[go: up one dir, main page]

JPH05330919A - Silicon nitride-based sintered compact and its production - Google Patents

Silicon nitride-based sintered compact and its production

Info

Publication number
JPH05330919A
JPH05330919A JP4138634A JP13863492A JPH05330919A JP H05330919 A JPH05330919 A JP H05330919A JP 4138634 A JP4138634 A JP 4138634A JP 13863492 A JP13863492 A JP 13863492A JP H05330919 A JPH05330919 A JP H05330919A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
glass phase
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4138634A
Other languages
Japanese (ja)
Other versions
JP2966644B2 (en
Inventor
Yuichiro Murakami
勇一郎 村上
Hiroichi Yamamoto
博一 山本
Takehiko Hirata
武彦 平田
Katsunori Akiyama
勝徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15226637&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05330919(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4138634A priority Critical patent/JP2966644B2/en
Publication of JPH05330919A publication Critical patent/JPH05330919A/en
Application granted granted Critical
Publication of JP2966644B2 publication Critical patent/JP2966644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a silicon nitride sintered compact involving a grain boundary phase having a high solid phase temperature, therefore, low in reduction of strength at high temperatures and exhibiting a high density, heat resistance and a high strength and to provide its production method. CONSTITUTION:In the silicon nitride sintered compact, the gaps between silicon nitride grains are characteristically filled with an Al-Yb-Si-O-N-based or an Al-Er-Si-O-N-based oxynitride glass phase, with that oxynitride glass phase and its crystallites or with a crystallized glass phase of that oxynitride. Its production method is also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性や耐磨耗性に優
れた窒化珪素質焼結体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent heat resistance and abrasion resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素焼結体は、耐熱性を要求される
高温構造材料や耐磨耗材料として期待されるが、難焼結
性物質であるため、焼結助剤としてAl2 3 、Y2
3 、MgOなどを添加して焼結する方法が採用されてい
る。しかし、この方法で作製した焼結体は、粒界ガラス
相の固相温度(加熱により液相が現れ始める温度)が約
1300℃と低いため、高温に加熱されると1300℃
前後の温度領域で粒界に液相が現れ始め、焼結体の強度
が徐々に低下するという問題があった。
2. Description of the Related Art A silicon nitride sintered body is expected as a high temperature structural material and a wear resistant material which are required to have heat resistance, but since it is a hardly sinterable substance, it is Al 2 O 3 as a sintering aid. , Y 2 O
3 , the method of adding MgO and sintering is adopted. However, since the solid phase temperature of the grain boundary glass phase (the temperature at which the liquid phase begins to appear by heating) is as low as about 1300 ° C., the sintered body produced by this method has a temperature of 1300 ° C. when heated to a high temperature.
There was a problem that a liquid phase began to appear at the grain boundaries in the front and rear temperature regions, and the strength of the sintered body gradually decreased.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明では、
上記の問題点を解消し、粒界相に液相が現れる温度即ち
固相温度の高い粒界相を有する窒化珪素質焼結体、及
び、その製造方法を提供しようとするものである。
Therefore, according to the present invention,
It is an object of the present invention to solve the above problems and provide a silicon nitride sintered body having a grain boundary phase having a high temperature at which a liquid phase appears in the grain boundary phase, that is, a solid phase temperature, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、以下に記載の
窒化珪素質焼結体及びその製造方法である。 (1)窒化珪素粒子の間隙が、Al−Yb−Si−O−
N系又はAl−Er−Si−O−N系の酸窒化物ガラス
相、若しくは、該酸窒化物ガラス相とそれらの微結晶と
で充填されていることを特徴とする窒化珪素質焼結体、
(2)平均粒径10μm以下の窒化珪素粒子に対して、
いずれも平均粒径10μm以下の酸化物であって、第1
添加剤としてアルミナ、第2添加剤として酸化イッテル
ビウム又は酸化エルビウムを、必要に応じて第3添加剤
としてシリカを、全添加量が3〜30重量%となるよう
に添加調整し、有機溶媒中で分散剤とともに均一に混合
した後、乾燥・成形し、脱脂してから窒素加圧雰囲気中
で1600〜1950℃の温度で焼結することを特徴と
する窒化珪素質焼結体の製造方法、(3)上記(2)記
載の窒化珪素質焼結体の製造方法において、添加剤の中
で希土類酸化物とアルミナの重量比を0.5〜7の範囲
に保ち、シリカを必要に応じて27重量%以下添加する
ことを特徴とする窒化珪素質焼結体の製造方法、(4)
窒化珪素粒子の間隙が、Al−Yb−Si−O−N系又
はAl−Er−Si−O−N系酸窒化物の結晶化ガラス
相で充填されていることを特徴とする窒化珪素質焼結
体、(5)上記(2)記載の製造方法で得た窒化珪素質
焼結体を、窒素ガス雰囲気中で850〜1050℃の温
度範囲で熱処理して粒界ガラス相中に結晶核を形成さ
せ、次いで、窒素加圧雰囲気で1100〜1500℃の
温度で熱処理して結晶を成長させ、粒界ガラス相を結晶
化ガラス相にすることを特徴とする窒化珪素質焼結体の
製造方法。なお、上記(1)の窒化珪素粒子間に充填さ
れる微結晶を例示すると、Yb2Si2 7 ,Er2
2 7 ,Si2 2 O等である。
The present invention is a silicon nitride sintered body and a method for producing the same as described below. (1) The gap between the silicon nitride particles is Al-Yb-Si-O-.
An N-based or Al-Er-Si-O-N-based oxynitride glass phase, or a silicon nitride sintered body characterized by being filled with the oxynitride glass phase and microcrystals thereof. ,
(2) For silicon nitride particles having an average particle size of 10 μm or less,
Both are oxides with an average particle size of 10 μm or less,
Alumina was used as the additive, ytterbium oxide or erbium oxide was used as the second additive, and silica was used as the third additive, if necessary, so that the total addition amount was 3 to 30% by weight. A method for producing a silicon nitride sintered body, which comprises uniformly mixing with a dispersant, drying and molding, degreasing, and then sintering at a temperature of 1600 to 1950 ° C. in a nitrogen pressure atmosphere, ( 3) In the method for producing a silicon nitride sintered body according to the above (2), the weight ratio of rare earth oxide to alumina in the additive is maintained in the range of 0.5 to 7, and silica is added as needed. A method for producing a silicon nitride-based sintered body, characterized by adding not more than wt%, (4)
A silicon nitride sintered material characterized in that the gaps between the silicon nitride particles are filled with a crystallized glass phase of an Al—Yb—Si—O—N-based or Al—Er—Si—O—N-based oxynitride. (5) The silicon nitride sintered body obtained by the manufacturing method according to (5) above (2) is heat-treated in a temperature range of 850 to 1050 ° C. in a nitrogen gas atmosphere to form crystal nuclei in the grain boundary glass phase. A method for producing a silicon nitride sintered body, which is characterized in that it is formed and then heat-treated at a temperature of 1100 to 1500 ° C. in a nitrogen pressure atmosphere to grow a crystal, and a grain boundary glass phase becomes a crystallized glass phase. .. In addition, when exemplifying the microcrystals filled between the silicon nitride particles of the above (1), Yb 2 Si 2 O 7 and Er 2 S are given.
i 2 O 7 , Si 2 N 2 O and the like.

【0005】[0005]

【作用】本発明は、窒化珪素(Si3 4 )粉末に、2
〜3種の酸化物粉末(Al2 3 −Yb2 3 、Al2
3 −Er2 3 、Al2 3 −Yb2 3 −Si
2、Al2 3 −Er2 3 −SiO2 )を3〜30
重量%加え、有機溶媒中で分散剤を添加して均一に混
合、乾燥、成形、脱脂、焼成することにより、窒化珪素
粒子の間隙に、固相温度の高いAl−Yb−Si又はA
l−Er−Siの酸窒化物ガラス若しくはその結晶を充
填した窒化珪素質焼結体を提供しようとするものであ
る。ところで、窒化珪素(Si3 4 )の焼結は、液相
焼結であるため、添加助剤や窒化珪素の原料粉末中の不
純物として含有されるシリカ及び助剤として添加される
シリカにより液相を発生させる必要がある。
The present invention is based on silicon nitride (Si3NFour) 2 for powder
~ 3 kinds of oxide powder (Al2O 3-Yb2O3, Al2
O3-Er2O3, Al2O3-Yb2O3-Si
O2, Al2O3-Er2O3-SiO2) 3 to 30
Wt%, add a dispersant in an organic solvent and mix evenly.
In this case, silicon nitride is obtained by drying, molding, degreasing and firing.
Al-Yb-Si or A, which has a high solid phase temperature, is placed in the gap between the particles.
1-Er-Si oxynitride glass or its crystal is filled.
It is intended to provide a filled silicon nitride sintered body.
It By the way, silicon nitride (Si3NFour) Sintered in liquid phase
Since it is a sintering process, the additives used in the raw material powder of silicon nitride cannot be added.
Silica contained as a pure substance and added as an auxiliary agent
It is necessary to generate a liquid phase with silica.

【0006】本発明者等は、Al2 3 −Yb2 3
SiO2 系のガラス化範囲を調べたところ、およそ図1
に実線で囲まれた範囲であることが分かった。また、A
23 −Er2 3 −SiO2 系のガラス化範囲もA
2 3 −Yb2 3 −SiO2 系とほぼ同じであるこ
とが分かった。即ち、粒界をガラス相とするためには、
Yb2 3 (Er2 3 )とAl2 3 との重量比を
0.5〜7の範囲に調整し、全酸化物中のSiO2 濃度
は18〜50重量%の範囲に調整することが望ましい。
粒界相中のSiO2 濃度をこの範囲に納めるためには、
粒界相中のSiO2 成分が全てSi3 4 原料中の不純
物に由来する場合、助剤の添加量を3〜15重量%とす
る必要がある。
The present inventors have found that Al 2 O 3 --Yb 2 O 3-
Examination of the vitrification range of the SiO 2 system revealed that
It turns out that the range is surrounded by the solid line. Also, A
The vitrification range of the l 2 O 3 —Er 2 O 3 —SiO 2 system is also A
It was found to be almost the same as the 1 2 O 3 —Yb 2 O 3 —SiO 2 system. That is, in order to make the grain boundary a glass phase,
The weight ratio of Yb 2 O 3 (Er 2 O 3 ) and Al 2 O 3 is adjusted to the range of 0.5 to 7, and the SiO 2 concentration in the total oxide is adjusted to the range of 18 to 50% by weight. Is desirable.
In order to keep the SiO 2 concentration in the grain boundary phase within this range,
When the SiO 2 component in the grain boundary phase is entirely derived from impurities in the Si 3 N 4 raw material, the amount of the auxiliary agent added needs to be 3 to 15% by weight.

【0007】図2は、Yb2 3 /Al2 3 のモル比
を3/5とし(Al1.25Yb0.75 3 は5Al2 3
3Yb2 3 に相当する)、Si3 4 濃度とSiO2
濃度との濃度比を変化させて1600℃で20時間熱処
理して得た焼結体の結晶構造を示した図であり、助剤濃
度が30%以下でSi3 4 (図中、SNで表記)以外
にYb2 Si2 7 (図中、Dで表記)などの結晶が析
出した領域(SN+D+L領域)では、酸化物粒子の析
出効果により高温における強度劣化の少ない材料が得ら
れる。しかし、助剤添加量が30重量%を越えると、S
3 4 の量が少なくなり、焼結体の密度が上昇しにく
い等の問題が生じ、Si3 4 焼結体の優れた性質が損
なわれる。なお、図2では、Si3 4 量が70%以上
でSN+L領域並びにSN+D+L領域が主として好ま
しい窒化珪素質焼結体を生成する領域である。
FIG. 2 shows Yb2O3/ Al2O3Molar ratio of
To 3/5 (Al1.25Yb0.75O 3Is 5Al2O3
3Yb2O3Equivalent to), Si3NFourConcentration and SiO2
Heat treatment at 1600 ° C for 20 hours by changing the concentration ratio with the concentration.
It is a diagram showing the crystal structure of the sintered body obtained by
Degree of less than 30% Si3NFourOther than (indicated by SN in the figure)
To Yb2Si2O7Crystals such as (indicated by D in the figure) precipitate
In the exposed area (SN + D + L area), oxide particles are deposited.
By the effect of the
Be done. However, if the additive amount exceeds 30% by weight, S
i3NFourThe amount of
Problems such as3NFourThe excellent properties of the sintered body are damaged.
Be struck. In FIG. 2, Si3NFour70% or more
SN + L region and SN + D + L region are mainly preferred in
This is a region where a new silicon nitride sintered body is produced.

【0008】また、Al2 3 −Yb2 3 −SiO2
系焼結体の固相温度は約1500℃、Al2 3 −Er
2 3 −SiO2 系焼結体の固相温度は約1450℃で
あり、従来のAl2 3 −Y2 3 −SiO2 系焼結体
の固相温度1350℃より約100℃以上も高い固相温
度を有する。それ故、本発明の焼結体は、液相が現れ始
める温度が、上記の従来の焼結体より約100℃以上も
高くなり、耐熱性を向上させることができた。
Al 2 O 3 --Yb 2 O 3 --SiO 2
The solid phase temperature of the sintered system is about 1500 ° C, Al 2 O 3 -Er
The solid phase temperature of the 2 O 3 —SiO 2 system sintered body is about 1450 ° C., and about 100 ° C. or more from the solid phase temperature 1350 ° C. of the conventional Al 2 O 3 —Y 2 O 3 —SiO 2 system sintered body. Also has a high solidus temperature. Therefore, the temperature at which the liquid phase begins to appear in the sintered body of the present invention is higher than that of the conventional sintered body by about 100 ° C. or more, and the heat resistance can be improved.

【0009】本発明において、Si3 4 や助剤などの
原料粉末を分散させる分散剤としては、ポリエチレンア
ミン、ポリビニールアルコール等を使用することがで
き、その使用量は、セラミックス原料100重量部に対
して1〜10重量部の範囲が好ましくい。分散剤の使用
量が1重量部を下回ると、原料粉末の分散効果がなく、
10重量部を越えると、脱脂に要する時間が長くなるの
で適当でない。また、有機溶媒としては、エタノール、
ブタノール等を挙げることができ、その使用量は、セラ
ミックス原料100重量部に対して50〜150重量部
の範囲が好ましくい。
In the present invention, polyethyleneamine, polyvinyl alcohol, or the like can be used as a dispersant for dispersing raw material powders such as Si 3 N 4 and an auxiliary agent, and the amount thereof is 100 parts by weight of the ceramic raw material. However, the range of 1 to 10 parts by weight is preferable. When the amount of the dispersant used is less than 1 part by weight, there is no effect of dispersing the raw material powder,
If it exceeds 10 parts by weight, the time required for degreasing becomes long, which is not suitable. Further, as the organic solvent, ethanol,
Butanol and the like can be mentioned, and the amount thereof is preferably in the range of 50 to 150 parts by weight with respect to 100 parts by weight of the ceramic raw material.

【0010】得られた均一混合分散粉末は1〜5t/c
2 の静水圧で加圧して成形する。成形体は、焼結に先
立って真空中で300〜700℃に加熱することによ
り、分散剤を脱脂することができる。脱脂された成形体
は、窒素ガス加圧下で1600〜1950℃の温度で熱
処理することにより、緻密な焼結体を得ることができ
る。本発明の焼結助剤を添加するため、粒界相が液相に
なる温度が高くなり、焼結温度が1600℃より低いと
きには、焼結にともなう堆積収縮がなく、焼結が進まな
い。1950℃を越えると、分解などのために密度は上
昇せず、良質の焼結体を得ることができないという問題
が生ずる。加圧条件は窒素ガスで約3気圧以上が好まし
い。
The obtained homogeneously mixed and dispersed powder is 1 to 5 t / c.
Mold by pressurizing with a hydrostatic pressure of m 2 . The dispersant can be degreased by heating the molded body to 300 to 700 ° C. in a vacuum prior to sintering. The degreased compact can be heat-treated under nitrogen gas pressure at a temperature of 1600 to 1950 ° C. to obtain a dense sintered compact. Since the sintering aid of the present invention is added, the temperature at which the grain boundary phase becomes a liquid phase becomes high, and when the sintering temperature is lower than 1600 ° C., there is no deposition shrinkage associated with the sintering and the sintering does not proceed. If the temperature exceeds 1950 ° C., the density does not increase due to decomposition or the like, and there arises a problem that a good quality sintered body cannot be obtained. The pressurizing condition is preferably nitrogen gas at about 3 atm or more.

【0011】原料微粉末の平均粒径は、均一な組成のセ
ラミックスを製造するために、10μm以下の微粉末を
用いる必要があり、特に、1μm前後の粒径の微粉末を
用いることにより、均一で良質の焼結体を比較的短時間
で製造することが可能である。
The average particle size of the raw material fine powder is required to be 10 μm or less in order to produce a ceramic having a uniform composition. Particularly, by using the fine powder having a particle size of about 1 μm, It is possible to produce a good quality sintered body in a relatively short time.

【0012】粒界のガラス相を結晶化するためには、ガ
ラス相中に結晶核を発生させる必要がある。結晶核の形
成速度を種々検討したところ、850〜1050℃の温
度範囲が最も速く、温度がこれよりも高くてもまた低く
ても遅くなる。即ち、結晶核形成のためには、850〜
1050℃の温度領域で0.5〜3時間熱処理すれば十
分である。続いて、結晶を成長させるには、1100〜
1500℃の温度領域で0.5〜48時間熱処理する必
要があり、1100℃を下回ると、結晶成長速度が遅
く、また、1500℃を越えると、粒界に液相が出現し
始めるので、一度成長した結晶を溶かす。そこで、11
00〜1500℃の温度領域で0.5〜48時間熱処理
すれば十分である。
In order to crystallize the glass phase at the grain boundaries, it is necessary to generate crystal nuclei in the glass phase. As a result of various studies on the formation rate of crystal nuclei, the temperature range of 850 to 1050 ° C. is the fastest, and the temperature becomes higher or lower than this temperature range. That is, in order to form crystal nuclei,
It is sufficient to perform heat treatment in the temperature range of 1050 ° C. for 0.5 to 3 hours. Then, to grow crystals, 1100-
It is necessary to perform heat treatment in a temperature range of 1500 ° C. for 0.5 to 48 hours. When the temperature is lower than 1100 ° C., the crystal growth rate is slow, and when it exceeds 1500 ° C., a liquid phase starts to appear at the grain boundary. Melt the grown crystals. Then, 11
It is sufficient to perform the heat treatment in the temperature range of 00 to 1500 ° C. for 0.5 to 48 hours.

【0013】[0013]

【実施例】【Example】

(実施例1)平均粒径が0.3μmのSi3 4 、及
び、助剤として平均粒径0.8〜1μmのAl2 3
Yb2 3 、Er2 3 、SiO2 を表1の配合比で配
合し、原料粉末100重量部に対して分散剤ポリエチレ
ンアミンを3重量部、溶媒エタノールを120重量部添
加してアルミナボールミルで均一に混合した後、乾燥
し、プレスで直径60mm、厚さ約6mmの円板状に成
形し、4t/cm2 の静水圧プレスで成形体を得た。こ
の成形体を真空中で500℃まで加熱し、1時間保持し
て脱脂した後、窒素ガス10気圧で加圧して表2の熱処
理条件でそれぞれ熱処理して窒化珪素質焼結体を得た。
Example 1 Si 3 N 4 having an average particle size of 0.3 μm, and Al 2 O 3 having an average particle size of 0.8 to 1 μm as an auxiliary agent,
Alumina ball mill was prepared by mixing Yb 2 O 3 , Er 2 O 3 and SiO 2 in the mixing ratio shown in Table 1, and adding 3 parts by weight of a dispersant polyethyleneamine and 120 parts by weight of solvent ethanol to 100 parts by weight of raw material powder. After being uniformly mixed with, the mixture was dried, pressed into a disk shape having a diameter of 60 mm and a thickness of about 6 mm, and a molded body was obtained by a hydrostatic pressure press of 4 t / cm 2 . The compact was heated to 500 ° C. in vacuum, held for 1 hour to be degreased, pressurized with nitrogen gas at 10 atm and heat-treated under the heat treatment conditions shown in Table 2 to obtain a silicon nitride sintered body.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】得られた焼結体の熱処理条件と相対密度及
び曲げ強度の関係を表2に示した。表2から明らかなよ
うに、本発明の焼結体は、室温曲げ強度と1300℃に
おけま曲げ強度との比が約0.7であり、従来の焼結体
の約0.5に比較して大きな値を示している。これは、
高温における強度の低下割合が少ないことを示してお
り、本発明の焼結体では、粒界に液相が現れ始める温度
が従来の焼結体と比較して100℃以上も高くなったこ
とにより、この特性が得られたと考えられる。
Table 2 shows the relationship between the heat treatment conditions and the relative density and bending strength of the obtained sintered body. As is clear from Table 2, the sintered body of the present invention has a ratio of the room temperature bending strength to the bending strength at 1300 ° C. of about 0.7, which is in comparison with the conventional sintered body of about 0.5. And shows a large value. this is,
This indicates that the rate of decrease in strength at high temperatures is small, and in the sintered body of the present invention, the temperature at which the liquid phase begins to appear at the grain boundaries is 100 ° C. or more higher than that in the conventional sintered body. It is considered that this characteristic was obtained.

【0017】また、上記の配合組成について、別に16
00℃で20時間熱処理して得た焼結体の結晶構造と助
剤配合組成(重量%)との関係を調べると、概略図2に
示す通りであった。助剤添加物の中でAl1.250.75
3 (5Al2 3 ・3Yb23 の略、G相)の量が多
くなると、Si3 4 (SN相)以外にYb2 Si2
7 結晶(D相)の析出が見られ、SiO2 量が多くなる
と、Si2 2 O結晶(Ox相)の析出が見られ、Si
3 4 と他の結晶相とが複合した複合焼結体が得られ
る。なお、C相はSiO2 結晶(クリストバライト)を
意味する。また、このような窒化珪素質焼結体であって
も実用材料として利用することができる。
Further, regarding the above-mentioned composition, 16
When the relationship between the crystal structure of the sintered body obtained by heat treatment at 00 ° C. for 20 hours and the composition of the additive (wt%) was examined, it was as shown in the schematic FIG. Al 1.25 Y 0.75 O among auxiliary additives
When the amount of 3 (5Al 2 O 3 · 3Yb 2 O 3 abbreviated as G phase) increases, Yb 2 Si 2 O is added in addition to Si 3 N 4 (SN phase).
Precipitation of 7 crystals (D phase) was observed, and when the amount of SiO 2 was increased, precipitation of Si 2 N 2 O crystals (Ox phase) was observed.
A composite sintered body in which 3 N 4 and another crystal phase are composite is obtained. The C phase means SiO 2 crystal (cristobalite). Further, even such a silicon nitride sintered body can be used as a practical material.

【0018】(実施例2)表1の試料番号Y1,Y3,
Y7,E1,E4の配合組成について1800℃で4時
間熱処理して得た焼結体を、950℃で1時間熱処理し
て結晶核を形成させた後、1350℃で20時間熱処理
して粒界相を結晶化させ、1300℃における曲げ強度
を測定したところ、表3の通りであった。また、ガラス
相を結晶化させて生成した結晶構造をX線回折により調
べたところ、Yb2 Si2 7 結晶(D相)、Al1.25
0.753 (G相)及びAl6 Si2 13(M相)であ
ると推定された。この結果から、粒界ガラス相の結晶化
により強度が向上することが確認された。
(Example 2) Sample numbers Y1, Y3 in Table 1
The mixed composition of Y7, E1, and E4 was heat-treated at 1800 ° C. for 4 hours, the obtained sintered body was heat-treated at 950 ° C. for 1 hour to form crystal nuclei, and then heat-treated at 1350 ° C. for 20 hours to obtain grain boundaries. When the phase was crystallized and the bending strength at 1300 ° C. was measured, it was as shown in Table 3. Further, when the crystal structure produced by crystallizing the glass phase was examined by X-ray diffraction, Yb 2 Si 2 O 7 crystal (D phase), Al 1.25
It was estimated to be Y 0.75 O 3 (G phase) and Al 6 Si 2 O 13 (M phase). From this result, it was confirmed that the strength is improved by the crystallization of the grain boundary glass phase.

【0019】[0019]

【表3】 [Table 3]

【0020】(実施例3)93Si3 4 −2Al2
3 −5Yb2 3 組成(実施例3)並びに93Si3
4 −2Al2 3 −5Y2 3 組成(従来例)の原料に
ついて、1800℃で4時間窒素加圧雰囲気下で熱処理
して得られた焼結体を、1350℃で20時間大気中で
酸化し、酸化重量増を熱天秤で測定し、結果を表4に示
した。従来例では、約1300℃前後で粒界相に液相が
現れるため、粒界中のYイオン及びAlイオンの拡散が
速く、高温における酸化速度も速い。他方、実施例3で
は、液相が現れる温度は従来例より約150℃も高いた
め、上記の酸化温度である1350℃では粒界相はまだ
固相のままである。このため、金属イオンの拡散速度は
液相の場合に比べて非常に遅い。それ故、実施例3の焼
結体の酸化速度は従来例と比較して遅く、耐酸化性にも
優れていることが分かる。
(Example 3) 93Si 3 N 4 -2Al 2 O
3 -5Yb 2 O 3 composition (Example 3) and 93Si 3 N
A sintered body obtained by heat-treating a raw material of 4-2Al 2 O 3 -5Y 2 O 3 composition (conventional example) at 1800 ° C. for 4 hours in a nitrogen pressure atmosphere at 1350 ° C. for 20 hours in the air Oxidation and increase in oxidative weight were measured with a thermobalance, and the results are shown in Table 4. In the conventional example, since a liquid phase appears in the grain boundary phase at around 1300 ° C., the diffusion of Y ions and Al ions in the grain boundaries is fast, and the oxidation rate at high temperature is also fast. On the other hand, in Example 3, the temperature at which the liquid phase appears is about 150 ° C. higher than that in the conventional example, so that the grain boundary phase remains a solid phase at the above-mentioned oxidation temperature of 1350 ° C. Therefore, the diffusion rate of metal ions is much slower than that in the liquid phase. Therefore, it can be seen that the oxidation rate of the sintered body of Example 3 is slower than that of the conventional example and the oxidation resistance is excellent.

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【発明の効果】本発明は、上記の構成を採用することに
より、高温における強度の低下する割合が低く、緻密で
耐熱性、高強度の窒化珪素質焼結体を提供することが可
能となった。
EFFECTS OF THE INVENTION By adopting the above constitution, the present invention can provide a dense, heat-resistant, high-strength silicon nitride sintered body with a low rate of decrease in strength at high temperatures. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る焼結体の粒界相を形成す
るAl2 3 −Yb2 3 −SiO2 系酸化物のガラス
化範囲を示す図である。
FIG. 1 is a diagram showing a vitrification range of an Al 2 O 3 —Yb 2 O 3 —SiO 2 based oxide forming a grain boundary phase of a sintered body according to an example of the present invention.

【図2】1600℃で20時間熱処理して得た焼結体の
結晶構造と添加した酸化物の配合組成(5Al2 3
3Yb2 3 )との関係を示す図である。
FIG. 2 is a crystal structure of a sintered body obtained by heat treatment at 1600 ° C. for 20 hours and a compounding composition (5Al 2 O 3 ·.
It is a diagram showing the relationship between 3Yb 2 O 3).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 勝徳 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsunori Akiyama 1-8-8, Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Mitsubishi Heavy Industries, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素粒子の間隙が、Al−Yb−S
i−O−N系又はAl−Er−Si−O−N系の酸窒化
物ガラス相、若しくは、該酸窒化物ガラス相とそれらの
微結晶とで充填されていることを特徴とする窒化珪素質
焼結体。
1. The gap between the silicon nitride particles is Al—Yb—S.
i-O-N-based or Al-Er-Si-O-N-based oxynitride glass phase, or silicon nitride filled with the oxynitride glass phase and microcrystals thereof. Quality sintered body.
【請求項2】 平均粒径10μm以下の窒化珪素粒子に
対して、いずれも平均粒径10μm以下の酸化物であっ
て、第1添加剤としてアルミナ、第2添加剤として酸化
イッテルビウム又は酸化エルビウムを、必要に応じて第
3添加剤としてシリカを、全添加量が3〜30重量%と
なるように添加調整し、有機溶媒中で分散剤とともに均
一に混合した後、乾燥・成形し、脱脂してから窒素加圧
雰囲気中で1600〜1950℃の温度で焼結すること
を特徴とする窒化珪素質焼結体の製造方法。
2. An oxide having an average particle size of 10 μm or less, with respect to silicon nitride particles having an average particle size of 10 μm or less, wherein alumina is the first additive and ytterbium oxide or erbium oxide is the second additive. If necessary, silica as a third additive is added and adjusted so that the total addition amount is 3 to 30% by weight, and the mixture is uniformly mixed with a dispersant in an organic solvent, then dried and molded, and degreased. And then sintering at a temperature of 1600 to 1950 ° C. in a nitrogen pressure atmosphere, the method for producing a silicon nitride sintered body.
【請求項3】 請求項2記載の窒化珪素質焼結体の製造
方法において、添加剤の中で希土類酸化物とアルミナの
重量比を0.5〜7の範囲に保ち、シリカを必要に応じ
て27重量%以下添加することを特徴とする窒化珪素質
焼結体の製造方法。
3. The method for producing a silicon nitride sintered body according to claim 2, wherein the weight ratio of the rare earth oxide and the alumina in the additive is kept in the range of 0.5 to 7, and silica is added if necessary. 27% by weight or less is added to the silicon nitride sintered body.
【請求項4】 窒化珪素粒子の間隙が、Al−Yb−S
i−O−N系又はAl−Er−Si−O−N系酸窒化物
の結晶化ガラス相で充填されていることを特徴とする窒
化珪素質焼結体。
4. The gap between the silicon nitride particles is Al—Yb—S.
A silicon nitride-based sintered body characterized by being filled with a crystallized glass phase of an i-O-N-based or Al-Er-Si-O-N-based oxynitride.
【請求項5】 請求項2記載の製造方法で得た窒化珪素
質焼結体を、窒素ガス雰囲気中で850〜1050℃の
温度範囲で熱処理して粒界ガラス相中に結晶核を形成さ
せ、次いで、窒素加圧雰囲気で1100〜1500℃の
温度で熱処理して結晶を成長させ、粒界ガラス相を結晶
化ガラス相にすることを特徴とする窒化珪素質焼結体の
製造方法。
5. The silicon nitride sintered body obtained by the manufacturing method according to claim 2 is heat-treated in a temperature range of 850 to 1050 ° C. in a nitrogen gas atmosphere to form crystal nuclei in a grain boundary glass phase. Then, a method for producing a silicon nitride sintered body, characterized by heat-treating at a temperature of 1100 to 1500 ° C. in a nitrogen pressure atmosphere to grow a crystal, and a grain boundary glass phase into a crystallized glass phase.
JP4138634A 1992-05-29 1992-05-29 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2966644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4138634A JP2966644B2 (en) 1992-05-29 1992-05-29 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4138634A JP2966644B2 (en) 1992-05-29 1992-05-29 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05330919A true JPH05330919A (en) 1993-12-14
JP2966644B2 JP2966644B2 (en) 1999-10-25

Family

ID=15226637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4138634A Expired - Fee Related JP2966644B2 (en) 1992-05-29 1992-05-29 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2966644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541406B1 (en) 1999-11-15 2003-04-01 Ngk Insulators, Ltd. Silicon nitride sintered material and process for production thereof
US7094717B2 (en) 2000-11-28 2006-08-22 Kennametal Inc. SiAlON containing ytterbium and method of making

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049256B2 (en) 2000-11-28 2006-05-23 Kennametal Inc. SiAlON containing ytterbium and method of making
US6693054B1 (en) 2000-11-28 2004-02-17 Kennametal Inc. Method of making SiAlON containing ytterbium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541406B1 (en) 1999-11-15 2003-04-01 Ngk Insulators, Ltd. Silicon nitride sintered material and process for production thereof
US6667264B2 (en) 1999-11-15 2003-12-23 Kiyoshi Araki Silicon nitride sintered material and process for production thereof
US7094717B2 (en) 2000-11-28 2006-08-22 Kennametal Inc. SiAlON containing ytterbium and method of making

Also Published As

Publication number Publication date
JP2966644B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
EP0589997B1 (en) High toughness-high strength sintered silicon nitride
JP2966644B2 (en) Silicon nitride sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH06263544A (en) Sialon-based composite sintered compact and its production
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2811493B2 (en) Silicon nitride sintered body
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH06100376A (en) Sintered beta-sialon and its production
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP3207065B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH02307871A (en) Production of ceramic sintered compact
JPH0686332B2 (en) Manufacturing method of sialon-based ceramic tool for cutting cast iron
JPH08277163A (en) Silicon nitride-based sintered compact and its production
JP2783702B2 (en) Silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP3124882B2 (en) Silicon nitride sintered body and method for producing the same
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPS63170265A (en) Silicon nitride sintered body and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990721

LAPS Cancellation because of no payment of annual fees