[go: up one dir, main page]

JPH05330913A - Polycrystalline transparent y2o3 ceramics for laser - Google Patents

Polycrystalline transparent y2o3 ceramics for laser

Info

Publication number
JPH05330913A
JPH05330913A JP4138775A JP13877592A JPH05330913A JP H05330913 A JPH05330913 A JP H05330913A JP 4138775 A JP4138775 A JP 4138775A JP 13877592 A JP13877592 A JP 13877592A JP H05330913 A JPH05330913 A JP H05330913A
Authority
JP
Japan
Prior art keywords
laser
single crystal
porosity
ceramics
lif
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4138775A
Other languages
Japanese (ja)
Inventor
Akio Ikesue
明生 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP4138775A priority Critical patent/JPH05330913A/en
Publication of JPH05330913A publication Critical patent/JPH05330913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To avoid structural defects of a single crystal or those of a produced material and provide a technique unapplicable to the single crystal by including ThO2, HfO2, ZrO2, Li2O, LiF, BeO or Al2O3 and a lanthanoid and specifying the average particle diameter and porosity. CONSTITUTION:The objective polycrystalline transparent Y2O3, ceramics for laser comprise one or more of ThO2, HfO2, ZrO2, Li2O, LiF, BeO and Al2O3 and one or more lanthanoid elements and have an average particle diameter within the range of 5-3000mum and <=1% porosity. When the density of the sintered compact is <99.0% (>=1% porosity) that of the theoretical one, the light transmittance is extremely lowered. The relative density of the sintered compact is obtained by comparing densities of both a single crystal and a polycrystal of the same composition measured according to the method of the Japan Society for the Promotion of Science or X-ray method. As other methods, the relative density is obtained by measuring pores present in the interior of the sintered compact from the surface with a microscope, a scanning electron microscope (SEM), etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ発振素子として
好適に使用されるレーザ用多結晶透明Y2 3 セラミッ
クスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline transparent Y 2 O 3 ceramics for laser which is preferably used as a laser oscillator.

【0002】[0002]

【従来の技術】YAG(イットリウ・アルミニウム・ガ
ーネット)に代表される固体レーザは、その市場の約9
5%を占める重要な材料である。本レーザの利用分野と
しては半導体の微細加工、鋼材やセラミックスの切断及
び熱処理、医療用レーザメス等多岐に応用され、近年で
はSHG(第二高調波)素子を用いて波長変換したグリ
ーンやブルーレーザを、光磁気記録材料の書込み操作に
利用することも行なわれている。
2. Description of the Related Art Solid-state lasers represented by YAG (yttria aluminum garnet) have about 9% of the market.
It is an important material that accounts for 5%. The fields of application of this laser are various applications such as microfabrication of semiconductors, cutting and heat treatment of steel materials and ceramics, medical laser scalpels, etc. In recent years, wavelength-converted green and blue lasers using SHG (second harmonic) elements have been applied. It is also used for writing operation of magneto-optical recording material.

【0003】ところでYAGは発光に関与する元素とし
て、Ndやその他の発光元素を添加したものが、チョコ
ラルスキー法にて製造されているが、これらは全て単結
晶となっている。
By the way, YAG is manufactured by the Czochralski method by adding Nd and other light emitting elements as elements involved in light emission, but all of them are single crystals.

【0004】このような方法で単結晶YAGを製造する
場合、育成温度として約2000℃を必要とし、かつ育
成速度が0.2〜0.3mm/hrと極めて遅い。この
ことから1本の単結晶を製造するのに約1ケ月を要し、
且つ製造された単結晶YAGの発光元素が均一とはなり
難い。特にNd元素を添加するものに限っては単結晶を
育成する際、ホスト材料中の発光元素を均一に分散させ
ることが難しいばかりでなく、その濃度も1原子%程度
が限界となっている。このことからたとえ単結晶YAG
を製造したとしても、レーザ材料として使用できるのは
ごく一部である。また単結晶育成技術では極めて高価な
イリジウム坩堝が必要なため、製造される単結晶YAG
が高価であることは勿論、生産性の面でも十分満足すべ
きものではないのが現状である。
When a single crystal YAG is manufactured by such a method, a growth temperature of about 2000 ° C. is required, and the growth rate is extremely slow at 0.2 to 0.3 mm / hr. From this, it takes about one month to produce one single crystal,
Moreover, it is difficult for the manufactured single crystal YAG to have uniform light emitting elements. Particularly, in the case of growing a single crystal only when the Nd element is added, it is not only difficult to uniformly disperse the light emitting element in the host material, but also its concentration is limited to about 1 atom%. From this fact, even single crystal YAG
Even if manufactured, only a small part can be used as a laser material. In addition, the single crystal growth technique requires an extremely expensive iridium crucible, so the single crystal YAG produced
In addition to being expensive, the current situation is that they are not fully satisfactory in terms of productivity.

【0005】一方、YAG等のガーネット構造を有する
単結晶以外の注目されるレーザ用単結晶としてY2 3
も挙げられるが、この結晶は融点が2400℃と極めて
高温であることから、レーザ用単結晶育成技術として不
向きなベルヌイ法に依存しなければならない。このた
め、実用的な高品位の単結晶が製造できないばかりでな
く、その大きさには制限(相転移があるためにせいぜい
直径1cm程度)もあることから、前述したガーネット
構造を有する結晶が常用されている。
On the other hand, Y 2 O 3 has been used as a noticeable laser single crystal other than a single crystal having a garnet structure such as YAG.
However, since this crystal has an extremely high melting point of 2400 ° C., it must rely on the Bernoulli method, which is unsuitable as a technique for growing a single crystal for a laser. For this reason, not only a practical high-quality single crystal cannot be produced, but also the size thereof is limited (because of the phase transition, the diameter is at most about 1 cm). Therefore, the crystal having the garnet structure described above is commonly used. Has been done.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決すべき課
題は、従来のYAGに代表される固体レーザ用単結晶で
はなく、透明度の優れた多結晶Y2 3 セラミックスを
本分野に応用することによって、単結晶の構造上の欠点
や製造された素材そのものの欠点を回避すると同時に単
結晶には不可能である技術を提供することにある。
The problem to be solved by the present invention is to apply polycrystalline Y 2 O 3 ceramics having excellent transparency to this field, rather than the conventional single crystal for solid-state laser represented by YAG. In this way, it is possible to avoid the structural defects of the single crystal and the defects of the manufactured material itself, and at the same time provide a technology that is impossible for the single crystal.

【0007】[0007]

【課題を解決するための手段】本発明は、ThO2 ,H
fO2 ,ZrO2 ,Li2 O,LiF,BeO及びAl
2 3 の一種以上とランタニド元素の一種以上とを含有
し、焼結体の平均粒子径が5〜3000μmの範囲で且
つ気孔率が1%以下とすることで上記課題を解決した。
The present invention provides ThO 2 , H
fO 2 , ZrO 2 , Li 2 O, LiF, BeO and Al
The above problems were solved by containing one or more of 2 O 3 and one or more of a lanthanide element, and setting the average particle diameter of the sintered body in the range of 5 to 3000 μm and the porosity to be 1% or less.

【0008】この焼結体は、固相法、すなわちY2 3
とその他の酸化物成分を各々混合する方法以外に、アル
コキシド法、共沈法、均一沈澱法等によって得られる原
料を用いて得ることもできる。
This sintered body is a solid phase method, that is, Y 2 O 3
It is also possible to obtain it by using a raw material obtained by an alkoxide method, a coprecipitation method, a uniform precipitation method, etc., in addition to the method of mixing each of these and other oxide components.

【0009】例えば固相法の場合、粒径1μm以下、純
度99.9重量%以上のY2 3 粉末に焼結助剤(Th
2 ,HfO2 ,ZrO2 ,Li2 O,LiF,Be
O,Al2 3 )の一種と、同じく1μm以下のランタ
ニド元素の酸化物(La2 3,CeO2 、Pr
6 11,Nd2 3 ,Pm2 3 ,Sm2 3 ,Eu2
3 ,Gd2 3 ,Tb2 3 ,Dy2 3 ,Ho2
3 ,Er2 3 、Tm2 3 ,Yb2 3 ,Lu
2 3 )を適量加える。発光元素の添加量方法は、その
濃度によって適当な手段をとればよい。例えば微量添加
の場合にはアルコキシド法や硝酸塩等の熱分解反応によ
り生じる酸化物を塩化源とすることもできる。
For example, in the case of the solid phase method, Y 2 O 3 powder having a particle size of 1 μm or less and a purity of 99.9% by weight or more is added to a sintering aid (Th).
O 2 , HfO 2 , ZrO 2 , Li 2 O, LiF, Be
O, Al 2 O 3 ) and oxides of lanthanide elements (La 2 O 3 , CeO 2 , Pr) of 1 μm or less.
6 O 11 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2
O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O
3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu
2 O 3 ) is added in an appropriate amount. As a method of adding the light emitting element, an appropriate means may be taken depending on the concentration. For example, when a small amount is added, an oxide produced by a thermal decomposition reaction such as an alkoxide method or a nitrate may be used as a chlorination source.

【0010】Y2 3 を主原料としてこれらの酸化物を
目的の組成となるように秤量し、エチルアルコール等の
有機溶媒を加えてポットミル中で混合する。この混合し
た粉末を乾燥後一軸プレスまたはCIP(コールド・ア
イソスタティック・プレス)等で成形して焼結する。焼
結の方法は、真空焼結、雰囲気焼結(水素や酸素等の雰
囲気)、HP(ホットプレス)やHIP(ホットアイソ
スタティックプレス)等の従来法を使用することができ
るが、焼結体の粒子が組成的、組織的に均一であり、そ
の結果として焼結体の透明度が優れているものが好まし
い。真空焼結や雰囲気焼結の場合は1700〜2270
℃で、HP、HIPの場合は1400〜2200℃の温
度範囲で適切な時間焼結することによって目的とする焼
結体が得られる。
Using Y 2 O 3 as a main raw material, these oxides are weighed so as to have a desired composition, an organic solvent such as ethyl alcohol is added and mixed in a pot mill. After this mixed powder is dried, it is molded by a uniaxial press or CIP (cold isostatic press) and sintered. As a sintering method, a conventional method such as vacuum sintering, atmosphere sintering (atmosphere of hydrogen or oxygen), HP (hot press) or HIP (hot isostatic press) can be used. It is preferable that the particles are uniform in composition and structure and, as a result, the sintered body has excellent transparency. 1700 to 2270 for vacuum sintering or atmosphere sintering
At HP, in the case of HP and HIP, the target sintered body can be obtained by sintering at a temperature range of 1400 to 2200 ° C for an appropriate time.

【0011】LiF、ThO2 、HfO2 等の酸化物成
分は、その量が適切である限り、焼結体の微構造を大幅
に改善することから、材料の透明度(ホスト材料の透明
度)を著しく向上させ、レーザ発振が可能となる。Li
2 O,LiF,BeO及びAl2 3 の酸化物やフッ化
物等は、d,f電子等の電子構造がないため、これら元
素を添加してもレーザの発振には殆ど影響がない。ま
た、ThO2 ,HfO2及びZrO2 等の元素は、d,
f電子は存在するものの、レーザ発光に関与するバンド
がないために添加による悪影響はない。添加量について
は、Y2 3 とランタニド酸化物の合量に対して、Th
2 は0.1〜10重量%、HfO2 は0.05〜5重
量%、ZrO2 は0.01〜4.0重量%、Li2 Oは
0.5〜5重量%、LiFは0.1〜5.0重量%、B
eOは0.01〜1.0重量%、Al2 3 は0.01
〜1.0重量%の範囲で、単独あるいはこれらを適当に
組み合わせて添加してもよい。これらの元素は添加し焼
結する際にY2 3 格子中に入るが、Alを除きいずれ
もイオン化された状態ではYと電荷が異なる。この電荷
(価数)の差はY2 3 の格子欠陥、例えばカチオンや
アニオンサイトの欠陥を生じることとなるので、単独添
加ではできるだけその量を少なくすることが重要で、複
数添加する場合は、これらの欠陥を回避する様に組み合
わせる(例えば4価のThと1価のLiを組合せ、見掛
け上3価に近いようにする)ことが重要である。このこ
とにより欠陥構造の生成をより低減させることができ、
光学的性質をさらに向上させることができる。また、ラ
ンタニド元素中でLa及びGdは、レーザ発振に関与す
る活性元素とはならないが、これらはLiFやThO2
などと同様に透明な焼結体を作成する上で重要な元素と
成りうる。
Oxide components such as LiF, ThO 2 and HfO 2 significantly improve the microstructure of the sintered body as long as the amount thereof is appropriate, so that the transparency of the material (transparency of the host material) is remarkably increased. It is possible to improve the laser oscillation. Li
Oxides and fluorides of 2 O, LiF, BeO, and Al 2 O 3 have no electronic structure such as d and f electrons, and therefore addition of these elements has almost no effect on laser oscillation. Further, elements such as ThO 2 , HfO 2 and ZrO 2 are d,
Although f-electrons are present, there is no band involved in laser emission, and therefore, there is no adverse effect due to addition. Regarding the amount of addition, based on the total amount of Y 2 O 3 and the lanthanide oxide, Th
O 2 is 0.1 to 10 wt%, HfO 2 is 0.05 to 5 wt%, ZrO 2 is 0.01 to 4.0 wt%, Li 2 O is 0.5 to 5 wt%, and LiF is 0 wt%. 1 to 5.0% by weight, B
eO is 0.01 to 1.0% by weight, Al 2 O 3 is 0.01
In the range of up to 1.0% by weight, they may be added alone or in appropriate combination. When these elements are added and sintered, they enter the Y 2 O 3 lattice, but all have a different charge from Y in the ionized state except Al. Since this difference in charge (valence) causes lattice defects of Y 2 O 3 , for example, defects of cation and anion sites, it is important to reduce the amount as much as possible when added alone. However, it is important to combine them so as to avoid these defects (for example, combining tetravalent Th and monovalent Li so that they are apparently close to trivalent). This can further reduce the generation of defective structures,
The optical properties can be further improved. Further, La and Gd in the lanthanide element do not become active elements involved in laser oscillation, but they are LiF and ThO 2
Like the above, it can be an important element in producing a transparent sintered body.

【0012】[0012]

【作用】固体レーザとして用いるためには、焼結体の密
度が理論密度の99.0%以上(気孔率では1%以下)
でかつ多結晶体を構成する粒子の平均粒子径が5〜30
00μmの範囲であることが必要である。焼結体の密度
が理論密度の99.0%未満であれば、光の透過率が極
端に低下する。焼結体の相対密度に関しては、同じ化学
組成の単結晶と多結晶を学振法又はX線法により測定し
た両者の密度を比較することで求められる。それ以外の
方法としては焼結体内部に存在する気孔を顕微鏡やSE
M等で表面観察した画像を解析することによっても求め
られる。焼結体の粒子径が3000μmを超えると、発
光元素を均一に固溶できなかったり、粒界部に発光元素
が偏析したりして光学的に透明なものとはなりにくく、
5μm未満であると実用に供するだけの透明度が得られ
ない。
[Function] For use as a solid-state laser, the density of the sintered body is 99.0% or more of the theoretical density (porosity is 1% or less).
And the average particle size of the particles constituting the polycrystal is 5 to 30
It must be in the range of 00 μm. If the density of the sintered body is less than 99.0% of the theoretical density, the light transmittance will be extremely reduced. The relative density of the sintered body can be obtained by comparing the densities of a single crystal and a polycrystal having the same chemical composition measured by the Gakushin method or the X-ray method. The other method is to use a microscope or SE
It can also be obtained by analyzing the image of which the surface is observed with M or the like. When the particle size of the sintered body exceeds 3000 μm, the luminescent element cannot be uniformly solid-dissolved, or the luminescent element is segregated in the grain boundary portion, and thus it is difficult to be an optically transparent one.
If it is less than 5 μm, the transparency for practical use cannot be obtained.

【0013】また、焼結体の透明度はレーザ発振させた
場合の発振効率と密接な関係があることからできるだけ
高いことが望ましい。この値は母材内部での吸収損失を
表す光吸収係数で表現できる。すなわち、ランバート・
ベールの法則、log(Io/I)=αd 〔ここで、
o :入射光強度,I:透過光強度(試料を透過した光
の強度) ,α:光吸収係数,d:試料厚さ〕におけるα
の値が0.204cm-1以下、好ましくは0.125c
-1以下に止める必要がある。この光吸収係数は、光が
ある一定厚さの試料を通過したときに生じる光吸収損失
である。例えば、厚さ10mmの試料に直線光を照射し
た場合、その内部損失は30%以下でなければならな
い。この意味は、表面の加工精度が同一の試料におい
て、厚さ1mmと11mmの試料の直線透過率の差異が
30%以内ということである。これ以上母材内部での吸
収損失が大きいと、光の増幅分より吸収損失が大きくな
るためレーザ発振しないばかりでなく、場合によっては
母材の破壊にまで至る。母材の吸収損失については発光
元素の吸収がない可視波長領域(または測定波長に対す
る透過率のバックグラウンドレベル)で、試料の厚さに
対して透過率をプロットしたときの傾きによって求めら
れる。レーザ発振効率は母材の透明度に依存する傾向と
の予測はできるが、より好ましくはその値が20%以下
(α値で表現すればα=0.125cm-1以下)のロス
に止めることが肝要である。また、透過率の絶対値につ
いても(試料の面粗さが0.1μm以下のものに限っ
て)厚さ1mmの試料が400〜900nmの波長範囲
で、発光元素等の吸収を除く部分の透過率が75%以上
であることも必要である。
Further, it is desirable that the transparency of the sintered body is as high as possible because it is closely related to the oscillation efficiency when the laser is oscillated. This value can be expressed by a light absorption coefficient that represents the absorption loss inside the base material. That is, Lambert
Beer's law, log (I o / I) = αd [where
Α in I o : incident light intensity, I: transmitted light intensity (intensity of light transmitted through the sample), α: light absorption coefficient, d: sample thickness
Value of 0.204 cm -1 or less, preferably 0.125 c
It is necessary to stop below m -1 . This light absorption coefficient is a light absorption loss that occurs when light passes through a sample having a certain thickness. For example, when a 10 mm-thick sample is irradiated with linear light, its internal loss must be 30% or less. This means that in samples having the same surface processing accuracy, the difference in linear transmittance between samples having a thickness of 1 mm and 11 mm is within 30%. If the absorption loss inside the base material is larger than this, the absorption loss becomes larger than the amplified amount of light, so that not only laser oscillation does not occur, but also the base material is broken in some cases. The absorption loss of the base material is determined by the slope when the transmittance is plotted against the thickness of the sample in the visible wavelength range (or the background level of the transmittance with respect to the measurement wavelength) where there is no absorption of the luminescent element. It is possible to predict that the laser oscillation efficiency will depend on the transparency of the base material, but it is more preferable to limit the loss to 20% or less (α = 0.125 cm -1 or less in terms of α value). It is essential. Also, regarding the absolute value of the transmittance, a sample having a thickness of 1 mm has a wavelength range of 400 to 900 nm (limited to the case where the surface roughness of the sample is 0.1 μm or less), and the transmission of a portion excluding the absorption of a luminescent element or the like is performed. It is also necessary that the rate is 75% or more.

【0014】また、発光元素の均一性は焼結体で固体レ
ーザ材料を作製する際の最も大きな利点であり、特に大
型形状の大出力レーザを目的とした場合に重要な技術と
なる。その均一度については、焼結体を構成する各々の
粒子の80%以上が、濃度差が±15%の範囲(例えば
2原子%の発光元素を含むものは2±0.3%の範囲)
にあることが必要である。その濃度分布については、焼
結体の粒子の50個程度、少なくとも20個程度の粒子
をランダムに分析することによって判定する。焼結体中
の発光元素の濃度分布はEDX(エネルギー分散型X線
分光器)やIMA(イオンマイクロアナライザー)など
の微小領域を計測する機器分析装置によって容易に測定
できる。
Further, the uniformity of the light emitting element is the greatest advantage when producing a solid-state laser material from a sintered body, and is an important technique especially when a large-sized large-power laser is intended. Regarding the homogeneity, 80% or more of the particles constituting the sintered body have a concentration difference within a range of ± 15% (for example, a range containing 2 atomic% of a luminescent element is within a range of 2 ± 0.3%).
Need to be in. The concentration distribution is determined by randomly analyzing about 50 particles, at least about 20 particles of the sintered body. The concentration distribution of the luminescent element in the sintered body can be easily measured by an instrument analyzer such as EDX (energy dispersive X-ray spectrometer) or IMA (ion microanalyzer) that measures a minute region.

【0015】レーザは元来フラッシュランプまたはLD
(レーザダイオード)で材料内部に存在する発光元素を
励起させ、これを連続して増幅することから強力なレー
ザ光が発振できる。ここで、多結晶セラミックスのよう
な粒界がある材料を励起させ、レーザ発振する場合、粒
子内部で増幅されたレーザ光が粒界部で損失(異相や結
晶欠陥等に起因する減衰)するため、多結晶体でレーザ
発振することは不可能と考えるのが一般的である。また
仮にレーザ発振したとしても、粒界部の光損失が大きい
はずであり、単結晶材料に比べ特性劣化が著しいと予測
されることから固体レーザ材料はすべて単結晶であるべ
きと考えられており、現状もその通りとなっている。多
結晶体は溶融しないため、粒子内部の結晶欠陥(格子欠
陥)のレベルは元来単結晶より低くなるはずであるが、
焼結過程で完璧に近い物質移動が起きにくいため粒子内
部に組織的または結晶構造的欠陥を残すこととなる。し
かしこのような不都合を回避すれば、多結晶セラミック
スの粒子内部の光学的特性は単結晶を上回り、レーザの
増幅能力は高くなる。従って焼結性の極めて良好なY2
3 粉末を使用することが本セラミックスを製作する上
でのキーテクノロジーとなる。また、焼結体の粒界部で
の光損失については否定できないが、その損失を極力低
減させることによって実用に十分耐えうるものとなる。
また、レーザ材料としての特性はこの透過率だけが全て
でなく、発光元素の均一性、ホスト材料中の発光元素濃
度、材料の歪みなど様々な因子があり、透明度を除くそ
の他の要因については多結晶体の方が単結晶体よりも優
れている可能性が高いことから、特性全体から考えれば
同等または単結晶を凌駕するものが存在する。例えば材
料の歪みに関して、ベルヌイ法で作成された単結晶では
結晶育成時及び育成された結晶が冷却される場合に、2
280℃付近に存在する相転移(立方晶と六方晶)の影
響で偏光板を通して観察したときにかなりの残留歪み
や、場合によっては微小クラックが確認できるが、多結
晶体ではこのようなものは殆ど検出できないなどの優れ
た特徴を有する。
The laser is originally a flash lamp or LD
A (laser diode) excites a light emitting element existing inside the material and continuously amplifies the light emitting element, so that a strong laser beam can be oscillated. Here, when a material having grain boundaries such as polycrystalline ceramics is excited to cause laser oscillation, the laser light amplified inside the grains is lost at the grain boundary portion (attenuation due to different phase or crystal defect). Generally, it is considered impossible to oscillate a laser in a polycrystalline body. Moreover, even if laser oscillation occurs, the optical loss at the grain boundary should be large, and it is expected that the characteristic deterioration will be remarkable compared to the single crystal material, so it is considered that all solid-state laser materials should be single crystals. The current situation is exactly the same. Since the polycrystal does not melt, the level of crystal defects (lattice defects) inside the grain should be lower than that of the single crystal,
Since it is difficult for mass transfer to occur near perfect during the sintering process, structural or crystalline defects remain inside the particles. However, if such an inconvenience is avoided, the optical characteristics inside the grains of the polycrystalline ceramic exceed that of the single crystal, and the amplification capability of the laser becomes high. Therefore, Y 2 having extremely good sinterability
The use of O 3 powder is a key technology for producing this ceramic. Further, although the optical loss at the grain boundary portion of the sintered body cannot be denied, by reducing the loss as much as possible, it can be put to practical use sufficiently.
Further, the characteristics of a laser material are not only all of this transmittance but also various factors such as the uniformity of the luminescent element, the concentration of the luminescent element in the host material, and the distortion of the material. Since it is highly possible that the crystalline body is superior to the single crystalline body, there are some that are equivalent to or superior to the single crystalline body in view of the entire characteristics. For example, regarding the strain of the material, a single crystal produced by the Bernoulli method has a value of 2 when the crystal is grown and when the grown crystal is cooled.
Due to the phase transition (cubic and hexagonal) existing near 280 ° C, a considerable residual strain and, in some cases, minute cracks can be confirmed when observed through a polarizing plate. It has excellent features such as almost no detection.

【0016】また、Ndを含有した単結晶Y2 3 は、
Ndの濃度分布もレーザ用結晶としては充分に均一とは
言えず、またその濃度にも限度がある。焼結による多結
晶Y2 3 セラミックスの場合であればそのNd濃度は
任意に選択でき、しかもその分布は極めて均一なものと
なる。このことから、小型・ハイパワー等の特徴を有す
る新型固体レーザへの応用、焼結法ならではの大型レー
ザ作製可能の利点を活かせば大出力レーザとしての応用
が考えられる。
The single crystal Y 2 O 3 containing Nd is
The Nd concentration distribution cannot be said to be sufficiently uniform for a laser crystal, and its concentration is limited. In the case of polycrystalline Y 2 O 3 ceramics obtained by sintering, its Nd concentration can be arbitrarily selected, and its distribution becomes extremely uniform. From this, application to a new type solid-state laser having characteristics such as small size and high power, and application as a high-power laser can be considered by taking advantage of the large-sized laser production possible by the sintering method.

【0017】[0017]

【実施例】表1にY2 3 セラミックスをホストとし
て、これに種々の発光元素やLa,Li等の元素を添加
したものを、LDやキセノンフラッシュランプで励起し
たときの発振特性を示した。
EXAMPLES Table 1 shows oscillation characteristics of Y 2 O 3 ceramics as a host, to which various light emitting elements and elements such as La and Li are added, which are excited by an LD or a xenon flash lamp. ..

【0018】実施例として、純度99.9重量%で粒径
0.5μm以下のY2 3 粉末と、LiF,ThO2
一種以上と、純度99.9重量%で粒径0.5μm以下
のランタニド元素の酸化物を合量150g秤量し、ポッ
トミル中へそれぞれの粉末とエチルアルコール300c
c、さらに鋼球芯入りプラスチックボール500gを入
れ、24時間混合した。混合した粉末を500mmHg
の減圧下で乾燥し、乾燥した粉末を乳鉢で軽く再混合し
た。
As an example, Y 2 O 3 powder having a purity of 99.9% by weight and a particle size of 0.5 μm or less, one or more kinds of LiF and ThO 2 and a particle size of 0.5 μm or less and a purity of 99.9% by weight. 150 g of the lanthanide element oxides in Example 1 were weighed out, and each powder and ethyl alcohol 300c were placed in a pot mill.
c, and further 500 g of a plastic ball containing a steel ball core was put therein and mixed for 24 hours. 500 mmHg of mixed powder
The dried powder was lightly remixed in a mortar.

【0019】この粉末を直径50mm、高さ15mmの
タブレットに仮成形後、1000kg/cm2 の圧力で
ラバープレスした。
This powder was preformed into a tablet having a diameter of 50 mm and a height of 15 mm and then rubber-pressed at a pressure of 1000 kg / cm 2 .

【0020】この成形体を電気炉に入れ、100°C/
hrで昇温し、所定温度で焼成後、100°C/hrで
冷却した。得られた焼結体から直径6mm、厚さ10m
mの試料を作成し、両面の面粗さを5nm、平坦度を1
/8λに仕上げた。
This molded product was placed in an electric furnace and heated to 100 ° C /
The temperature was raised at hr and after firing at a predetermined temperature, it was cooled at 100 ° C / hr. Diameter 6 mm, thickness 10 m from the obtained sintered body
m sample is prepared, the surface roughness of both sides is 5 nm, and the flatness is 1
Finished to / 8λ.

【0021】表1は、発光元素の添加量、及び焼結時間
やその温度を変えることによって、焼結体の平均粒径を
変化させたものである。
Table 1 shows the average grain size of the sintered body changed by changing the amount of the luminescent element added, the sintering time and the temperature thereof.

【0022】[0022]

【表1】 表2は比較例を示し、発光元素として、ベルヌイ法で育
成した、1原子%のNdを含んだY2 3 単結晶、及び
特許請求の範囲外の平均粒子径及び相対密度を有する多
結晶Y2 3 の発振特性を示す。
[Table 1] Table 2 shows a comparative example, a Y 2 O 3 single crystal containing 1 atom% of Nd grown by Bernoulli method as a luminescent element, and a polycrystal having an average particle diameter and relative density outside the scope of claims. The oscillation characteristics of Y 2 O 3 are shown.

【0023】[0023]

【表2】 表1の実施例1〜6の試験結果より、Ndのみを発光元
素として添加した場合、その濃度上昇に伴ってレーザ出
力が高くなっていることが判る。実施例4の1原子%N
d添加の多結晶Y2 3 の発振効率は25.0%で、比
較例1として示す同じNd濃度の単結晶Y2 3 の出力
106mW、発振効率が15.1%に比べレーザ出力が
高くなっているのが判る。実施例5,6の高濃度Ndタ
イプのものは、濃度消光によってNd濃度に比例して出
力が増加していないものの、比較例1の2〜3倍の高出
力のレーザとなっている。また実施例7〜11は、Nd
以外またNdと他のランタニド元素を添加した例を示し
ているが、いずれもかなり高いレベルのレーザ発振をし
ているのが判る。ここに示した実施例においては相対密
度が、特許請求の範囲にあるものばかりである。また粒
径の影響については実施例1〜3に示しているが、いず
れの場合も強くレーザ発振しており、この中では平均粒
子径220μmの実施例2が最も発振効率がよい。
[Table 2] From the test results of Examples 1 to 6 in Table 1, it is understood that when only Nd is added as a light emitting element, the laser output increases as the concentration increases. 1 atomic% N of Example 4
The oscillation efficiency of the d-doped polycrystalline Y 2 O 3 is 25.0%, the output of the single crystal Y 2 O 3 of the same Nd concentration shown in Comparative Example 1 is 106 mW, and the laser output is higher than that of 15.1%. You can see that it is getting higher. Although the high-concentration Nd type lasers of Examples 5 and 6 do not increase their output in proportion to the Nd concentration due to concentration quenching, they are lasers having a high output 2-3 times that of Comparative Example 1. Further, Examples 7 to 11 are Nd.
Other than that, an example in which Nd and another lanthanide element are added is shown, but it can be seen that both of them oscillate at a considerably high level. In the examples shown here, the relative densities are all within the scope of the claims. Although the influence of the particle size is shown in Examples 1 to 3, laser oscillation is strong in all cases, and of these, Example 2 having an average particle size of 220 μm has the best oscillation efficiency.

【0024】表2に示す比較例2,3は、焼結体の粒度
が特許請求の範囲外のもの、比較例4は密度が特許請求
の範囲外のもので、いずれもレーザ発振しないかまたは
発振してもその効率が極端に低下した。
In Comparative Examples 2 and 3 shown in Table 2, the particle size of the sintered body is outside the scope of the claims, and in Comparative Example 4, the density is outside the scope of the claims, and neither laser oscillation occurs. Even if it oscillated, its efficiency dropped extremely.

【0025】[0025]

【発明の効果】本発明により多結晶透明Y2 3 セラミ
ックスを用いてレーザの発振が可能となった。材料特性
上発光元素(特にNd)の高濃度化ができる発光元
素が均一となる材料の大型化が図れるなどの特徴を有
するものとなる。また、Ndを含んだYAG単結晶はレ
ーザの蛍光スペクトル幅が狭いことによる低いエネルギ
ー蓄積能(高い利得)が特徴であり、またNdを添加し
たガラスレーザはスペクトル幅が広いことによる低い利
得が特徴となっている。現在実用化されているこれらの
材料では、高いスペクトルピークと高い平均出力の両者
を満足できていない。本発明のY2 3 セラミックスは
両者の中間的特性があり、この特徴を活かせば新規な応
用が始まる可能性が高い。従って、工業的には通常の固
体レーザとしての用途に適する以外に、レーザの小型化
や高出力化が可能となることから、最近話題となってい
るマイクロチップレーザとしての用途の拡大、更には大
型・均一化、更には高出力化が図れるメリットを利用し
て、レーザ加工やレーザ核融合などに応用が期待され
る。
According to the present invention, it becomes possible to oscillate a laser by using a polycrystalline transparent Y 2 O 3 ceramics. In terms of material characteristics, it is possible to increase the concentration of the light emitting element (particularly Nd), and it is possible to increase the size of a material in which the light emitting element is uniform and the like. In addition, the YAG single crystal containing Nd is characterized by a low energy storage capability (high gain) due to the narrow fluorescence spectrum width of the laser, and the glass laser containing Nd is characterized by a low gain due to the wide spectrum width. Has become. These materials currently in practical use cannot satisfy both a high spectral peak and a high average output. The Y 2 O 3 ceramics of the present invention have an intermediate property between the two, and it is highly possible that new applications will start if this feature is utilized. Therefore, in addition to being suitable for use as a normal solid-state laser industrially, it is possible to downsize and increase the output of the laser. It is expected to be applied to laser processing, laser nuclear fusion, etc. by taking advantage of its large size, uniformity, and high output.

【0026】また、経済性を考慮しても、従来の単結晶
育成技術で不可欠である高価な単結晶育成装置が不要と
なる。その他、焼結法では素材の焼結に必要な温度はそ
の融点より低く、また焼結時間も数〜数十時間程度であ
るので合成に消費される電力量も格段に少ない。更には
一台の焼結炉でたくさんの焼結体が作製できることやニ
アネットシェイプ技術で素材を使用する形状に近いまま
効率良く作製できるので、コスト、量産、経済性(希土
類資源の有効利用や電力費削減)等の利点がある。
Also, in consideration of economical efficiency, an expensive single crystal growing apparatus, which is indispensable in the conventional single crystal growing technique, becomes unnecessary. In addition, in the sintering method, the temperature required for sintering the material is lower than its melting point, and the sintering time is about several hours to several tens hours, so that the amount of electric power consumed for synthesis is remarkably small. Furthermore, since a large number of sintered bodies can be produced in one sintering furnace and efficient production can be performed with the near net shape technology while maintaining a shape close to the shape of the material used, cost, mass production and economic efficiency (effective use of rare earth resources and (Electricity cost reduction) etc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ThO2 ,HfO2 ,ZrO2 ,Li2
O,LiF,BeO及びAl2 3 の一種以上とランタ
ニド元素の一種以上とを含有し、焼結体の平均粒子径が
5〜3000μmの範囲で且つ気孔率が1%以下である
レーザ用多結晶透明Y2 3 セラミックス。
1. ThO 2 , HfO 2 , ZrO 2 , Li 2
O / LiF, BeO, and one or more of Al 2 O 3 and one or more of lanthanide elements, and the average particle diameter of the sintered body is in the range of 5 to 3000 μm and the porosity is 1% or less. Crystal clear Y 2 O 3 ceramics.
JP4138775A 1992-05-29 1992-05-29 Polycrystalline transparent y2o3 ceramics for laser Pending JPH05330913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4138775A JPH05330913A (en) 1992-05-29 1992-05-29 Polycrystalline transparent y2o3 ceramics for laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4138775A JPH05330913A (en) 1992-05-29 1992-05-29 Polycrystalline transparent y2o3 ceramics for laser

Publications (1)

Publication Number Publication Date
JPH05330913A true JPH05330913A (en) 1993-12-14

Family

ID=15229910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4138775A Pending JPH05330913A (en) 1992-05-29 1992-05-29 Polycrystalline transparent y2o3 ceramics for laser

Country Status (1)

Country Link
JP (1) JPH05330913A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336596A1 (en) * 2001-07-05 2003-08-20 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
JP2007063069A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Translucent yttria sintered body and manufacturing method thereof
JP2008143726A (en) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center Polycrystalline transparent Y2O3 ceramics and method for producing the same
JP2010047460A (en) * 2008-07-22 2010-03-04 Schott Ag Transparent ceramic, its producing method, and optical element using the transparent ceramics
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
WO2012124753A1 (en) 2011-03-16 2012-09-20 信越化学工業株式会社 Magneto-optical ceramic material and method for selecting same
WO2012124754A1 (en) 2011-03-16 2012-09-20 信越化学工業株式会社 Transparent ceramic, method for manufacturing same, and magneto-optical device
JP2013043825A (en) * 2011-08-19 2013-03-04 Shenzhen Futaihong Precision Industrial Co Ltd Transparent ceramic, method of manufacturing the same and electronic device utilizing the transparent ceramic
EP2716616A1 (en) * 2012-10-03 2014-04-09 Shin-Etsu Chemical Co., Ltd. Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method
US10642073B2 (en) 2014-06-04 2020-05-05 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramic, transparent ceramic, magneto-optical device and rare earth oxide powder for sintering

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336596A1 (en) * 2001-07-05 2003-08-20 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
EP1336596A4 (en) * 2001-07-05 2007-05-23 Konoshima Chemical Translucent rare earth oxide sintered article and method for production thereof
KR100885199B1 (en) * 2001-07-05 2009-02-24 고노시마 가가쿠고교 가부시키가이샤 Permeable rare earth oxide sintered body and manufacturing method therefor
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
JP2007063069A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Translucent yttria sintered body and manufacturing method thereof
JP2008143726A (en) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center Polycrystalline transparent Y2O3 ceramics and method for producing the same
JP2010047460A (en) * 2008-07-22 2010-03-04 Schott Ag Transparent ceramic, its producing method, and optical element using the transparent ceramics
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
WO2012124753A1 (en) 2011-03-16 2012-09-20 信越化学工業株式会社 Magneto-optical ceramic material and method for selecting same
WO2012124754A1 (en) 2011-03-16 2012-09-20 信越化学工業株式会社 Transparent ceramic, method for manufacturing same, and magneto-optical device
KR20140011376A (en) 2011-03-16 2014-01-28 신에쓰 가가꾸 고교 가부시끼가이샤 Transparent ceramic, method for manufacturing same, and magneto-optical device
US9052415B2 (en) 2011-03-16 2015-06-09 Shin-Etsu Chemical Co., Ltd. Magneto-optical ceramic material and method for selecting same
US9470915B2 (en) 2011-03-16 2016-10-18 Shin-Etsu Chemical Co., Ltd. Transparent ceramic, method for manufacturing same, and magneto-optical device
JP2013043825A (en) * 2011-08-19 2013-03-04 Shenzhen Futaihong Precision Industrial Co Ltd Transparent ceramic, method of manufacturing the same and electronic device utilizing the transparent ceramic
EP2716616A1 (en) * 2012-10-03 2014-04-09 Shin-Etsu Chemical Co., Ltd. Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method
US10642073B2 (en) 2014-06-04 2020-05-05 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramic, transparent ceramic, magneto-optical device and rare earth oxide powder for sintering
US11067835B2 (en) 2014-06-04 2021-07-20 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramic,transparent ceramic, magneto-optical device and rare earth oxide powder for sintering

Similar Documents

Publication Publication Date Title
Ikesue et al. Synthesis of Nd3+, Cr3+‐codoped YAG ceramics for high‐efficiency solid‐state lasers
Li et al. Fabrication, microstructure and properties of highly transparent Nd: YAG laser ceramics
Zhang et al. Sintering of Yb3+: Y2O3 transparent ceramics in hydrogen atmosphere
Zhang et al. High‐entropy transparent ceramics: review of potential candidates and recently studied cases
JP5526313B2 (en) Translucent terbium oxide sintered body for magneto-optical element
US11434143B2 (en) Polycrystalline YAG sintered body and production method thereof
JP2010285299A (en) Oxide and magnetooptical device
JP2012082079A (en) Magneto-optical material, faraday rotator, and optical isolator
US9604853B2 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
JP5522866B2 (en) Translucent terbium oxide sintered body for magneto-optical element
JP2008143726A (en) Polycrystalline transparent Y2O3 ceramics and method for producing the same
JPH05330913A (en) Polycrystalline transparent y2o3 ceramics for laser
JP5000934B2 (en) Translucent rare earth gallium garnet sintered body, manufacturing method thereof and optical device
JP3463941B2 (en) Polycrystalline transparent ceramics for laser
JPH03218963A (en) Production of transparent yttrium-aluminumgarvent-ceramics
JPH05294709A (en) Polycrystalline transparent ceramic for laser
Stanciu et al. Enhancement of the laser emission efficiency of Yb: Y2O3 ceramics via multi-step sintering method fabrication
JPH05330912A (en) Polycrystalline transparent y2o3 ceramics for laser
JP2001220223A (en) Laser medium, method for producing the same, and laser oscillator by using the laser medium
Bykov et al. Fabrication of transparent ceramics by millimeter‐wave sintering
JPH05301769A (en) Polycrystalline transparent ceramic for laser
JPH06211563A (en) Polycrystalline transparent ceramics for laser beam nuclear fusion
Valiev et al. Fabrication and properties of novel multilayered Y3Al5O12/MgAl2O4 ceramics doped with rare-earth ions
JP7608752B2 (en) Rare earth aluminum garnet sintered body and its manufacturing method, Faraday element, and magneto-optical element
JP6502595B1 (en) Polycrystalline YAG sintered body and method for manufacturing the same