small because of saturated steam. (Ii) Since high-pressure saturated steam enters the turbine, it is necessary to take measures against drain erosion in the upstream stage of the turbine. (Iii) Since the steam wetness at the exit of the last stage of the turbine greatly exceeds the allowable value, it is necessary to take out steam in the middle of the turbine, separate the moisture with a mist separator, etc., and re-introduce it into the turbine. Etc.

【0007】また、前記従来の技術で説明した方法のほ
かに、転炉等の冶金炉排ガス処理装置から発生する飽和
蒸気を過熱蒸気とする方法として、いくつか発表されて
いるが、これ等は排ガス処理装置内に過熱器を設置し、
別途アキュムレータ等の蓄熱器を設け、この蓄熱器から
過熱器に飽和蒸気を送ることによって吹錬初期における
過熱器の焼損を防止することを目的としたもの(特開昭
61−125502号公報に記載)であるか、
In addition to the methods described in the above-mentioned prior art, several methods have been announced as methods for converting saturated steam generated from a metallurgical furnace exhaust gas treatment apparatus such as a converter into superheated steam. Install a superheater in the exhaust gas treatment device,
A heat storage device such as an accumulator is separately provided, and the purpose is to prevent burnout of the superheater in the initial stage of blowing by sending saturated steam from the heat storage device to the superheater (described in JP-A-61-125502). ) Or

【0008】吹錬初期・末記の不安定蒸気の有効利用を
図るもの(特公平3−22525号公報に記載)、ある
いは溶融塩による蓄熱技術を織込んで過熱蒸気を連続的
に供給するもの(特開昭60−211201号公報に記
載)や、
A means for effectively utilizing unstable steam at the beginning and end of blowing (described in Japanese Patent Publication No. 3-22525), or a means for continuously supplying superheated steam by incorporating a heat storage technology using molten salt (Described in JP-A-60-212101),

【0009】更には別途燃料焚きボイラを設け、非吹錬
時にはボイラから過熱蒸気を発生させ(特開平1−25
2890号公報に記載)、非吹錬時と吹錬時とで蒸気ラ
インを切り替える等複雑なシステムであり、冶金炉排ガ
ス処理装置と密接な関係を必要とするものであった。
Further, a fuel-fired boiler is additionally provided, and superheated steam is generated from the boiler during non-blowing (Japanese Patent Laid-Open No. 1-25
No. 2890), it is a complicated system such as switching the steam line between non-blown and blown, and requires a close relationship with the metallurgical furnace exhaust gas treatment device.

【0010】本発明はこのような情勢に鑑みてなされた
もので、簡潔な構成によって、吹錬、非吹錬等の冶金炉
側の操業条件と係わりなく独立したシステムからなり、
高い熱効率のもとで過熱蒸気を供給し得る冶金炉排ガス
顕熱回収発電設備を提供することを目的としている。
The present invention has been made in view of such a situation, and has a simple structure and an independent system regardless of the operating conditions of the metallurgical furnace such as blowing and non-blowing.
It is an object of the present invention to provide a metallurgical furnace exhaust gas sensible heat recovery power generation facility capable of supplying superheated steam with high thermal efficiency.

【0011】[0011]

【課題を解決するための手段】上記の目的は前記特許請
求の範囲に記載されたガスタービンと組合せた冶金炉排
ガス顕熱回収発電設備によって達成される。すなわち、 (1)間歇運転冶金炉とガスタービンと蒸気タービン駆
動発電機とを有するプラントにおいて、冶金炉排ガス用
飽和蒸気ボイラと、アキュムレータと、ガスタービン廃
熱回収熱交換器と、復水器と、ボイラ給水手段とを有
し、ボイラから間歇的に発生する飽和蒸気をアキュムレ
ータを介して圧力・流量が変動する連続飽和蒸気に変換
して取り出し、該連続飽和蒸気をガスタービン廃熱回収
熱交換器によって過熱蒸気とし、該過熱蒸気によって蒸
気タービンを駆動して発電するガスタービンと組合せた
冶金炉排ガス顕熱回収発電設備。 (2)間歇運転冶金炉が転炉であり転炉吹錬工程間の時
間(非吹錬工程時間)が予定より延長し、アキュムレー
タからの連続発生飽和蒸気量が減少した場合に、前記ガ
スタービン廃熱回収熱交換器において飽和蒸気を過熱さ
せた余剰のガスタービン廃熱のエネルギーによって前記
復水器から流出する復水を加熱してアキュムレータに送
入する(1)記載のガスタービンと組合せた冶金炉排ガ
ス顕熱回収発電設備。 である。以下本発明の作用等について実施例に基づいて
説明する。
The above object can be achieved by a metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with a gas turbine described in the claims. That is, (1) in a plant having an intermittent operation metallurgical furnace, a gas turbine, and a steam turbine driven generator, a saturated steam boiler for metallurgical furnace exhaust gas, an accumulator, a gas turbine waste heat recovery heat exchanger, and a condenser. , A boiler water supply means, and converts saturated steam generated intermittently from the boiler into continuous saturated steam with variable pressure and flow rate through an accumulator and takes it out, and the continuous saturated steam heat recovery heat recovery of gas turbine Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with a gas turbine that generates superheated steam by a steam generator and drives a steam turbine with the superheated steam. (2) Intermittent operation When the metallurgical furnace is a converter, the time between converter blowing processes (non-blowing process time) is longer than expected, and the amount of continuously generated saturated steam from the accumulator decreases, the gas turbine Combined with the gas turbine described in (1), the condensate flowing out of the condenser is heated by the energy of the excess gas turbine waste heat from superheated saturated steam in the waste heat recovery heat exchanger and is fed into the accumulator. Metallurgical furnace exhaust gas sensible heat recovery power generation facility. Is. Hereinafter, the operation and the like of the present invention will be described based on Examples.

【0012】[0012]

【実施例】図1〜10は冶金炉が転炉である場合の実施
例を説明するための図で、図1は本発明の主要な構成を
示す系統図、図2は蒸気ドラム発生蒸気の状態を示す
図、図3はアキュムレータ器内圧、アキュムレータ流出
蒸気量の状態を示す図、図4は蒸気タービン膨脹線図、
図9は飽和蒸気タービンサイクルに各機器入口、出口に
おける状態を示した図、図5は本発明のサイクルのフロ
ー図に各機器入口、出口における状態を示した図、図6
は過熱蒸気タービンと飽和蒸気タービンと通常コンバイ
ンドサイクルの場合の熱効率の相違を説明する図、図7
はガスタービンを使用し、発生させた高圧、低圧の蒸気
の内、低圧蒸気を蒸気タービンに混気させた場合の通常
のガスタービンコンバインドサイクルの系統図、図8は
本発明サイクルのガスタービン廃熱回収熱交換器の交換
熱量と温度との関係を示す図、図10は通常のガスター
ビンコンバインドサイクルにおけるガスタービン廃熱回
収熱交換器の交換熱量と温度との関係を示す図である。
1 to 10 are views for explaining an embodiment in the case where a metallurgical furnace is a converter, FIG. 1 is a system diagram showing a main constitution of the present invention, and FIG. 2 is a steam drum-generated steam. FIG. 4 is a diagram showing a state, FIG. 3 is a diagram showing a state of the internal pressure of the accumulator and the amount of steam flowing out of the accumulator, FIG. 4 is a steam turbine expansion diagram,
FIG. 9 is a diagram showing a state at each equipment inlet and outlet in the saturated steam turbine cycle, FIG. 5 is a diagram showing a state at each equipment inlet and outlet in the flow chart of the cycle of the present invention, FIG.
FIG. 7 is a diagram for explaining a difference in thermal efficiency between a superheated steam turbine, a saturated steam turbine, and a normal combined cycle.
Is a system diagram of a normal gas turbine combined cycle in which low pressure steam is mixed in the steam turbine among the generated high pressure and low pressure steam by using a gas turbine, and FIG. FIG. 10 is a diagram showing the relationship between the heat exchange amount and the temperature of the heat recovery heat exchanger, and FIG. 10 is a diagram showing the relationship between the heat exchange amount and the temperature of the gas turbine waste heat recovery heat exchanger in a normal gas turbine combined cycle.

【0013】まず図1において、冶金炉1からは吹錬期
間中に約1500℃の高温ガスが排出され、この熱によ
って排ガス処理装置2から飽和蒸気が発生し蒸気ドラム
3に入る。吹錬時間は一般に15分程度であり、次の吹
錬迄の時間は操業状況によって異るが、15分程度が普
通である。
First, in FIG. 1, a high temperature gas of about 1500 ° C. is discharged from a metallurgical furnace 1 during a blowing period, and the heat causes a saturated steam to be generated from an exhaust gas processing device 2 and enter a steam drum 3. Blowing time is generally about 15 minutes, and the time until the next blowing depends on the operating conditions, but is usually about 15 minutes.

【0014】蒸気ドラム3からの蒸気圧力は圧力調整弁
20によって一定圧力(通常40bar 程度)に制御され
ている。従って蒸気ドラム3の出口蒸気状態は図2の様
なステップ状となる。
The steam pressure from the steam drum 3 is controlled to a constant pressure (usually about 40 bar) by a pressure regulating valve 20. Therefore, the state of the steam at the outlet of the steam drum 3 becomes a step like that shown in FIG.

【0015】蒸気ドラム3から発生した図2の様な蒸気
はアキュムレータ5に入り、蓄熱される。アキュムレー
タ5の器内圧は図3の様にp1 bar からp2 bar の間を
変動する。この変動幅はアキュムレータ5の容量吹錬時
間t1 分、非吹錬時間t2 分によって異る。
The steam generated from the steam drum 3 as shown in FIG. 2 enters the accumulator 5 and accumulates heat. The internal pressure of the accumulator 5 fluctuates between p 1 bar and p 2 bar as shown in FIG. This fluctuation range varies depending on the volume blowing time t 1 minutes of the accumulator 5 and the non-blowing time t 2 minutes.

【0016】蒸気タービン12の入口加減弁22の開度
を一定にすればアキュムレータ5から流出する蒸気量は
アキュムレータ器内圧に比例してG1 kg/hrからG2 kg
/hrの間を変動する。アキュムレータ5から流出するG
1 kg/hrからG2 kg/hrの飽和蒸気(圧力p1 bar 〜p
2 bar )はガスタービン廃熱回収熱交換器6に入る。
If the opening degree of the inlet control valve 22 of the steam turbine 12 is kept constant, the amount of steam flowing out from the accumulator 5 is proportional to the internal pressure of the accumulator and is from G 1 kg / hr to G 2 kg.
Fluctuates between / hr. G flowing out from the accumulator 5
Saturated steam from 1 kg / hr to G 2 kg / hr (pressure p 1 bar to p
2 bar) enters the gas turbine waste heat recovery heat exchanger 6.

【0017】一方、ガスタービン7の負荷一定であれば
排ガス10の温度、流量も殆んど一定であるので、蒸気
流量の少ないG1 kg/hrのときの過熱温度幅は大きく、
蒸気流量の多いG2 kg/hrのときの過熱温度幅は小さく
なる。(図4参照)
On the other hand, if the load of the gas turbine 7 is constant, the temperature and flow rate of the exhaust gas 10 are almost constant, so that the superheating temperature range is large when G 1 kg / hr is low and the steam flow rate is small.
The superheating temperature range becomes small when the steam flow rate is high at G 2 kg / hr. (See Figure 4)

【0018】蒸気タービンの出力は通過流量をGt kg/
h、タービン入口から出口までの蒸気の断熱熱落差をH
t kJ/kg、タービン効率をηt とすると、それぞれの積
(Gt ×Ht ×ηt )で表わされる。
The output of the steam turbine has a flow rate of G t kg /
h, adiabatic heat drop of steam from turbine inlet to outlet is H
Assuming that t kJ / kg and turbine efficiency are η t , they are represented by respective products (G t × H t × η t ).

【0019】添字の記号を次のように表わすと、タービ
ン出力は表1のようになる。 s:飽和蒸気タービンの場合 h:過熱蒸気タービンの場合 i:吹錬開始状態 e:吹錬完了状態
The turbine output is shown in Table 1 when the symbols of the subscripts are expressed as follows. s: Saturated steam turbine h: Superheated steam turbine i: Blowing start state e: Blowing completion state

【0020】[0020]

【表1】 [Table 1]

【0021】飽和蒸気使用の場合、タービン内部全段に
亘り湿り蒸気が流れ、過熱蒸気使用の場合はタービンの
後部段のみが湿り蒸気となるので過熱蒸気の場合には湿
り損失が少なくなる、即ちタービン効率はηtsi <η
thi 及びηtse <ηthe となる。
When the saturated steam is used, the wet steam flows through all the internal stages of the turbine, and when the superheated steam is used, only the rear stage of the turbine becomes the wet steam, so that the wet loss is reduced in the case of the superheated steam. Turbine efficiency is η tsi
thi and η tsethe .

【0022】タービン内部の断熱々落差も当然Htsi
thi 及びHtse <Hthe となる。従って吹錬開始時、
及び吹錬完了時に於いて、過熱蒸気使用の場合と飽和蒸
気使用の場合の比をとれば、通過流量Gsi=Ghi、Gse
=Gheであるので、それぞれ、Hthi ・ηthi /Htsi
・ηtsi ,Hthe ・ηthe /Htse ・ηtse で表わさ
れ、過熱蒸気使用時の方が冶金炉1の操業いかんに拘わ
らずタービン出力は大きくなることがわかる。
The adiabatic head of the turbine is naturally H tsi <
H thi and H tse <H the . Therefore, at the start of blowing,
At the time of completion of blowing, if the ratio of the case of using superheated steam and the case of using saturated steam is taken, the flow rate of passage G si = G hi , G se
= G he , so H thi η thi / H tsi respectively
・ Η tsi , H the · η the / H tse · η tse . It can be seen that the turbine output is higher when superheated steam is used regardless of the operation of the metallurgical furnace 1.

【0023】次に過熱蒸気使用時と飽和蒸気使用時のそ
れぞれの場合、吹錬開始時の出力と吹錬完了時の比力の
変動幅を考えれば、前述した様に吹錬開始時の過熱度Δ
tiは吹錬完了時過熱度Δteよりも大きいが故に断熱々落
差の比Hte/Htiは飽和蒸気使用時のそれHtse /H
tsi よりも、過熱蒸気使用時のHthe /Hthi の方が小
さくなる。
Next, in the case of using superheated steam and the case of using saturated steam, considering the fluctuation range of the output at the start of blowing and the specific power at the time of completion of blowing, as described above, the overheating at the start of blowing Degree Δ
Since ti is greater than the superheat Δte at the completion of blowing, the adiabatic head drop ratio H te / H ti is that when saturated steam is used H tse / H
H the / H thi when using superheated steam is smaller than tsi .

【0024】過熱蒸気使用時の吹錬開始時のタービン出
口蒸気湿り度xhiと吹錬完了時のタービン出口蒸気湿り
度xheとの比、xhi/xheと飽和蒸気使用時のそれxsi
/xseを比べると、前者の方が大きい。このことはター
ビン効率の比ηthi/ηtheはηtsi/ηtseよりも大きく
なることを意味する。即ち、段落番号0023部に記し
たことと上記のことより、過熱蒸気使用時の方がタービ
ン出力の変動は飽和蒸気使用時より小さくなることがわ
かる。
The ratio of the turbine outlet steam wetness x hi at the start of blowing when using superheated steam to the turbine outlet steam wetness x he at the completion of blowing, x hi / x he and that when using saturated steam x si
Compared with / x se , the former is larger. This means that the turbine efficiency ratio η thi / η the becomes larger than η tsi / η tse . That is, it can be seen from the description in paragraph 0023 and the above that the fluctuation of the turbine output when using superheated steam is smaller than when using saturated steam.

【0025】次に非吹錬時間(図2のt2 分)が延長さ
れた場合について説明する。この場合、当然アキュムレ
ータ器内圧は図3のp1 よりも低下しアキュムレータ流
出流量も減少する。このことは図1の過熱器6−1の通
過蒸気量の減少により当過熱器6−1の出口における排
ガス温度は上昇し給水加熱器6−2に与える熱量は増加
することを意味する。即ち給水加熱器6−2より出る給
水温度は上昇し、アキュムレータ5に貯蔵されている水
の温度より高くなる。
Next, the case where the non-blowing time (t 2 minutes in FIG. 2) is extended will be described. In this case, the accumulator internal pressure naturally falls below p 1 in FIG. 3 and the accumulator outflow rate also decreases. This means that the exhaust gas temperature at the outlet of the superheater 6-1 rises and the amount of heat applied to the feedwater heater 6-2 increases due to the decrease in the amount of steam passing through the superheater 6-1 in FIG. That is, the temperature of the water supplied from the water heater 6-2 rises and becomes higher than the temperature of the water stored in the accumulator 5.

【0026】この様な状態で純水タンク4と連絡する系
の給水弁A17を閉じ、アキュムレータへ連絡する系の
給水弁B18を開き給水をアキュムレータに戻せば、ア
キュムレータに貯蔵される水の温度は上昇し、器内圧の
減少割合が緩和され発生蒸気量の減少も緩かになる。
In this state, if the water supply valve A17 of the system communicating with the pure water tank 4 is closed and the water supply valve B18 of the system communicating with the accumulator is opened to return the water supply to the accumulator, the temperature of the water stored in the accumulator will be As a result, the rate of decrease in the internal pressure is eased and the amount of steam generated is also moderated.

【0027】即ち冶金炉操業事情等により、非吹錬時間
が相当長くなっても蒸気タービン12の通過流量が無負
荷流量(定格の5%程度)以下になることはなく発電機
がモータリングするおそれはない。
That is, due to the operating conditions of the metallurgical furnace, even if the non-blowing time is considerably long, the flow rate through the steam turbine 12 does not fall below the no-load flow rate (about 5% of the rating) and the generator motors. There is no fear.

【0028】本発明のシステムの採用により、発明の効
果の項で述べた様な利点が発揮されると共に、冶金炉操
業中における発電出力の変動幅も小さくなり、モータリ
ングのおそれも殆んどなくなり、今迄電力として回収さ
れていなかった冶金炉排ガス顕熱を回収する発電設備が
可能となる。
By adopting the system of the present invention, the advantages described in the section of the effects of the invention are exhibited, the fluctuation range of the power generation output during the operation of the metallurgical furnace is reduced, and the risk of motoring is almost eliminated. This will eliminate the need for power generation equipment that recovers the sensible heat of exhaust gas from metallurgical furnaces that has not been recovered as electric power.

【0029】次に本発明のサイクルの熱効率と飽和蒸気
サイクルとガスタービンの排ガスにより蒸気を発生し復
水タービンを駆動する通常のコンバイドサイクルとを組
合せた場合の熱効率について説明する。
Next, the thermal efficiency of the cycle of the present invention and the thermal efficiency in the case of combining the saturated steam cycle and a normal combined cycle for generating steam by the exhaust gas of the gas turbine to drive the condensing turbine will be described.

【0030】冶金炉排ガス処理装置の蒸気ドラム3から
は図2の様にステップ状で飽和蒸気が発生し蒸気タービ
ン12には図3の様な変動した圧力で、かつ変動した量
の蒸気が流れるが、簡単のために、蒸気タービン(1
2)には常に一定圧力p0 (bar )(アキュムレータ5
の容量を無限大とし、配管等の圧力損失を無視すればこ
のことはいえる)で流量g0 =(t1 /t1 +t2 )×
(G0 /3600)(kg/s)流れるものとする。
Saturated steam is generated in steps from the steam drum 3 of the exhaust gas treating apparatus of the metallurgical furnace as shown in FIG. 2, and the steam having a varying pressure and varying amount of steam flows to the steam turbine 12 as shown in FIG. However, for simplicity, the steam turbine (1
2) always has a constant pressure p 0 (bar) (accumulator 5
The flow rate is g 0 = (t 1 / t 1 + t 2 ) ×
And (G 0/3600) (kg / s) through those.

【0031】図9は飽和蒸気タービンサイクルのフロー
図に各機器入口、出口における状態を示したものであ
る。図9のサイクルにおける入熱量Qi0=g0 ・(iS1
−iC )であり、損失熱量qsex は復水器13から放出
される熱量
FIG. 9 is a flow chart of the saturated steam turbine cycle showing the states at the inlet and outlet of each device. Heat input Q i0 = g 0 · (i S1 in the cycle of FIG. 9
-I C ), and the amount of heat loss q sex is the amount of heat released from the condenser 13.

【0032】[0032]

【数1】 [Equation 1]

【0033】であるので、このサイクルの熱効率ηsth
は次式で表わされる。
Therefore, the thermal efficiency η sth of this cycle is
Is expressed by the following equation.

【0034】[0034]

【数2】 [Equation 2]

【0035】図6における中央の図の長方形s1−s3
−s4−s6−s1は図9のサイクルにおける入熱Qi0
を、s1−s2−s5−s6−s1は放出熱qsex を、
s2−s3−s4−s5−s2は出力PSST を表わす。
Rectangle s1-s3 in the center view of FIG.
-S4-s6-s1 is heat input Q i0 in the cycle of FIG.
S1-s2-s5-s6-s1 is the emitted heat q sex ,
s2-s3-s4-s5-s2 represents the output P SST .

【0036】図5は本発明のサイクルのフロー図に各機
器入口、出口における状態を示したものである。廃熱回
収熱交換器過熱器6−1で給水はtC (℃)(エンタル
ピiC kJ/kg)からtf (℃)(エンタルピif kJ/k
g)まで加熱されて排ガス処理装置2に入る。従って当
装置2により発生する飽和蒸気量は図9のサイクルの場
合のg0 (kg/s)より増加したg(kg/s)となる。
図6の中央の図の面積s1−s3−s4−s6−s1=
左の図の面積s1′−s3−s4′−s6′−s1′と
なる。
FIG. 5 is a flow chart of the cycle of the present invention, showing the state at the inlet and outlet of each device. In the waste heat recovery heat exchanger superheater 6-1, water is supplied from t C (° C) (enthalpy i C kJ / kg) to t f (° C) (enthalpy i f kJ / k).
It is heated up to g) and enters the exhaust gas treatment apparatus 2. Therefore, the saturated vapor amount generated by the device 2 becomes g (kg / s) which is increased from g 0 (kg / s) in the case of the cycle of FIG.
Area s1-s3-s4-s6-s1 = in the center diagram of FIG.
The area s1'-s3-s4'-s6'-s1 'in the left figure is obtained.

【0037】図6の左の図の面積s3−h3−h4−s
4′−s3は過熱器6−1で与えられる熱、面積h1−
s1′−s6′−h7−h1は給水加熱器6−2で与え
られる熱を表わし、面積h1−h2−h6−h7−h1
は蒸気タービンの復水器13より捨て去られる熱量を表
わし、次式となる。
The area s3-h3-h4-s in the left diagram of FIG.
4'-s3 is heat given by the superheater 6-1, area h1-
s1'-s6'-h7-h1 represents heat provided by the feed water heater 6-2, and has an area h1-h2-h6-h7-h1.
Represents the amount of heat discarded from the condenser 13 of the steam turbine, and is given by the following equation.

【0038】[0038]

【数3】 [Equation 3]

【0039】本発明のシステムにおいて排ガス処理装置
2より発生する飽和蒸気量の増加分Δgは次式で表わさ
れる。
In the system of the present invention, the increase amount Δg of the saturated vapor amount generated from the exhaust gas treatment device 2 is expressed by the following equation.

【0040】[0040]

【数4】 [Equation 4]

【0041】通常、蒸気タービンの出口における蒸気乾
き度を許容値限度までとるのでihz≒iszと与えられ
る。即ち、図6における左の図の面積h1−h2−h8
−s6−h1は中央の図の面積s1−s2−s5−s6
−s1に等しいとしてもよい。従って、本発明における
システムの蒸気タービン復水器13から捨て去られる熱
量は、従来の飽和蒸気システムの蒸気タービン復水器1
3″より捨て去られる熱量より図6の左の図の面積s6
−h8−h6−h7−s6だけ増加することとなる。
Usually, since the steam dryness at the outlet of the steam turbine is set to the allowable limit, i hz ≈i sz is given. That is, the area h1-h2-h8 in the left diagram in FIG.
-S6-h1 is the area s1-s2-s5-s6 in the center figure.
It may be equal to −s1. Therefore, the amount of heat that is discarded from the steam turbine condenser 13 of the system of the present invention is the same as that of the conventional steam turbine condenser 1 of the saturated steam system.
Area s6 in the diagram on the left of FIG. 6 from the amount of heat discarded from 3 ″
It will be increased by -h8-h6-h7-s6.

【0042】次に本発明で用いたと同じガスタービン7
を用い、ガスタービン廃熱回収熱交換器6′で排ガス温
度を同じTi からTe まで下げて蒸気を発生させ蒸気タ
ービン12′を駆動するサイクルを説明する。排ガス1
0の熱を充分利用するため、通常、廃熱回収熱交換器
6′は高圧、低圧の蒸気を発生させ低圧蒸気を蒸気ター
ビン12′に混気さす方法が採用される。このフローを
図7に示す。
Next, the same gas turbine 7 used in the present invention
A cycle in which the gas turbine waste heat recovery heat exchanger 6'reduces the exhaust gas temperature from the same T i to T e to generate steam and drives the steam turbine 12 'will be described. Exhaust gas 1
In order to sufficiently utilize the heat of 0, the waste heat recovery heat exchanger 6'generally adopts a method of generating high-pressure and low-pressure steam and mixing the low-pressure steam with the steam turbine 12 '. This flow is shown in FIG.

【0043】また、本発明サイクルのガスタービン廃熱
回収熱交換器6の交換熱量と温度の関係を図8に、通常
のガスタービンコンバインドサイクルのそれを図10に
示す。
FIG. 8 shows the relationship between the heat exchange amount and the temperature of the gas turbine waste heat recovery heat exchanger 6 in the cycle of the present invention, and FIG. 10 shows the relationship in the normal gas turbine combined cycle.

【0044】図5の熱交換器過熱器6−1と図7の熱交
換器6′の蒸発器6′−2及び過熱器6′−1に於ける
熱の授受式は次で表わされる。
The heat transfer equations for the heat exchanger superheater 6-1 of FIG. 5 and the evaporator 6'-2 and superheater 6'-1 of the heat exchanger 6'of FIG. 7 are expressed as follows.

【0045】[0045]

【数5】 [Equation 5]

【0046】[0046]

【数6】 [Equation 6]

【0047】[0047]

【数7】 [Equation 7]

【0048】[0048]

【数8】 [Equation 8]

【0049】“数8”において、gh −Δg>0であれ
ば、本発明のシステムの場合の復水器13′から捨て去
られる熱量は、通常のガスタービンコンバインドサイク
ルの復水器13′と飽和蒸気タービンの復水器13″と
から捨てられる熱量より少なくなり、熱効率はよくなる
ことを意味する。
[0049] In "number 8", if g h -Δg> 0, condenser 13 in the case of the system of the present invention 'the amount of heat thrown away from the condenser 13 of the conventional gas turbine combined cycle' And less than the amount of heat wasted from the condenser 13 ″ of the saturated steam turbine, which means that the thermal efficiency is improved.

【0050】“数8”の右辺の中括弧の中、すなわちIn the curly braces on the right side of "Equation 8", that is,

【0051】[0051]

【数9】 [Equation 9]

【0052】について調べると、is1は飽和蒸気のエン
タルピであり、ic は復水のエンタルピであるので、i
s1−ic は2,500kJ/kg程度であり、潜熱r1 と過
熱度Δih1との比は大きくみても4である。従って
## EQU3 ## Since i s1 is the enthalpy of saturated vapor and i c is the enthalpy of condensate, i
s1 -i c is about 2,500kJ / kg, the ratio of the latent heat r 1 and superheat .DELTA.i h1 is 4 even look larger. Therefore

【0053】[0053]

【数10】 [Equation 10]

【0054】は500kJ/kgより常に大きくなる。一方
給水加熱器6−2によって加熱されたとしても給水エン
タルピif は550kJ/kg程度が最大でif −ic <4
00kJ/kgとなる。
Is always greater than 500 kJ / kg. On the other hand, even if the water is heated by the water heater 6-2, the maximum water supply enthalpy i f is about 550 kJ / kg, and if −i c <4
It will be 00 kJ / kg.

【0055】飽和圧力をかえて“数9”について数値計
算すると次のようになり全て正となる。即ちgh >Δg
であり、本発明サイクルの方の熱効率は高くなる。
Numerical calculation for "Equation 9" by changing the saturation pressure is as follows and all are positive. That is, g h > Δg
Therefore, the thermal efficiency of the cycle of the present invention is higher.

【0056】[0056]

【表2】 但し、ガスタービン排ガス温度Ti =500℃ 熱交換器ピンチポイント温度差Δ=20℃ 熱交換器出口ガス温度Te =100℃ 蒸気タービン出口圧力Rz =40mmHg abs 過熱蒸気温度th1=450℃[Table 2] However, gas turbine exhaust gas temperature T i = 500 ° C. heat exchanger pinch point temperature difference Δ = 20 ° C. heat exchanger outlet gas temperature T e = 100 ° C. steam turbine outlet pressure R z = 40 mmHg abs superheated steam temperature t h1 = 450 ° C.

【0057】[0057]

【発明の効果】このように本発明によれば上記実施例に
おいて説明したように下記に示す効果を奏する。 アキュムレータを介するため冶金炉排ガスの状態
が、吹錬状態で計画値からかなり変動したとしても、ア
キュムレータから取り出す蒸気の状態は殆んど計画と変
りない。従って過大な設備を予め設置する必要がない。 過熱器として使用されるガスタービン廃熱回収熱交
換器の排ガス計画条件、即ちガスタービンの型式容量等
に対し供給される飽和蒸気状態とのマッチングはアキュ
ムレータ容量により調整し得る。 吹錬、非吹錬の条件と関係づける必要がないため、
冶金炉側操業と発電プラント側の状態を互に独立したシ
ステムとして扱い得る。 過熱蒸気をタービンに供給するため蒸気サイクルの
熱効率が向上すると共に、飽和蒸気を使用する場合の様
な特殊なシステム特殊なタービンを必要としない。 ガスタービンの廃熱を利用するため、ブレイントン
サイクルとランキンサイクルの、所謂コンバインドサイ
クルとなり、別置燃料焚ボイラの方法より、熱効率を向
上させ得る。 飽和蒸気を用いたランキンサイクルのプラントとガ
スタービンの廃熱回収の蒸気タービンとを組合せた通常
のコンバインドサイクルプラントとの和による熱効率よ
りも本発明のコンバインドサイクルの熱効率の方が高い
値を得ることが可能になる。
As described above, according to the present invention, the following effects are obtained as described in the above embodiment. Even if the condition of the exhaust gas from the metallurgical furnace fluctuates considerably from the planned value in the blowing condition due to the accumulator, the condition of the steam extracted from the accumulator is almost unchanged from the plan. Therefore, it is not necessary to install excessive equipment in advance. The exhaust gas planning conditions of the gas turbine waste heat recovery heat exchanger used as a superheater, that is, matching with the type of the gas turbine and the saturated steam state supplied, can be adjusted by the accumulator capacity. Since there is no need to relate to blowing and non-blowing conditions,
The operation on the metallurgical furnace side and the state on the power plant side can be treated as independent systems. The supply of superheated steam to the turbine improves the thermal efficiency of the steam cycle and does not require a special system or special turbine as in the case of using saturated steam. Since the waste heat of the gas turbine is used, it becomes a so-called combined cycle of the Brainton cycle and the Rankine cycle, and the thermal efficiency can be improved as compared with the method of the separate fuel-fired boiler. The combined cycle thermal efficiency of the present invention obtains a higher value than the thermal efficiency obtained by the sum of a Rankine cycle plant using saturated steam and a conventional combined cycle plant combining a steam turbine for waste heat recovery of a gas turbine. Will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の主要な構成を示す系統図である。FIG. 1 is a system diagram showing a main configuration of the present invention.

【図2】蒸気ドラム発生蒸気の状態を示す図である。FIG. 2 is a diagram showing a state of steam generated by a steam drum.

【図3】アキュムレータ器内圧、アキュムレータ流出蒸
気量の状態を示す図である。
FIG. 3 is a diagram showing the states of the internal pressure of the accumulator and the amount of steam flowing out of the accumulator.

【図4】蒸気タービン膨脹線図であるFIG. 4 is a steam turbine expansion diagram.

【図5】本発明のサイクルのフロー図に各機器入口、出
口における状態を示す図である。
FIG. 5 is a diagram showing a state at each device inlet and outlet in the flow chart of the cycle of the present invention.

【図6】過熱蒸気タービンと飽和蒸気タービンと通常コ
ンバインドサイクルの場合の熱効率の相違を説明する図
である。
FIG. 6 is a diagram illustrating a difference in thermal efficiency between a superheated steam turbine, a saturated steam turbine, and a normal combined cycle.

【図7】本発明に基づくガスタービンを使用し、発生さ
せた高圧、低圧の蒸気の内、低圧蒸気を蒸気タービンに
混気させた場合の系統図である。
FIG. 7 is a system diagram when a low pressure steam of the generated high pressure and low pressure steam is mixed into the steam turbine using the gas turbine according to the present invention.

【図8】本発明サイクルのガスタービン廃熱回収熱交換
器の交換熱量と温度との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the heat exchange amount and the temperature of the gas turbine waste heat recovery heat exchanger of the cycle of the present invention.

【図9】飽和蒸気タービンサイクルに各機器入口、出口
における状態を示した図である。
FIG. 9 is a diagram showing a state at each equipment inlet and outlet in the saturated steam turbine cycle.

【図10】通常のガスタービンコンバインドサイクルに
おけるガスタービン廃熱回収交換器の交換熱量と温度と
の関係を示す図である。
FIG. 10 is a diagram showing a relationship between a heat exchange amount and a temperature of a gas turbine waste heat recovery exchanger in a normal gas turbine combined cycle.

【符号の説明】[Explanation of symbols]

1 冶金炉 2 排ガス処理装置(冷却部) 3 蒸気ドラム 4 純水タンク 5 アキュムレータ 6 ガスタービン廃熱回収熱交換器 6−1 過熱器 6−2 給水加熱器 7 ガスタービン 8 空気 9 燃料 10 排ガス 11 排気筒 12 蒸気タービン 13 復水器 14 復水ポンプ 15 復水タンク 16 復水移送ポンプ 17 給水弁A 18 給水弁B 19 ボイラ給水ポンプ 20 圧力調節弁 21 圧力調節計 22 タービン入口加減弁 23 発電機 24 飽和蒸気ボイラ 6′−1 高圧蒸気過熱器(HP−SH) 6′−2 高圧蒸気蒸発器(HP−EVA) 6′−3 高圧エコノマイザー(HP−ECO.) 6′−4 低圧蒸気蒸発器(LP−EVA.) 6′−5 低圧エコノマイザー(LP−ECO.) 12′ 蒸気タービン 13′ 復水器 Ti HRSG過熱器入口ガス温度(℃) Te HRSG過熱器出口ガス温度(℃) G ガスタービン排ガス量(kg/S) ih1 HRSG過熱器出口過熱蒸気エンタルピ(kJ/
kg) is1 HRSG過熱器入口飽和蒸気エンタルピ(kJ/
kg) tf HRSG給水加熱器出口給水温度(℃) tc HRSG給水加熱器入口給水温度(℃) Δ 過熱器のピンチポイント温度差(℃) T1 高圧蒸発器入口ガス温度(℃) T1 ′ 低圧蒸発器入口ガス温度(℃) T2 低圧エコノマイザー入口ガス温度(℃) tc HRSG入口給水温度=復水温度(℃) ts2 低圧蒸気飽和温度(℃) is2 低圧飽和エンタルピ(kJ/kg) P2 低圧蒸気飽和圧力(bar a) ts1 高圧蒸気飽和温度(℃) P0 高圧蒸気飽和圧力(bar a)
1 Metallurgical Furnace 2 Exhaust Gas Treatment Device (Cooling Section) 3 Steam Drum 4 Pure Water Tank 5 Accumulator 6 Gas Turbine Waste Heat Recovery Heat Exchanger 6-1 Superheater 6-2 Water Supply Heater 7 Gas Turbine 8 Air 9 Fuel 10 Exhaust Gas 11 Exhaust stack 12 Steam turbine 13 Condenser 14 Condensate pump 15 Condensate tank 16 Condensate transfer pump 17 Water supply valve A 18 Water supply valve B 19 Boiler water supply pump 20 Pressure control valve 21 Pressure controller 22 Turbine inlet control valve 23 Generator 24 Saturated steam boiler 6'-1 High pressure steam superheater (HP-SH) 6'-2 High pressure steam evaporator (HP-EVA) 6'-3 High pressure economizer (HP-ECO.) 6'-4 Low pressure steam evaporation vessel (LP-EVA.) 6'- 5 low pressure economizer (LP-ECO.) 12 'steam turbine 13' condenser T i HRSG superheater Mouth gas temperature (℃) T e HRSG superheater outlet gas temperature (° C.) G Gas turbine exhaust amount (kg / S) i h1 HRSG superheater outlet superheated steam enthalpy (kJ /
kg) is1 HRSG Superheater inlet saturated steam enthalpy (kJ /
kg) t f HRSG feed water heater outlet feed water temperature (° C) t c HRSG feed water heater inlet feed water temperature (° C) Δ Superheater pinch point temperature difference (° C) T 1 High pressure evaporator inlet gas temperature (° C) T 1 'low pressure evaporator inlet gas temperature (° C.) T 2 low pressure economizer inlet gas temperature (℃) t c HRSG inlet feedwater temperature = condensate temperature (° C.) t s2 low-pressure steam saturation temperature (° C.) i s2 low saturation enthalpy (kJ / Kg) P 2 Low pressure steam saturation pressure (bar a) ts 1 High pressure steam saturation temperature (° C) P 0 High pressure steam saturation pressure (bar a)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 間歇運転冶金炉とガスタービンと蒸気タ
ービン駆動発電機とを有するプラントにおいて、冶金炉
排ガス用飽和蒸気ボイラと、アキュムレータと、ガスタ
ービン廃熱回収熱交換器と、復水器と、ボイラ給水手段
とを有し、ボイラから間歇的に発生する飽和蒸気をアキ
ュムレータを介して圧力・流量が変動する連続飽和蒸気
に変換して取り出し、該連続飽和蒸気をガスタービン廃
熱回収熱交換器によって過熱蒸気とし、該過熱蒸気によ
って蒸気タービンを駆動して発電することを特徴とする
ガスタービンと組合せた冶金炉排ガス顕熱回収発電設
備。
1. In a plant having an intermittent operation metallurgical furnace, a gas turbine and a steam turbine driven generator, a saturated steam boiler for metallurgical furnace exhaust gas, an accumulator, a gas turbine waste heat recovery heat exchanger, and a condenser. , A boiler water supply means, and converts saturated steam generated intermittently from the boiler into continuous saturated steam with variable pressure and flow rate through an accumulator and takes it out, and the continuous saturated steam heat recovery heat recovery of gas turbine A metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with a gas turbine, wherein the steam turbine is used to generate superheated steam, and the steam turbine is driven by the superheated steam to generate electric power.
【請求項2】 間歇運転冶金炉が転炉であり転炉吹錬工
程間の時間(非吹錬工程時間)が予定より延長し、アキ
ュムレータからの連続発生飽和蒸気量が減少した場合
に、前記ガスタービン廃熱回収熱交換器において飽和蒸
気を過熱させた余剰のガスタービン廃熱のエネルギーに
よって前記復水器から流出する復水を加熱してアキュム
レータに送入する請求項1記載のガスタービンと組合せ
た冶金炉排ガス顕熱回収発電設備。
2. When the intermittent operation metallurgical furnace is a converter and the time between converter blowing processes (non-blowing process time) is longer than planned and the amount of continuously generated saturated steam from the accumulator decreases, The gas turbine according to claim 1, wherein the condensate flowing out from the condenser is heated by the energy of the excess gas turbine waste heat obtained by heating the saturated steam in the gas turbine waste heat recovery heat exchanger, and is fed into the accumulator. Combined metallurgical furnace exhaust gas sensible heat recovery power generation equipment.
JP17002392A 1992-06-05 1992-06-05 Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine Pending JPH05340501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17002392A JPH05340501A (en) 1992-06-05 1992-06-05 Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17002392A JPH05340501A (en) 1992-06-05 1992-06-05 Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine

Publications (1)

Publication Number Publication Date
JPH05340501A true JPH05340501A (en) 1993-12-21

Family

ID=15897172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17002392A Pending JPH05340501A (en) 1992-06-05 1992-06-05 Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine

Country Status (1)

Country Link
JP (1) JPH05340501A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132669A1 (en) * 2010-04-20 2011-10-27 スチールプランテック株式会社 Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
CN102305551A (en) * 2011-08-24 2012-01-04 孙慕文 Converter afterheat and steam compensation combustion type generating system
US8640438B2 (en) 2006-05-26 2014-02-04 Hitachi, Ltd. High humidity gas turbine equipment
US20180298787A1 (en) * 2015-10-07 2018-10-18 Siemens Aktiengesellschaft Method for Operating a Combined Gas and Steam Power Plant
CN115371036A (en) * 2022-08-29 2022-11-22 中冶南方都市环保工程技术股份有限公司 Gas supply system and stable operation control method for supercritical gas boiler
CN115371035A (en) * 2022-08-29 2022-11-22 中冶南方都市环保工程技术股份有限公司 Supercritical gas boiler stable operation control method and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8640438B2 (en) 2006-05-26 2014-02-04 Hitachi, Ltd. High humidity gas turbine equipment
WO2011132669A1 (en) * 2010-04-20 2011-10-27 スチールプランテック株式会社 Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
CN102859008A (en) * 2010-04-20 2013-01-02 钢铁普蓝特克股份有限公司 Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
US9157336B2 (en) 2010-04-20 2015-10-13 Jp Steel Plantech Co. Waste heat recovery structure for steel making electric arc furnaces, steel making electric arc furnace facility, and waste heat recovery method for steel making electric arc furnaces
CN102305551A (en) * 2011-08-24 2012-01-04 孙慕文 Converter afterheat and steam compensation combustion type generating system
US20180298787A1 (en) * 2015-10-07 2018-10-18 Siemens Aktiengesellschaft Method for Operating a Combined Gas and Steam Power Plant
US11015490B2 (en) * 2015-10-07 2021-05-25 Siemens Energy Global GmbH & Co. KG Method for operating a combined gas and steam power plant with steam heated by an exothermic chemical reaction
CN115371036A (en) * 2022-08-29 2022-11-22 中冶南方都市环保工程技术股份有限公司 Gas supply system and stable operation control method for supercritical gas boiler
CN115371035A (en) * 2022-08-29 2022-11-22 中冶南方都市环保工程技术股份有限公司 Supercritical gas boiler stable operation control method and system

Similar Documents

Publication Publication Date Title
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
CN88102634A (en) Reheating waste heat recovery boiler and power plant using this boiler
US6497101B2 (en) Method and apparatus for regulating the steam temperature of the live steam or reheater steam in a combined-cycle power plant
US5269130A (en) Method for operating a gas and steam turbine plant and gas and steam turbine plant operated according to the method
JPH0445643B2 (en)
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
US6125634A (en) Power plant
US5396865A (en) Startup system for power plants
JPH05340501A (en) Metallurgical furnace exhaust gas sensible heat recovery power generation facility combined with gas turbine
US5992138A (en) Method for operating a gas and steam-turbine plant and plant working according to the method
JPH10292902A (en) Main steam temperature controller
JP3133183B2 (en) Combined cycle power plant
JPH11303611A (en) Steam turbine operation method for coke dry quenching plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPS61108814A (en) Gas-steam turbine composite facility
JPH10299424A (en) Waste incineration power plant steam temperature control method
JP2002371807A (en) Turbine equipment and steam converting device
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JP2002106804A (en) Feedwater flow control device for variable-pressure once-through boiler
JP3068972B2 (en) Combined cycle power plant
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH01280604A (en) Method of improving efficiency of steam process
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller