[go: up one dir, main page]

JPH05336505A - Image hierarchical coding method - Google Patents

Image hierarchical coding method

Info

Publication number
JPH05336505A
JPH05336505A JP14131992A JP14131992A JPH05336505A JP H05336505 A JPH05336505 A JP H05336505A JP 14131992 A JP14131992 A JP 14131992A JP 14131992 A JP14131992 A JP 14131992A JP H05336505 A JPH05336505 A JP H05336505A
Authority
JP
Japan
Prior art keywords
coefficient
layering
image
layer
coding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14131992A
Other languages
Japanese (ja)
Inventor
Taizo Kinoshita
泰三 木下
Koichi Shibata
巧一 柴田
Fumio Noda
文雄 野田
Yoshinori Miyamoto
宜則 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14131992A priority Critical patent/JPH05336505A/en
Publication of JPH05336505A publication Critical patent/JPH05336505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

(57)【要約】 【構成】画像信号を、フレーム或いはフィールド内で直
交変換符号化2し、量子化を行う符号化装置において、
量子化の直前或いは直後に変換係数の階層化4を行い、
階層化された基本階層のデータのみで局部復号5した場
合の画質劣化が、予め設定された閾値以下となるような
階層化次数決定7を行う階層符号化装置。 【効果】フレーム間符号化を用いた場合のように、階層
化による符号化情報量の増大、符号化効率の劣化を抑圧
することができ、また拡張階層データが全て廃棄され、
基本階層のデータのみが伝送された場合でも一定以上の
画質が確保できる。
(57) [Summary] [Structure] In an encoding device for performing orthogonal transform encoding 2 on an image signal in a frame or field and performing quantization,
Hierarchical conversion coefficient layering 4 is performed immediately before or after quantization,
A layered coding apparatus that determines layered order 7 such that the image quality degradation when local decoding 5 is performed using only layered basic layer data is less than or equal to a preset threshold value. [Effect] As in the case of using inter-frame coding, it is possible to suppress an increase in the amount of coded information due to layering and deterioration of coding efficiency, and to discard all extended layer data,
Even if only the data of the basic layer is transmitted, the image quality above a certain level can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動画像を伝送できるデ
ィジタル網で、伝送品質の異なる複数の伝送路を端末が
認識して使い分けることのできる画像端末、例えば、広
帯域ISDNのATMパケット網用の画像端末のディジ
タル動画像符号化方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital network capable of transmitting a moving image, such as an image terminal capable of recognizing a plurality of transmission lines having different transmission qualities and selectively using them, for example, a broadband ISDN ATM packet network. The present invention relates to a digital moving image coding system for image terminals.

【0002】[0002]

【従来の技術】ディジタル動画像を、とくに高能率符号
化した画像データを画像復号情報として重要な部分と比
較的重要でない部分に分割、或いは階層化して符号化,
伝送しようという動きは近年、特に広帯域ISDNのA
TM網伝送を目的として研究が始められている。例え
ば、本発明にもっとも近い公知例は、電子通信学会画像
工学研究会(IE90−38)のパケットビデオ符号化
における係数分離アルゴリズムによる符号化効率の改善
(NTT・HI研究所)があげられる。
2. Description of the Related Art A digital moving image is coded by dividing image data obtained by high-efficiency encoding into an important portion and a relatively unimportant portion as image decoding information, or by layering them.
In recent years, the movement to transmit is particularly wide band ISDN A
Research has begun for the purpose of TM network transmission. For example, the closest known example to the present invention is the improvement of the coding efficiency by the coefficient separation algorithm in the packet video coding of the Institute of Electronics and Communication Engineers (IE90-38) (NTT HI Research Institute).

【0003】上記従来技術は、図1に示すようにテレビ
電話やテレビ会議用の既勧告画像符号化方式である動き
補償予測+DCT符号化方式(H.261)をベースと
して、DCT変換後の周波数成分に対応する変換係数を
分離階層化して伝送する方式について述べたものであ
る。この場合には、文献に記されているように、DCT
係数を低周波成分と高周波成分に2階層化するもので、
画像にとって重要な低周波成分のみをフレーム間予測符
号化の参照データとして利用する。従って、階層化次数
の決定は、予測する次のフレーム内ブロックの情報量が
最小となるように行われる。つまり、フレーム間予測に
使用されるデータ量が完全でない分符号化効率が低下す
るので、この符号化効率が最小限にくいとめられ、発生
情報量が最小となるように階層化が行われることにな
る。即ち、この公知例では、階層化によって画質劣化を
保護するのではなく、階層化による符号化効率の劣化を
最小限にくいとめるような階層次数決定法がとられてい
ることが問題である。
As shown in FIG. 1, the above-mentioned prior art is based on the motion-compensated prediction + DCT coding system (H.261), which is a recommended image coding system for videophones and videoconferences, and the frequency after DCT conversion. This is a description of a method in which transform coefficients corresponding to components are separated and hierarchically transmitted. In this case, as described in the literature, the DCT
The coefficient is divided into low frequency component and high frequency component into two layers,
Only low-frequency components important for the image are used as reference data for interframe predictive coding. Therefore, the hierarchical order is determined so that the information amount of the next intra-frame block to be predicted is minimized. That is, since the amount of data used for inter-frame prediction is not perfect, the coding efficiency decreases, so it is difficult to minimize this coding efficiency, and layering is performed so that the amount of generated information is minimized. Become. That is, in this publicly known example, there is a problem in that a hierarchy order determination method is adopted that does not protect the deterioration of image quality by layering and that minimizes the deterioration of coding efficiency due to layering.

【0004】[0004]

【発明が解決しようとする課題】本発明では、上述した
従来例で問題となっていた階層化次数決定法を改善し、
階層化の方法も拡張する。即ち、階層化伝送によって、
伝送路でいかなるデータ欠落がおこっても、重要データ
が保護され一定以上の画質が保たれるような階層化法を
提供することが課題となる。又、階層化の方法も単なる
直交変換係数の低周波成分と高周波成分に二つに階層化
するのではなくて、三つ以上の階層や変換係数の分離の
仕方にも拡張性を持たせることが課題となる。
In the present invention, the hierarchical order determination method, which has been a problem in the above-mentioned conventional example, is improved,
The method of layering is also expanded. That is, by layered transmission,
It is an object to provide a layering method that protects important data and maintains a certain level of image quality even if any data loss occurs on the transmission path. Also, the layering method should not be simply layered into low frequency components and high frequency components of orthogonal transform coefficients, but should be expandable in the way of separating more than three layers and transform coefficients. Is an issue.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明ではまず第1に、フィールド(フレーム)内
の直交変換を前提とした変換係数の階層化を考えると共
に、階層数も現在CCITTの標準化委員会で検討中である
ため、2階層に限定せずに3階層以上も考慮した複数階
層とした。第2に階層化方法として、低周波成分から順
番に、例えば、ジグザグスキャンして、基本階層と拡張
階層を生成するだけでなく、変換ブロック内係数の複数
代表値を基本階層として、又係数絶対値と代表値との誤
差を拡張階層として生成する場合を提案する。第3に階
層化決定方法として、従来のようにフレーム間符号化に
基本階層のみを使用するため、符号化効率が最大となる
ような次数を選択するのではなく、画質が予め決められ
た閾値の範囲内で最良となるように決定する。
In order to solve the above-mentioned problems, the present invention firstly considers the hierarchization of transform coefficients on the premise of orthogonal transformation within a field (frame), and the number of hierarchies is currently CCITT. Since it is under consideration by the standardization committee of, the number of layers is not limited to two, but three or more layers have been taken into consideration. Secondly, as a layering method, not only a basic layer and an extended layer are generated in order from a low frequency component in a zigzag scan, but also a plurality of representative values of coefficients in a transform block are used as a basic layer and a coefficient absolute value is set. We propose a case where the error between the value and the representative value is generated as an extended hierarchy. Third, as the layering determination method, since only the basic layer is used for interframe coding as in the conventional case, the order that maximizes the coding efficiency is not selected, but the image quality is determined by a predetermined threshold value. It is decided to be the best within the range of.

【0006】[0006]

【作用】図2に本発明による階層符号化の概念図を示
す。先ずフレーム間符号化ではなく、フィールド内或い
はフレーム内符号化を前提とする。フレーム間符号化を
使用する場合は、画像情報として重要な基本階層をフレ
ーム間符号化に使用しないことを前提とする。次に送信
側で階層化次数をブロック毎に適応的に決定し、複数の
階層を生成する。この階層は基本層と一つ以上の拡張階
層から構成されており、これらは伝送品質の異なる別々
の伝送路で伝送される。階層化は基本的には直交変換符
号化の直後で行われるが、量子化は階層化の直前でも直
後でも良い。量子化の直前に階層化を行う場合は、変換
係数そのものが階層化対象となる。量子化の直後に行う
場合は変換係数の量子化データが階層化対象となる。局
部復号によって階層化次数を決定する場合は量子化後の
データを使用して所望の画質を得るための次数を決定す
る方がより正確であるといえるが、逆に量子化直前の場
合には階層化結果を基に、基本階層と拡張階層で異なっ
た量子化を行えるという利点がある。
2 is a conceptual diagram of the hierarchical coding according to the present invention. First, it is premised on intra-field or intra-frame coding, not inter-frame coding. When interframe coding is used, it is premised that the basic layer important as image information is not used for interframe coding. Next, the transmitting side adaptively determines the layering order for each block and generates a plurality of layers. This layer is composed of a base layer and one or more extension layers, which are transmitted through different transmission lines having different transmission qualities. The layering is basically performed immediately after the orthogonal transform coding, but the quantization may be performed immediately before or immediately after the layering. When layering is performed immediately before quantization, the transform coefficient itself is the layering target. When it is performed immediately after the quantization, the quantized data of the transform coefficient becomes the layering target. It can be said that it is more accurate to determine the order for obtaining the desired image quality by using the quantized data when determining the hierarchical order by local decoding, but conversely, in the case immediately before the quantization, There is an advantage that different quantization can be performed in the base layer and the enhancement layer based on the layering result.

【0007】[0007]

【実施例】本発明による階層化法の一実施例を図3に示
す。ここでは階層化の方法について例を示す。図中、正
方形は直交変換係数の垂直・水平分布を示すもので、こ
の場合には8画素×8画素の、例えば、離散コサイン変
換のような直交変換を例にとっている。従って左上に行
くほど低周波成分を、右下に行くほど高周波成分を示し
ている。例えば、四つの階層化を行う場合には、例え
ば、図に示すように低周波/中周波/高周波の変換係数
に分離して先ず各階層帯の代表係数値或いは平均値3係
数を基本階層とする。次に低周波成分の係数代表値と係
数絶対値の誤差15係数を第1拡張階層、中周波成分の
代表係数値と係数絶対値との誤差34係数を第2拡張階
層、高周波成分の代表係数値と係数絶対値との誤差15
係数を第3拡張階層として、計四つの階層化を行うもの
である。もちろん階層数は係数代表値と係数絶対値だけ
であれば2階層となるし、それ以外の複数階層でも係数
の分離数のみで自由に設定できることはもちろんであ
る。また各階層の分離位置は後述するようにブロック毎
に適応的に決定すればよい。例えば、低周波成分に偏っ
た係数分布をもっているブロックは低周波成分の係数を
より少なくして、低周波成分を細かく分離することもで
きる。
FIG. 3 shows an embodiment of the layering method according to the present invention. Here, an example of a hierarchical method is shown. In the figure, squares represent vertical / horizontal distributions of orthogonal transform coefficients. In this case, an orthogonal transform such as a discrete cosine transform of 8 pixels × 8 pixels is taken as an example. Therefore, the lower left side indicates the low frequency component, and the lower right side indicates the high frequency component. For example, when four hierarchization is performed, for example, as shown in the figure, the low-frequency / medium-frequency / high-frequency conversion coefficients are separated, and the representative coefficient value or the average value of 3 coefficients of each hierarchy band is set as the basic hierarchy. To do. Next, the error 15 coefficient between the coefficient representative value of the low frequency component and the coefficient absolute value is the first extension layer, the error 34 coefficient between the representative coefficient value of the medium frequency component and the coefficient absolute value is the second extension layer, the representative coefficient of the high frequency component. Error between numerical value and absolute value of coefficient 15
A total of four hierarchies are performed using the coefficient as the third extended hierarchy. Of course, the number of layers is two if the coefficient representative value and the coefficient absolute value are two, and it is needless to say that the number of layers can be freely set only by the number of separated coefficients. Further, the separation position of each layer may be adaptively determined for each block as described later. For example, in a block having a coefficient distribution that is biased toward the low frequency component, the coefficient of the low frequency component can be made smaller and the low frequency component can be finely separated.

【0008】本発明による階層化法の別の一実施例を図
4に示す。ここでは例えば低周波成分15係数の絶対値
ijと残り高周波成分49係数の代表値(平均値)bを
基本階層とし、又この49係数の絶対値bijと代表値b
との誤差を拡張階層として伝送するものである。もし三
つの階層に分離する場合は、低周波成分の絶対値と、中
周波成分の代表値bと高周波成分の代表値cを基本階層
として、残りの成分の内、中周波成分の係数絶対値bij
と代表値bとの誤差を第1拡張階層に、高周波成分の係
数絶対値cijと代表値cとの誤差を第2階層にすればよ
い。
Another embodiment of the layering method according to the present invention is shown in FIG. Here, for example, the absolute value a ij of the low frequency component 15 coefficient and the representative value (average value) b of the remaining high frequency component 49 coefficient are used as the basic hierarchy, and the absolute value b ij and the representative value b of this 49 coefficient are used.
The error between and is transmitted as an extended layer. If it is divided into three layers, the absolute value of the low frequency component, the representative value b of the medium frequency component and the representative value c of the high frequency component are used as the basic layer, and the absolute value of the coefficient of the medium frequency component of the remaining components is used. b ij
The error between the representative value b and the representative value b should be in the first hierarchical layer, and the error between the coefficient absolute value c ij of the high frequency component and the typical value c should be in the second hierarchical layer.

【0009】本発明による階層次数決定法の一実施例を
図5に示す。階層化は基本的に送信側で行う。本発明で
は基本階層のみをフレーム間符号化の参照データとして
使うということはしないで、伝送上のみで階層化して送
るので、画質が予め決められた閾値以上となるように階
層次数を決定すればよい。
An embodiment of the hierarchical order determination method according to the present invention is shown in FIG. Hierarchization is basically performed on the transmitting side. In the present invention, only the basic layer is not used as reference data for inter-frame coding, but is layered and transmitted only on transmission. Therefore, if the layer order is determined so that the image quality becomes equal to or higher than a predetermined threshold value. Good.

【0010】例えば、図2(a)の場合には、階層化を
一旦試行してみて、もし伝送路上で基本階層のみがデー
タ欠落なしに伝送でき、拡張階層全てのデータが欠落,
廃棄、或いはエラーを起こしたと想定する。従って基本
階層のみのデータが受信側に到着したとすると、全ての
データが到着した場合に比べてどの位画質が劣化するか
を階層次数の決定判断基準とすれば良いことになる。図
に示したように、送信側に局部復号器5を設けて基本・
拡張階層全てのデータを用いて復号した場合のブロック
内復号データと拡張階層データが廃棄され基本階層のみ
を使用し、拡張階層データを零として復号した場合のブ
ロック内復号データの差の2乗和積算値を求める。この
エラーが画質劣化に相当するので、得られた2乗和積算
値を比較器6で予め設定された閾値と比較し、閾値以下
となる最小の係数次数までを基本階層とするものであ
る。即ち、基本階層とする次数が多ければ多いほど2乗
和積算値は小さく画質劣化は少ないので、次数を少なく
していって閾値を越えないぎりぎりの次数を階層化の境
界次数とすれば良いことになる。
For example, in the case of FIG. 2 (a), once the layering is tried, if only the basic layer can be transmitted on the transmission line without data loss, all the extended layer data are lost.
It is assumed that it has been discarded or an error has occurred. Therefore, if the data of only the basic layer arrives at the receiving side, it is sufficient to determine how much the image quality deteriorates as compared with the case where all the data arrives, as a criterion for determining the layer order. As shown in the figure, the local decoder 5 is provided on the transmitting side to
The sum of squares of the difference between the intra-block decoded data when the decoding is performed using all the data in the enhancement layer and the enhancement layer data is discarded and only the base layer is used, and the decoding data in the block is decoded when the enhancement layer data is zero. Calculate the integrated value. Since this error corresponds to image quality deterioration, the obtained sum of square sums is compared with a threshold value set in advance by the comparator 6, and the lowest coefficient order below the threshold value is used as the basic hierarchy. In other words, the larger the order of the basic layer, the smaller the sum of square sums and the less the image quality deterioration. Therefore, the order may be reduced and the boundary order of layering may be set to the extent that does not exceed the threshold value. become.

【0011】もちろん図2(b)のように量子化後に階
層化を行う場合も、量子化後の変換係数データの内、上
述と同様に基本階層のみで局部復号した場合と、基本・
拡張階層全てのデータを使用して局部復号した場合の誤
差の2乗和積算値を判定基準とすれば良い。
Of course, in the case where layering is performed after quantization as shown in FIG. 2 (b), among the transform coefficient data after quantization, the case where local decoding is performed only in the basic layer as described above,
The sum of squared sums of the errors when local decoding is performed using all the data of the extension layer may be used as the criterion.

【0012】本発明による階層化次数決定法の別の一実
施例を図6に示す。図5において、直交変換後で量子化
直前に階層化を行う場合には、基本階層と拡張階層全て
のデータを用いて局部復号すると、即ち、直交変換前の
入力画像データを得ることになる。これは直交変換が計
算誤差を除いて基本的に線形変換ならば当然のことであ
る。従って、図5の内差演算が不要となり、拡張階層の
みの局部復号演算のみでよいことになる。閾値は、上述
と同一の値でよい。
Another embodiment of the hierarchical order determination method according to the present invention is shown in FIG. In FIG. 5, when layering is performed after orthogonal transformation and immediately before quantization, local decoding is performed using all the data of the base layer and the enhancement layer, that is, input image data before orthogonal transformation is obtained. This is a matter of course if the orthogonal transformation is basically a linear transformation except for calculation error. Therefore, the internal difference calculation of FIG. 5 is not necessary, and only the local decoding calculation of only the enhancement layer is required. The threshold may be the same value as described above.

【0013】本発明による階層化次数決定法の別の一実
施例を図7に示す。図5,図6に示すように、階層化次
数の決定は、一旦、次数設定を試行してみて、誤差の閾
値比較を行い、再び別の次数を設定してみてまた誤差の
閾値比較を行うという、繰り返し演算となる。この繰り
返しは最大ブロック内係数の数だけ行われることにな
り、非常に複雑で無駄な演算となる可能性がある。また
繰り返し演算による絶対遅延も問題である。
Another embodiment of the hierarchical order determination method according to the present invention is shown in FIG. As shown in FIGS. 5 and 6, in order to determine the hierarchical order, the order setting is once tried, the error threshold value is compared, and another order is set again, and the error threshold value is compared again. That is, iterative calculation. This repetition is performed for the maximum number of in-block coefficients, which may be very complicated and useless. There is also a problem of absolute delay due to repeated calculation.

【0014】このような問題を解決するため、図7
(a)は一度に同時に階層化次数の数候補について局部
復号演算を行い、一回でどの次数が最適かを決定するも
のである。
In order to solve such a problem, FIG.
In (a), a local decoding operation is performed on the number candidates of the hierarchical order at the same time to determine which order is optimal at one time.

【0015】例えば、図7(b)では四つの階層化次数
を候補として、低周波成分から次数の少ない順にa,
b,c,dの四つの係数パターンについて局部復号す
る。この場合には階層化法によって異なるが2階層或い
は3階層を前提としている。この方法だと階層化次数が
予め決められているので、繰り返し演算するフィードバ
ックが不必要となるだけでなく、8×8ブロックの場合
には64回局部復号を試行する必要があったのに対し、
4回ですむので演算量も少なくてすむ。もちろん画質の
最低限を維持するという意味ではブロック毎にやや異な
るし、伝送コストも最小ぎりぎりの値ではないが、規定
以下の画質になることはない。図7では、図6に示した
量子化前の階層化の場合について示したが、もちろんこ
れは量子化後に階層化を行う図5の方法をとっても良い
ことは明かである。また図3,図4のように、複数階層
を設定する場合も同様に、予めいくつかの階層化法を候
補として設定しておけばよい。
For example, in FIG. 7B, four hierarchical orders are used as candidates, and a, a
Local decoding is performed on the four coefficient patterns b, c, and d. In this case, two or three layers are presumed, although it depends on the layering method. In this method, since the hierarchical order is predetermined, not only the feedback for iterative calculation is unnecessary but also it is necessary to try local decoding 64 times in the case of 8 × 8 blocks. ,
It only requires 4 times, so the amount of calculation is small. Of course, each block is slightly different in the sense that the minimum image quality is maintained, and the transmission cost is not the minimum value, but the image quality does not fall below the specified level. FIG. 7 shows the case of layering before quantization shown in FIG. 6, but it is obvious that the method of FIG. 5 in which layering is performed after quantization may be taken. Similarly, when a plurality of layers are set as shown in FIGS. 3 and 4, some layering methods may be set in advance as candidates.

【0016】[0016]

【発明の効果】本発明によれば、従来例に示すような、
直交変換符号化後に変換係数の復号に必要な例えば低周
波成分のみを基本階層として伝送品質の良い伝送路で送
ることにより、受信画像の画質劣化を抑圧できる画像の
階層符号化において、いくつかの改善効果が期待でき
る。
According to the present invention, as shown in the conventional example,
By transmitting only low-frequency components, which are necessary for decoding the transform coefficient after orthogonal transform coding, as a basic layer through a transmission path with good transmission quality, it is possible to suppress the image quality deterioration of the received image. An improvement effect can be expected.

【0017】第1に、従来フレーム間符号化では基本階
層のみをフレーム間符号化の参照データとして利用して
いたので、参照データの不完全な分符号化効率が低下し
ていた。文献では階層化しない場合い比べて約1.4 倍
もの符号化情報量を必要としていた。これに対し、本発
明は基本的にフレーム内符号化を前提としており、階層
化結果がどこにもフィードバックされないので、符号量
が階層化によって増えることはない。
First, in the conventional interframe coding, since only the basic layer is used as the reference data for the interframe coding, the coding efficiency is reduced due to the incompleteness of the reference data. In the literature, about 1.4 times as much coded information was required as compared with the case without layering. On the other hand, the present invention is basically based on the intra-frame coding, and since the hierarchical result is not fed back anywhere, the code amount does not increase due to the hierarchical structure.

【0018】第2に、従来例では階層化は画像にとって
重要な低周波成分と高周波成分の2階層のみであった
が、本発明では3以上の複数階層化をも考慮している。
従って、例えば、広帯域ISDN等のATM(非同期転
送モード)網を対象伝送路と考えた場合には階層伝送路
の種類だけ利用できることになる。また階層化法も、低
周波成分の絶対値だけでなく、変換係数成分の代表値
(平均値)を導入し、絶対値と代表値の組み合わせで自
由に基本階層と拡張階層が構成できるようにしている。
これにより、もし拡張階層の伝送品質が極めて悪い場合
でも、変換係数の高周波成分が全く復号できずに解像度
の無い画質とならないで、有る程度の高周波成分も復号
でき、高周波成分を有効に復号できるため、同じ次数分
の基本階層でも、伝送状態によっては、受信側でより高
画質が得られる可能性が高い。
Secondly, in the conventional example, the hierarchization is only two hierarchies of the low frequency component and the high frequency component which are important for the image, but the present invention also considers the hierarchization of three or more hierarchies.
Therefore, for example, when an ATM (asynchronous transfer mode) network such as a broadband ISDN is considered as a target transmission line, only the types of hierarchical transmission lines can be used. In addition, the hierarchical method introduces not only the absolute value of the low frequency component but also the representative value (average value) of the transform coefficient component so that the basic layer and the extended layer can be freely configured by combining the absolute value and the representative value. ing.
As a result, even if the transmission quality of the enhancement layer is extremely poor, the high-frequency component of the transform coefficient cannot be decoded at all and the image quality does not have resolution, and a certain amount of high-frequency component can be decoded and the high-frequency component can be effectively decoded. Therefore, even in the basic layers of the same order, there is a high possibility that higher image quality can be obtained on the receiving side depending on the transmission state.

【0019】第3に本発明ではフレーム間符号化を伴わ
ないため、階層化は従来のように量子化の直後だけでな
く、直前でもかまわない。直前の場合には逆量子化が不
必要となるだけでなく、変換係数をそのまま復号するこ
とは、変換符号化への入力信号を再生することになるの
で、局部復号化が省け、図6の簡易型の階層次数決定法
がそのまま適応できることになる。
Thirdly, in the present invention, since interframe coding is not involved, layering may be performed immediately before quantization as in the conventional case or immediately before quantization. In the immediately preceding case, not only dequantization is not necessary, but also decoding the transform coefficient as it is reproduces the input signal to the transform coding, so local decoding can be omitted, and The simple hierarchical order determination method can be directly applied.

【0020】第4に、従来の階層化次数決定法では、フ
レーム間符号化に用いる係数とフレーム内符号化に用い
る係数の割合によって符号化発生情報量が異なるため、
この符号化効率が最大となる次数を階層化次数として決
定していた。従って、画質という観点からすると、ブロ
ック毎に常に最良の画質が得られるという保証はなかっ
た。これに対し、本発明による階層化次数決定法では、
図5,図6,図7に示したように、拡張階層係数が全て
廃棄され、基本基本階層のみが伝送された場合にも最低
限の画質が確保できる。
Fourth, in the conventional hierarchical order determination method, the amount of coded information differs depending on the ratio of the coefficient used for interframe coding and the coefficient used for intraframe coding.
The order that maximizes the coding efficiency is determined as the hierarchical order. Therefore, from the viewpoint of image quality, there is no guarantee that the best image quality will always be obtained for each block. On the other hand, in the hierarchical order determination method according to the present invention,
As shown in FIGS. 5, 6 and 7, the minimum image quality can be ensured even when all the enhancement layer coefficients are discarded and only the basic layer is transmitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の階層符号化方式のブロック図。FIG. 1 is a block diagram of a conventional hierarchical coding system.

【図2】階層符号化のブロック図。FIG. 2 is a block diagram of hierarchical encoding.

【図3】変換係数ブロックの階層化の第一の説明図。FIG. 3 is a first explanatory diagram of hierarchical conversion coefficient blocks.

【図4】変換係数ブロックの階層化の第二の説明図。FIG. 4 is a second explanatory diagram of hierarchical conversion coefficient blocks.

【図5】階層化次数決定法の第一のブロック図。FIG. 5 is a first block diagram of a hierarchical order determination method.

【図6】階層化次数決定法第二のブロック図。FIG. 6 is a second block diagram of a hierarchical order determination method.

【図7】階層化次数決定法第三のブロック図。FIG. 7 is a third block diagram of a hierarchical order determination method.

【符号の説明】[Explanation of symbols]

1…フレーム間予測符号化、2…変換符号化、3…量子
化、4…階層化、5…局部復号化、6…誤差の2乗和積
算計算及び閾値比較、7…階層化次数決定。
1 ... Interframe predictive coding, 2 ... Transform coding, 3 ... Quantization, 4 ... Hierarchicalization, 5 ... Local decoding, 6 ... Error sum-of-squares integration calculation and threshold comparison, 7 ... Hierarchical order determination.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 宜則 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Miyamoto 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】画像信号をフィールド内でブロック単位に
直交変換して高能率符号化する装置において、送信側で
変換符号化係数をブロック毎に適応的に複数層に階層化
して伝送することを特徴とする画像の階層符号化方式。
1. An apparatus for performing high-efficiency coding by orthogonally transforming an image signal in units of blocks in a field, wherein transform coding coefficients are adaptively hierarchized into a plurality of layers for each block on the transmission side and transmitted. Hierarchical coding method for featured images.
【請求項2】請求項1において、ブロック内変換係数の
複数個の係数絶対値、或いは、絶対値を含む複数個の係
数代表値を基本階層で、又それ以外の係数絶対値と、絶
対値と代表値との誤差を拡張階層として、これをブロッ
ク単位に適応的に決定しながら伝送する画像の階層符号
化方式。
2. The plurality of coefficient absolute values of the intra-block transform coefficient, or the plurality of coefficient representative values including the absolute value in the basic layer, and the coefficient absolute values other than that and the absolute value in claim 1. A hierarchical coding method for an image in which an error between the representative value and the representative value is used as an extension layer and is adaptively determined for each block and transmitted.
【請求項3】請求項1において、第n次係数までと、第
n+1次以上の係数の代表値を基本階層で、又第n+1
次以上の係数の代表値との差分を拡張階層として、次数
nをブロック単位に適応的に決定しながら伝送する画像
の階層符号化方式。
3. The method according to claim 1, wherein representative values of coefficients up to the n-th coefficient and coefficients of the (n + 1) -th order or higher are used in the basic hierarchy and also in the (n + 1) th coefficient.
An image hierarchical coding method in which the difference from the representative value of the coefficient of the next or higher order is used as an enhancement layer and the order n is adaptively determined in block units for transmission.
【請求項4】請求項1,2または3において、適応的階
層化を直交変換後の量子化の直前、或いは量子化の直後
で行う画像の階層符号化方式。
4. A hierarchical coding method for an image according to claim 1, 2 or 3, wherein the adaptive layering is performed immediately before or after quantization after orthogonal transformation.
【請求項5】請求項1,2,3または4において、基本
階層のみを受信して復号した場合と、基本階層及び拡張
階層全てを受信して復号した場合のS/N比、即復号化
誤差値を判定基準として階層化を行う画像の階層符号化
方式。
5. The S / N ratio and immediate decoding according to claim 1, 2, 3 or 4, when only the base layer is received and decoded, and when both the base layer and the enhancement layer are received and decoded. Hierarchical coding method for images that uses error values as a criterion for layering.
【請求項6】請求項1,2,3,4または5において、
基本階層と拡張階層、及び拡張階層のみを使用して、送
信側で局部復号することにより階層化判定を行う画像の
階層化符号化方式。
6. The method according to claim 1, 2, 3, 4 or 5.
An image layering coding method in which a layering decision is made by locally decoding at the transmitting side using only the base layer, the enhancement layer, and the enhancement layer.
JP14131992A 1992-06-02 1992-06-02 Image hierarchical coding method Pending JPH05336505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14131992A JPH05336505A (en) 1992-06-02 1992-06-02 Image hierarchical coding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14131992A JPH05336505A (en) 1992-06-02 1992-06-02 Image hierarchical coding method

Publications (1)

Publication Number Publication Date
JPH05336505A true JPH05336505A (en) 1993-12-17

Family

ID=15289152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14131992A Pending JPH05336505A (en) 1992-06-02 1992-06-02 Image hierarchical coding method

Country Status (1)

Country Link
JP (1) JPH05336505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046244A1 (en) * 2003-11-11 2005-05-19 Media Glue Corporation Encoded signal separating apparatus, encoded signal combining apparatus, encoded signal separating/combining system, and methods therefor
WO2005096636A1 (en) * 2004-03-30 2005-10-13 Media Glue Corporation Encoded signal demultiplexing device, encoded signal multiplexing device, and encoded signal demultiplexing/multiplexing system
JPWO2005050346A1 (en) * 2003-11-21 2007-06-07 日本電気株式会社 Content distribution / reception device, content transmission / reception system, content distribution / reception method, content distribution / reception program
JP2015177356A (en) * 2014-03-14 2015-10-05 ソフトバンク株式会社 Motion picture distribution apparatus, motion picture encoding device and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046244A1 (en) * 2003-11-11 2005-05-19 Media Glue Corporation Encoded signal separating apparatus, encoded signal combining apparatus, encoded signal separating/combining system, and methods therefor
JPWO2005050346A1 (en) * 2003-11-21 2007-06-07 日本電気株式会社 Content distribution / reception device, content transmission / reception system, content distribution / reception method, content distribution / reception program
WO2005096636A1 (en) * 2004-03-30 2005-10-13 Media Glue Corporation Encoded signal demultiplexing device, encoded signal multiplexing device, and encoded signal demultiplexing/multiplexing system
JP2015177356A (en) * 2014-03-14 2015-10-05 ソフトバンク株式会社 Motion picture distribution apparatus, motion picture encoding device and program

Similar Documents

Publication Publication Date Title
US6462791B1 (en) Constrained motion estimation and compensation for packet loss resiliency in standard based codec
US7653129B2 (en) Method and apparatus for providing intra coding frame bit budget
JP3002019B2 (en) Image coding transmission system with cell discard compensation function
US7058127B2 (en) Method and system for video transcoding
US8780970B2 (en) Motion wake identification and control mechanism
US7826527B2 (en) Method for video data stream integration and compensation
US20050036549A1 (en) Method and apparatus for selection of scanning mode in dual pass encoding
US20050114093A1 (en) Method and apparatus for motion estimation using variable block size of hierarchy structure
KR20050061762A (en) Method of encoding mode determination and motion estimation, and encoding apparatus
US20050175101A1 (en) Apparatus and method for video communication
CN101194515A (en) Multilayer-based video encoding and decoding methods and video encoders and decoders using smooth prediction
JPH08331559A (en) Image coding / decoding method and apparatus
KR100961760B1 (en) Motion estimation method and apparatus referencing discrete cosine transform coefficients
US20070165717A1 (en) System and method for rate-distortion optimized data partitioning for video coding using parametric rate-distortion model
EP1227684A2 (en) Encoding of video signals
Gao et al. Robust H. 263+ video transmission using partial backward decodable bit stream (PBDBS)
KR20060103424A (en) Method and apparatus for selection of bit budget adjustment of dual pass encoding
US20050141616A1 (en) Video encoding and decoding methods and apparatuses using mesh-based motion compensation
JP4130617B2 (en) Moving picture coding method and moving picture coding apparatus
US7236529B2 (en) Methods and systems for video transcoding in DCT domain with low complexity
JPH05336505A (en) Image hierarchical coding method
US20060146932A1 (en) Method and apparatus for providing motion estimation with weight prediction
JPH0686264A (en) Variable speed picture encoding system
JPH1093964A (en) Device for concealing error of image signal
JPH04369192A (en) Picture coding method and device