【発明の詳細な説明】
この発明は、バチルス・ブレビス(Bacillus
brevis)を宿主とするプラスミドに関し、詳しく
は第1図に示した制限酵素切断パターンを有する
バチルス・ブレビス由来のプラスミドに関する。
鵜高によつて土壌中から分離されたバチルス・
ブレビス47は最適培養条件下で12g/もの蛋白
質を培地中へ分泌する(S.Udaka,Agr.Biol.
Chem.40;523−528(1976),S,Miyashiro,H.
Enei,K.Takanami,Y.Hirose,T.Tsuchida
and S.Udaka,Agr.Biol.Chem.44;2297−2303
(1980))。
バチルス・ブレビス47のこのような蛋白質分泌
能力を利用して、組み換えDNA技法によりバチ
ルス・ブレビス47に導入した異種有用遺伝子の生
産物を大量に培地中に蓄積することができれば、
その応用的価値は大きい。
本発明は、バチルス・ブレビス47において安定
に保持されるコピー数の少ないプラスミドに関す
るものである。一般にコピー数の少ないプラスミ
ドはコピー数の大幅な増加が宿主にとつて致死的
となるような遺伝子のクローニングを行う場合に
有利であるが、その保持のためには選択的薬剤の
培地への添加が必要であることが多い。本発明の
プラスミドはコピー数が少ないにも関わらずバチ
ルス・ブレビス47において非常に安定に保持され
るという点が特徴である。
このピラスミドの発見、精製およびその性質の
解明は以下のようにして行われた。
1 プラスミドpWT481の分離
バチルス・ブレビス47(FERM P−7224)の
類縁菌12株をT2培地(1%ペプトン,0.5%肉エ
キス,0.2%酵母エキス,1%グリコース,PH7)
を用いて37℃で振盪し静止期まで生育させた後、
Birnboimと Dolyの急速アルカリ変性抽出法
(H.C.Birnboim and J.Doiy,Nucleic Acids
Res.,7;1513−1523(1979))によつてプラスミ
ドの有無を試験した。その結果、バチルス・ブレ
ビス481(FERM BP−1224)(S.Udaka,Agr.
Biol.Chem.40;523−528(1976))においてプラ
スミドを発見し、これをpWT481と命名した。
2 ブラスミドpWT481 DNAの精製
T2培地を用いて37℃で振盪し、静止期まで
生育させたバチルス・ブレビス481から田中らの
方法(T.Tanaka,N.Kuroda and K.
Sakaguchi,J.Bacteriol.129;1487−1494
(1977))によつて純粋なpWT481 DNA 約
100μgを得た。制限酵素を用いた解析の結果、第
1図に示すとおり、pWT481 は分子量1.6×106
ダルトンの比較的小さなプラスミドであり、3個
所のHind ,2個所のEcoR Iおよび1個所
のBg1 制限部位を持つていることが判明し
た。
3 pWT481のバチルス・ブレビス47への導入と
安定性試験
pWT481には選択マーカーがないため、以下の
ような間接的な方法でpWT481をバチルス・ブレ
ビス47に導入した。pWT481 DNA(1μg)とエリ
スロマイシン耐性遺伝子を持つプラスミドPHW1
(S.Horinouchi & B.Weisbium,J.Bacteriol.
150,804−814(1982))のDNA(0.002μg)とを混
合し、トリス・REG法(W.Takahashi,H.
Yamagata,K.Yamaguchi,N.Tsukagoshi
and S.Udaka,J.Bacteriol.156,1130−1134
(1983))によるバチルス・ブレビス47の形質転換
に使用した。
エリスロマイシン(10μg/ml)を含むT2寒天
培地(T2培地に1.5%の寒天を加えて固型培地)
上に37℃で生育した形質転換株をエリスロマイシ
ン(10μg/ml)を含むT2培地中で37℃で振盪し、
静止期まで生育させBirnboimとDolyの方法(前
述)によりプラスミドの検定を行つた。調べた形
質転換株の約10分の1がPHW1と同時にpWT481
を保持していることが判明した。
次にこれらの形質転換株をT2培地およびエリ
スロマイシン(10μg/ml)を含むT2培地で37℃
において、それぞれ50世代継代培養した後、
BirnboimとDolyの方法によりプラスミドを抽出
し解析した。プラスミドのアガロースゲル電気泳
動(P.A.Sharp,B.Sugden and J.Sambrook,
Biochemistry.12;3055−3063(1973))による解
析の結果、、エリスロマイシンを添加した培地中
では両プラスミドともに安定に保持されたが、エ
リスロマイシンを添加しないT2培地中ではPHW1
は速やかに失われPHT481のみが安定に保持され
た。
以上のように、バチルス・ブレビス481におい
て発見されたプラスミドpWT481はバチルス・ブ
レビス47において複製を行い、選択的薬剤のない
培養条件下でも安定に保持されるコピー数の少な
いプラスミドであることが判明した。このプラス
ミド上に既知の薬剤耐性遺伝子、例えばPHW1(前
述)のエリスロマイシン耐性遺伝子であるいは
pUB110上のネオマイシン耐性遺伝子(T.J.
Giyczan,S.Contente and D.Dubnau,J.
Bacteriol.134;318−329(1978))などを導入し、
直接形質転換体を選択できるプラスミドを作製す
ることが可能である。実施例1に詳しく示したよ
うにpWT481にPHW1上のエリスロマイシン耐性
遺伝子を導入して作製されたプラスミドPHY481
(第2図)はエリスロマイシンによつて形質転換
体の選択が可能である。
第3図に示したように、バチルス・ブレビス47
に導入されたPHY481はpWT481と同様エリスロ
マイシンを添加しないT2培地における50世代以
上の培地を通じて安定に保持され、かつコピー数
も少ないことが判明した。pWT481およびPH
Y481上にクローン化された異種遺伝子はこれら
のプラスミドの性質から他のプラスミド上にクロ
ーン化された異種遺伝子よりもバチルス・ブレビ
ス47において安定に保持されることが予想される
が、このような実施例としてバチルス・メガテリ
ウムのα−アミラーゼ遺伝子をPHY481上にクロ
ーン化し(第4図)バチルス・ブレビス47におけ
る安定性を試験した。
第4図に示したように、バチルス・メガテリウ
ムのα−アミラーゼ遺伝子をPHY481に導入して
作製されたプラスミドPHY482は、同じ遺伝子を
PHW1上に導入して作製されたプラスミドpKN11
(第4図)よりもバチルス・ブレビス47において
はるかに安定に保持された。
以上の結果は、この発明のプラスミドpWT481
のバチルス・ブレビス47におけるクローニングベ
クターとしての有用性を示すものである。
次に本発明の実施例を示す。
実施例 1
pWT481へのエリスロマイシン耐性遺伝子の導
入PHW1DNAをHpa およびTaq Iで切断
し、生ずるDNA断片の中からエリスロマイシン
耐性遺伝子を含む1.2Kbの断片を分離した。この
断片の両末端をT4DNAポリメラーゼにより平滑
末端として、Hind リンカーを付着し、Hind
で部分的に切断したpWT481DNAとT4リガ
ーゼにより連結した(第2図)。このDNAを用い
てバチルス・ブレビス47を形質転換し、エリスロ
マイシン耐性形質転換株を得た。
これらの形質転換株の約25%がエリスロマイシ
ンを含まぬT2培地中でも安定にプラスミドを保
持した。このような形質転換株の1つから田中ら
の方法(前述)によりプラスミドを精製し、PH
Y481と命名した。第2図にPHY481の制限地図を
示した。次にPHY481を持つバチルス・ブレビス
47株をエリスロマイシンを含まないT2培地にお
いて37℃で継代培養し、各時間にその一部をとり
適当に希釈し、T2寒天培地に散布した。生じた
コロニーをエリスロマイシン(10μg/ml)を含
むT2寒天培地へレプリカし、プラスミドの保持
率を測定した(第3図)。PHY481はこの条件にお
ける50世代以上の継代培養を通じて安定に保持さ
れることが判明した(プラスミド保持率95%以
上)。一方、対照として用いたPHW1を持つバチル
ス・ブレビス47はこの条件における50世代の培養
によつて、99%以上の細胞がプラスミドを失つた
(第3図)。
実施例 2
バチルス・メガテリウムのα−アミラーゼ遺伝
子のPHY481上へのクローニングとバチルス・ブ
レビス47における安定性
1 バチルス・メガテリウムα−アミラーゼ遺伝
子の大腸菌へのクローニング。
斉藤、三浦の方法(H.Saito and K.Miura,
Biochim.Biophys.Acta,72;619−629(1963))
によつて調製したバチルス・メガテリウムの
DNAをHind で切断し、Hind で切断
したpBR322DNAと1:1の割合で混合し、
T4リガーゼにより連結して大腸菌HB101を形
質転換した。。可溶性澱粉(0.3%)およびアン
ピシリン(50μg/ml)を添加したM9合成寒天
培地(0.6%Na2HPO4,0.3%KH2PO4,0.02%
MgSO4・7H2O,0.05%NaC,0.1%NH4C
,0.2%グルコース,0.01%プロリン,0。
01%ロイシン,1.5%寒天)上に生育した形質
転換株の中からヨード澱粉反応でコロニーの周
辺を透明とする株1株を得た。
この株よりプラスミドを田中らの方法(前
述)により精製し、pKN1と命名した。制限酵
素を用いた解析の結果、pKN1上の2.3Kbの
Hind 断片の上にアミラーゼ遺伝子が存在
するこたが示された(第4図)。
2 バチルス・メガテリウムのα−アミラーゼ遺
伝子のPHY481への導入
pKN1をHind で切断し、Hind で部
分的に切断したpHY481DNAと混合し、T4リ
ガーゼにより連結してバチルス・ブレビス47の
形質転換に用いて(第4図)。エリスロマイシ
ン(10μg/ml)および可溶性澱粉(0.3%)を
添加したT2寒天培地上に生育した形質転換株
の中からヨード澱粉反応によりコロニーの周辺
を透明とする株を得た。この株より田中らの方
法(前述)によりプラスミドを精製し、PH
Y482と命名した。対照として用いるため、PH
W1DNA上に同様の操作によりバチルス・メガ
テリウムのα−アミラーゼ遺伝子を含むHind
断片を導入し、pKN11を得た(第4図)。
3 PHY481上にクローン化されたバチルス・メ
ガテリウムのα−アミラーゼ遺伝子のバチル
ス・ブレビス47における安定性
PHY482およびpKN11を有するバチルス・ブ
レビス47をそれぞれエリスロマイシンを含まな
いT2培地において37℃で継代培養した。各時
間にその一部をとり、希釈し可溶性澱粉(0.3
%)を含むT2寒天培地へ散布した。生じたコ
ロニーをエリスロマイシン(10μg/ml)を含
むT2寒天培地へレプリカすることにより、ま
たヨード澱粉反応によりプラスミドの保持率を
測定した。第5図に示すように、pKN11はこ
の条件における30世代の培養で99%以上の細胞
から失われる(保持率1%以下)のに対してPH
Y482は50世代の培養においても約50%の細胞
において保持されていた。PHY482は、バチル
ス・ブレビス47/PHY482(FERM P−7535)
として寄託されている。 DETAILED DESCRIPTION OF THE INVENTION The present invention relates to Bacillus brevis.
The present invention relates to a plasmid that uses Bacillus brevis as a host, and specifically relates to a plasmid derived from Bacillus brevis having the restriction enzyme cleavage pattern shown in FIG. Bacillus isolated from soil by Udaka
Brevis 47 secretes as much as 12 g of protein into the medium under optimal culture conditions (S. Udaka, Agr. Biol.
Chem. 40 ; 523-528 (1976), S., Miyashiro, H.
Enei, K.Takanami, Y.Hirose, T.Tsuchida
and S.Udaka, Agr.Biol.Chem. 44 ; 2297−2303
(1980)). If we could utilize this protein secretion ability of Bacillus brevis47 to accumulate in the medium a large amount of the product of a heterologous useful gene introduced into Bacillus brevis47 using recombinant DNA techniques,
Its practical value is great. The present invention relates to a low copy number plasmid that is stably maintained in Bacillus brevis 47. Plasmids with low copy numbers are generally advantageous when cloning genes for which a large increase in copy number would be lethal to the host, but their retention requires the addition of selective agents to the culture medium. is often necessary. The plasmid of the present invention is characterized in that it is very stably maintained in Bacillus brevis 47 despite its low copy number. The discovery, purification, and elucidation of the properties of this pyrasmid were carried out as follows. 1 Isolation of plasmid pWT481 12 strains of bacteria related to Bacillus brevis 47 (FERM P-7224) were grown in T2 medium (1% peptone, 0.5% meat extract, 0.2% yeast extract, 1% glycose, PH7)
After growing to the stationary phase by shaking at 37℃ using
HCBirnboim and J.Doiy, Nucleic Acids
Res., 7; 1513-1523 (1979)). As a result, Bacillus brevis 481 (FERM BP−1224) (S. Udaka, Agr.
Biol. Chem. 40 ; 523-528 (1976)), and named it pWT481. 2 Purification of plasmid pWT481 DNA From Bacillus brevis 481 grown to stationary phase by shaking at 37°C using T2 medium, the method of Tanaka et al. (T.Tanaka, N.Kuroda and K.
Sakaguchi, J. Bacteriol. 129 ; 1487−1494
(1977)) pure pWT481 DNA approx.
100 μg was obtained. As a result of analysis using restriction enzymes, pWT481 has a molecular weight of 1.6×10 6 as shown in Figure 1.
It was found to be a relatively small Dalton plasmid with three Hind, two EcoR I and one Bg1 restriction sites. 3 Introduction of pWT481 into Bacillus brevis 47 and stability test Since pWT481 does not have a selection marker, pWT481 was introduced into Bacillus brevis 47 by the following indirect method. Plasmid PHW1 with pWT481 DNA (1 μg) and erythromycin resistance gene
(S. Horinouchi & B. Weisbium, J. Bacteriol.
150, 804-814 (1982)) and the Tris-REG method (W. Takahashi, H.
Yamagata, K. Yamaguchi, N. Tsukagoshi
and S. Udaka, J. Bacteriol. 156 , 1130−1134
(1983)) was used to transform Bacillus brevis 47. T 2 agar medium containing erythromycin (10 μg/ml) (solid medium made by adding 1.5% agar to T 2 medium)
The transformed strain grown above at 37°C was shaken at 37°C in T2 medium containing erythromycin (10 μg/ml).
The cells were grown to stationary phase and the plasmids were assayed by the method of Birnboim and Doly (described above). Approximately one-tenth of the transformed strains examined contained pWT481 at the same time as PHW1.
It was found that it held. These transformants were then incubated at 37°C in T2 medium and T2 medium containing erythromycin (10 μg/ml).
After being subcultured for 50 generations,
Plasmids were extracted and analyzed by the method of Birnboim and Doly. Agarose gel electrophoresis of plasmids (PASharp, B. Sugden and J. Sambrook,
As a result of analysis by Biochemistry. 12 ; 3055-3063 (1973)), both plasmids were stably retained in medium supplemented with erythromycin, but PHW1 was retained stably in T2 medium without erythromycin.
was quickly lost, and only PHT481 was stably retained. As described above, plasmid pWT481 discovered in Bacillus brevis 481 was found to be a low-copy plasmid that replicates in Bacillus brevis 47 and is stably maintained even under culture conditions without selective drugs. . This plasmid contains a known drug resistance gene, such as the erythromycin resistance gene of PHW1 (described above) or
Neomycin resistance gene (TJ) on pUB110
Giyczan, S. Contente and D. Dubnau, J.
Bacteriol. 134 ; 318-329 (1978)), etc.
It is possible to create plasmids that allow direct selection of transformants. Plasmid PHY481 was created by introducing the erythromycin resistance gene on PHW1 into pWT481 as detailed in Example 1.
(Figure 2) allows selection of transformants using erythromycin. As shown in Figure 3, Bacillus brevis47
It was found that PHY481 introduced into pWT481 was stably maintained through more than 50 generations in T2 medium without addition of erythromycin, and its copy number was low. pWT481 and PH
Although it is expected that the heterologous genes cloned on Y481 will be more stably retained in Bacillus brevis47 than the heterologous genes cloned on other plasmids due to the nature of these plasmids, such implementation As an example, the α-amylase gene of Bacillus megaterium was cloned onto PHY481 (FIG. 4) and its stability in Bacillus brevis 47 was tested. As shown in Figure 4, plasmid PHY482, which was created by introducing the α-amylase gene of Bacillus megaterium into PHY481, contains the same gene.
Plasmid pKN11 created by introducing it into PHW1
(Fig. 4) was much more stably retained in Bacillus brevis47. The above results indicate that the plasmid pWT481 of this invention
This shows the usefulness of this vector as a cloning vector in Bacillus brevis47. Next, examples of the present invention will be shown. Example 1 Introduction of erythromycin resistance gene into pWT481 PHW1 DNA was cut with Hpa and Taq I, and a 1.2 Kb fragment containing the erythromycin resistance gene was isolated from the resulting DNA fragments. Both ends of this fragment were blunt-ended using T4 DNA polymerase, Hind linkers were attached, and Hind
This was ligated to pWT481 DNA partially cut with T4 ligase (Fig. 2). Bacillus brevis 47 was transformed using this DNA to obtain an erythromycin-resistant transformant. Approximately 25% of these transformed strains retained the plasmid stably even in T2 medium without erythromycin. A plasmid was purified from one of these transformed strains by the method of Tanaka et al. (described above), and PH
It was named Y481. Figure 2 shows the restriction map of PHY481. Next, Bacillus brevis with PHY481
47 strains were subcultured at 37°C in T2 medium without erythromycin, and aliquots were taken at each time, appropriately diluted, and spread on T2 agar medium. The resulting colonies were replicated onto a T2 agar medium containing erythromycin (10 μg/ml), and the retention rate of the plasmid was measured (Figure 3). It was found that PHY481 was stably maintained through more than 50 generations of subculture under these conditions (plasmid retention rate of more than 95%). On the other hand, in Bacillus brevis 47 containing PHW1, which was used as a control, more than 99% of the cells lost the plasmid after 50 generations of culture under these conditions (Figure 3). Example 2 Cloning of Bacillus megaterium α-amylase gene onto PHY481 and stability in Bacillus brevis 47 1 Cloning of Bacillus megaterium α-amylase gene into E. coli. Saito, Miura's method (H.Saito and K.Miura,
Biochim. Biophys. Acta, 72 ; 619-629 (1963))
of Bacillus megaterium prepared by
Cut the DNA with Hind, mix it with pBR322DNA cut with Hind at a 1:1 ratio,
E. coli HB101 was transformed by ligating with T4 ligase. . M9 synthetic agar medium (0.6% Na 2 HPO 4 , 0.3% KH 2 PO 4 , 0.02%) supplemented with soluble starch (0.3%) and ampicillin (50 μg/ml)
MgSO4・7H2O , 0.05%NaC, 0.1% NH4C
, 0.2% glucose, 0.01% proline, 0.
Among the transformed strains grown on 01% leucine, 1.5% agar), one strain whose periphery of the colony became transparent by reaction with iodine starch was obtained. A plasmid was purified from this strain by the method of Tanaka et al. (described above) and named pKN1. Analysis using restriction enzymes revealed that the 2.3Kb on pKN1
It was shown that the amylase gene was present on the Hind fragment (Fig. 4). 2. Introduction of Bacillus megaterium α-amylase gene into PHY481 pKN1 was cut with Hind, mixed with pHY481 DNA partially cut with Hind, ligated with T4 ligase, and used for transformation of Bacillus brevis47. (Figure 4). Among the transformed strains grown on T2 agar medium supplemented with erythromycin (10 μg/ml) and soluble starch (0.3%), a strain in which the periphery of the colony became transparent was obtained by reaction with iodine starch. A plasmid was purified from this strain by the method of Tanaka et al. (described above), and PH
It was named Y482. To serve as a control, the PH
Hind containing the Bacillus megaterium α-amylase gene on W1 DNA by similar manipulation
The fragment was introduced and pKN11 was obtained (Figure 4). 3. Stability of Bacillus megaterium α-amylase gene cloned on PHY481 in Bacillus brevis 47 Bacillus brevis 47 carrying PHY482 and pKN11 were each subcultured at 37°C in T2 medium without erythromycin. . At each time take a portion and dilute it with soluble starch (0.3
%) on T2 agar medium. Plasmid retention was measured by replicating the resulting colonies onto a T2 agar medium containing erythromycin (10 μg/ml) and by iodostarch reaction. As shown in Figure 5, pKN11 is lost from more than 99% of cells (retention rate less than 1%) after 30 generations of culture under these conditions, whereas pKN11 is lost from more than 99% of cells (retention rate less than 1%);
Y482 was retained in approximately 50% of cells even after 50 generations of culture. PHY482 is Bacillus brevis 47/PHY482 (FERM P-7535)
It has been deposited as.
【図面の簡単な説明】[Brief explanation of drawings]
第1図はプラスミドpWT481の制限酵素切断地
図である。第2図はプラスミドPHY481の造成経
過説明図である。第3図は形質転換株のプラスミ
ド保持率を示すグラフである。実線はPHY481形
質転換株、点線はPHW1形質転換株を示す。第4
図はプラスミドPHY482およびpKN11の造成経過
説明図である。第5図は形質転換株のプラスミド
保持率を示すグラフである。実線はPHY482形質
転換株、点線はpKN11形質転換株を示す。
Figure 1 is a restriction enzyme cleavage map of plasmid pWT481. FIG. 2 is an explanatory diagram of the construction progress of plasmid PHY481. FIG. 3 is a graph showing the plasmid retention rate of transformed strains. The solid line indicates the PHY481 transformed strain, and the dotted line indicates the PHW1 transformed strain. Fourth
The figure is an explanatory diagram of the construction progress of plasmids PHY482 and pKN11. FIG. 5 is a graph showing the plasmid retention rate of transformed strains. The solid line indicates the PHY482 transformed strain, and the dotted line indicates the pKN11 transformed strain.