[go: up one dir, main page]

JPH0533009A - Method for regenerating gaseous ar for hot isotropic pressing - Google Patents

Method for regenerating gaseous ar for hot isotropic pressing

Info

Publication number
JPH0533009A
JPH0533009A JP3190266A JP19026691A JPH0533009A JP H0533009 A JPH0533009 A JP H0533009A JP 3190266 A JP3190266 A JP 3190266A JP 19026691 A JP19026691 A JP 19026691A JP H0533009 A JPH0533009 A JP H0533009A
Authority
JP
Japan
Prior art keywords
impurities
gas
furnace
hot isotropic
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3190266A
Other languages
Japanese (ja)
Inventor
Katsuhiro Takemoto
克寛 竹元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3190266A priority Critical patent/JPH0533009A/en
Publication of JPH0533009A publication Critical patent/JPH0533009A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To reduce the concn. of impurities in gaseous Ar by forming Cr, Al and Ti as impurity fixing materials into a stable shape and size by which breakage is almost prevented and bringing the gaseous Ar into contact with the materials in a hot isotropic pressing furnace. CONSTITUTION:At the time of hot isotropic pressing operation, Cr, Al and Ti as impurity fixing materials are formed into a stable shape and size by which breakage is almost prevented and gaseous Ar as a pressure medium is brought into contact with the materials in a hot isotropic pressing furnace. Even when impurities are rapidly generated during hot isotropic pressing, the concn. does not increase and a sintered product is not affected at all by impurities, accordingly a high quality product can stably be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱間等方圧縮の操業
中に圧縮用高純度Arガスに混入した不純物を除去し、
高純度Arガスを再生する技術に関する。
BACKGROUND OF THE INVENTION This invention removes impurities mixed in high-purity Ar gas for compression during the operation of hot isotropic compression,
The present invention relates to a technique for regenerating high-purity Ar gas.

【0002】[0002]

【従来の技術】近年、セラミックスや金属等の粉末を成
型する技術の一つとして、熱間でこれらの粉末を圧して
焼結する熱間等方圧縮処理が広く利用されている。
2. Description of the Related Art In recent years, as one of the techniques for molding powders of ceramics, metals and the like, hot isotropic compression treatment has been widely used, in which these powders are hot pressed and sintered.

【0003】この処理では、温度は千数百度、圧力も千
数百気圧程度の条件になり、等方圧縮の圧力媒体として
不活性ガスが用いられる。これは製品の品質を保つため
有害成分の拡散や反応を避けるためで、不活性ガスには
フォアナイン以上の高純度ガスが使われる。不活性ガス
としては、N2 やArがよく使われるが、N2 とは反応
する金属もあり、高純度Arは特に注目すべき不活性ガ
スである。
In this process, the temperature is in the range of a few thousand degrees and the pressure is in the range of a few hundreds of atmospheres, and an inert gas is used as a pressure medium for isotropic compression. This is to prevent the diffusion and reaction of harmful components in order to maintain the quality of the product, and the inert gas used is a high-purity gas higher than or equal to foranein. N 2 and Ar are often used as the inert gas, but some metals react with N 2, and high-purity Ar is an inert gas that is particularly noteworthy.

【0004】しかし、この高純度ガスもHIP処理に使
用されると、不純物が増え最早その純度を維持できなく
なる。この時点で、不活性ガスは廃却され新たな高純度
ガスと取り替えられていたが、最近では省資源の観点か
ら、再生して使用することが試みられている。
However, if this high-purity gas is also used in the HIP process, the amount of impurities increases and the purity can no longer be maintained. At this point, the inert gas was discarded and replaced with a new high-purity gas, but recently, from the viewpoint of resource saving, it has been attempted to recycle and use it.

【0005】即ち、流路に不純物吸収装置を設けて、使
用した不活性ガス中の不純物を除去する再生技術であ
る。例えば、特開昭63−41786号公報では、Ti
繊維又はゼオライトを収容した不純物吸収装置を不活性
ガス流路に設けることが提案されている。
That is, this is a regeneration technique in which an impurity absorption device is provided in the flow path to remove impurities in the used inert gas. For example, in JP-A-63-41786, Ti
It has been proposed to provide an impurity absorption device containing fibers or zeolite in the inert gas flow path.

【0006】[0006]

【発明が解決しようとする課題】しかし、細いTi繊維
は破砕し易くその微細片が熱間等方圧縮処理炉に入ると
製品の表面を汚染しその品質を損なうことがある。この
ため、熱間等方圧縮処理炉内にこの繊維を置いて、開放
状態即ち炉内の不活性ガスが接触しやすい状態で使用す
ることが出来ない。又、ゼオライトはガス分子を吸着、
特に炭酸ガスや水のように極性もつ分子を吸着すること
によってこれらの成分を除去するものであり、千度を超
えるような高温での使用は困難である。このため、これ
らの吸収剤は不純物吸収装置に収めて、不活性ガス流路
で作用させることになり、熱間等方圧縮処理炉内で作用
させることが出来ない。
However, fine Ti fibers are easily crushed, and when the fine particles enter the hot isostatic pressing furnace, they may contaminate the surface of the product and impair its quality. For this reason, this fiber cannot be placed in a hot isotropic compression treatment furnace and used in an open state, that is, in a state where the inert gas in the furnace is easily contacted. Also, zeolite adsorbs gas molecules,
In particular, these components are removed by adsorbing polar molecules such as carbon dioxide and water, and it is difficult to use them at a high temperature exceeding 1000 ° C. Therefore, these absorbents are contained in the impurity absorbing device and act in the inert gas flow path, and cannot act in the hot isotropic compression furnace.

【0007】一方、不活性ガス中の不純物は、主とし
て、この高温処理中に増える。処理中に増えた不純物の
濃度がその許容範囲を超えることがしばしばあるが、こ
のような場合、不純物を処理炉内で除去しないと、処理
の後半では限度を超えた不純物濃度下に製品が曝される
ことになる。
On the other hand, impurities in the inert gas mainly increase during this high temperature treatment. The concentration of impurities increased during processing often exceeds the allowable range.In such a case, if the impurities are not removed in the processing furnace, the product will be exposed to an excessive concentration of impurities in the latter half of the processing. Will be done.

【0008】従来の技術には上記のような問題が残され
ていた。この問題を解決するためにこの発明は行われた
もので、高温の熱間等方圧縮処理炉内においても使用で
きる安定な不純物吸収剤を用いることによって、不活性
ガス中の不純物を常に許容範囲に保つた状態で操業でき
るように、Arガスを高純度に維持することを目的とす
る。
The above-mentioned problems remain in the conventional technique. The present invention has been made to solve this problem, and by using a stable impurity absorbent that can be used even in a high temperature hot isotropic compression processing furnace, impurities in an inert gas are always allowed to fall within a permissible range. The purpose is to maintain the Ar gas at a high purity so that it can be operated in the state of being maintained.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
の手段は、操業に用いるArガスを、Cr、Al若しく
はTi等の金属又はこれらの一種以上を含む合金を用い
て不純物を反応させ或いは吸臓して固定してしまうもの
で、これらの不純物固定材の形状・寸法は、目開き2.
0mmの篩上に残る塊状であるか、又は、細長い形状の
ものでは径が0.5mm以上の太さのものであって、こ
の不純物固定材を熱間等方圧縮処理内に置いて、これに
前記Arガスを熱間等方圧縮処理中に接触させることに
よって、それに含まれる不純物を除去する熱間等方圧縮
用アルゴンガスの再生方法である。
Means for achieving the object is to react Ar gas used for operation with impurities such as a metal such as Cr, Al or Ti or an alloy containing one or more of these, or It is sucked and fixed, and the shape and dimensions of these impurity-fixing materials have a mesh size of 2.
It is a lump that remains on a 0 mm sieve, or has a long and slender shape with a diameter of 0.5 mm or more, and this impurity fixing material is placed in a hot isotropic compression treatment. Is a method of regenerating an argon gas for hot isotropic compression, in which the impurities contained therein are removed by bringing the Ar gas into contact during the hot isotropic compression treatment.

【0010】[0010]

【作用】熱間等方圧縮〔Hot Isostatic Press 〕(以
下、HIPと称す)処理は、前述したように、高温高圧
下で不活性ガスを圧力媒体として処理が行われる。この
処理により、粉体の圧縮成型、拡散接合、焼結品の高密
度化、鋳造品の内部空孔除去等を行うことが出来るが、
不活性ガス中に不純物が含まれていると、製品に種々の
変質をもたらす。
As described above, the hot isostatic pressing (hereinafter referred to as HIP) is carried out at a high temperature and a high pressure using an inert gas as a pressure medium. By this process, it is possible to perform compression molding of powder, diffusion bonding, densification of sintered products, removal of internal holes in cast products, etc.
The presence of impurities in the inert gas causes various alterations to the product.

【0011】例えば、O2 CO2 、CO、H2O等
の酸素は製品の表面を酸化したり変色させたりし、炭素
は炭化物を生成し硬度を変化させたりする。他に、H2
やN 2 も濃度が高いと水素脆性や硬化或いは表面変色等
の問題を生じさせることがある。このため、HIP処理
には高純度Arガスが使われ、その不純物は表1に示す
ように殆どが数ppm 以下である。
For example, O2Or CO2, CO, H2O etc.
Oxygen in the carbon oxidizes or discolors the surface of the product
Produces carbides and changes hardness. Besides, H2
And N 2If the concentration is high, hydrogen embrittlement, hardening, surface discoloration, etc.
May cause problems. Therefore, HIP processing
High-purity Ar gas is used for the impurities, and the impurities are shown in Table 1.
So most of them are less than a few ppm.

【0012】[0012]

【表1】 [Table 1]

【0013】しかしながら、このような高純度ガスもH
IP処理に用いられると、処理品から発生する或いは持
ち込んだガス等により汚染され、不純物濃度が高くな
る。そのまま使用すると、前述のように処理品の品質低
下を招くが、これらの不純物を取り除き許容量以下に減
じてやれば再使用が可能となる。
However, such a high-purity gas is also H
When it is used for IP processing, it is contaminated by gas or the like generated or brought in from the processed product and the impurity concentration becomes high. If it is used as it is, the quality of the treated product is deteriorated as described above, but it can be reused if these impurities are removed and the amount is reduced to the allowable amount or less.

【0014】これらの不純物を取り除くには、不純物と
反応したり不純物を吸収したりする金属と接触させれば
よい。このような金属で安価で取扱容易で実用的なもの
に、Cr、Al、Ti等がある。
To remove these impurities, it is sufficient to bring them into contact with a metal that reacts with or absorbs the impurities. Cr, Al, Ti, and the like are such metals that are inexpensive, easy to handle, and practical.

【0015】Crは酸素親和力の大きな金属で酸素をそ
の酸化物として取込み固定する。1200℃では、Cr
23 は固体であり、これと平衡するO2 分圧は10
-17 気圧である。即ち殆どのO2 を固定してしまう。C
2 やCO等は、高温では酸素とCに解離しする。CO
2 =CO+1/2 O2 の反応では、1200℃での平衡定
数Kp =PCOO2 1/2 /PCO2 は10-8気圧であり、C
2 が1ppm 程度含まれた場合、平衡状態での酸素分圧
は10-14 気圧程である。解離した酸素の分圧が10
-17 気圧を超えた分はCrによって固定される。このた
め、CO2 の解離はどんどん進み、Cの遊離が進む。遊
離したCはCrと反応して炭化物を生成したり固体とな
ってCr粒等の上に固着したりする。このようにして、
CO2 やCO等はCrによって除去される。
Cr is a metal having a high oxygen affinity and takes in and fixes oxygen as its oxide. At 1200 ° C, Cr
2 O 3 is a solid, and the O 2 partial pressure at which it is in equilibrium is 10
-17 atm. That is, most of O 2 is fixed. C
O 2 and CO are dissociated into oxygen and C at high temperature. CO
2 = CO + 1/2 in the reaction of O 2, the equilibrium constant Kp = P CO P O2 1/2 / P CO2 at 1200 ° C. is 10 -8 atm, C
When O 2 is contained in an amount of about 1 ppm, the oxygen partial pressure at equilibrium is about 10 −14 atmosphere. The partial pressure of dissociated oxygen is 10
The amount exceeding -17 atm is fixed by Cr. Therefore, the dissociation of CO 2 progresses rapidly and the release of C progresses. The liberated C reacts with Cr to form a carbide or becomes a solid and adheres onto Cr grains or the like. In this way
CO 2 and CO are removed by Cr.

【0016】Alは、Crと同様に、酸素親和力の大き
な金属で酸化物の融点が高く酸素をその酸化物として取
込み固定する。600℃で、Al23 と平衡するO2
分圧は10-28 気圧である。CO2 やCOを除去する作
用は、炭化物生成を除いてCrと同じである。更に、A
lは、窒素親和力も大きく、AlNと平衡するO2 分圧
は10-11 気圧である。したがって、N2 は殆どが反応
して窒化物として固定されることは勿論、窒素化合物で
あるアンモニアも、CO2 のように解離しながら、除去
されて行く。
Al, like Cr, is a metal having a high oxygen affinity, and has a high melting point of the oxide, and takes in and fixes oxygen as the oxide. O 2 in equilibrium with Al 2 O 3 at 600 ° C
The partial pressure is 10 -28 atm. The action of removing CO 2 and CO is the same as that of Cr except for the formation of carbide. Furthermore, A
l has a large nitrogen affinity, and the O 2 partial pressure at which it equilibrates with AlN is 10 −11 atmospheres. Therefore, most of N 2 reacts and is fixed as a nitride, and also ammonia which is a nitrogen compound is removed while being dissociated like CO 2 .

【0017】CrやAlは、このように酸素親和力が強
いので、解離するH2Oからも酸素を固定しH2Oの分解
を進める。Fe−Ni合金のようなH2 吸臓材と併用す
るとH2Oを除去することが出来る。
Since Cr and Al have strong oxygen affinity in this way, they also fix oxygen from dissociated H 2 O and promote decomposition of H 2 O. When used in combination with a H 2 sucker material such as Fe—Ni alloy, H 2 O can be removed.

【0018】Tiは、酸素親和力、窒素親和力共にCr
やAlよりも大きな金属であり、これに加えて、Cと反
応してTiCを生成し、又H2 をよく吸臓する。したが
って、CO2 、CO、O2 、N2 、NH3 、H2 、H2
Oを除去することはも勿論、Ar中に僅かに含まれるメ
タンやエタン等の炭化水素も除去することが出来る。
Ti has an oxygen affinity and a nitrogen affinity both of which are Cr.
It is a metal larger than Al and Al, and in addition to this, it reacts with C to form TiC, and also inhales H 2 well. Therefore, CO 2 , CO, O 2 , N 2 , NH 3 , H 2 , H 2
Not only O can be removed, but also hydrocarbons such as methane and ethane that are slightly contained in Ar can be removed.

【0019】これらAl、Cr若しくはTiの金属は純
金属で用いてもよいが、合金の状態でも上記の作用を失
わないので、合金にして用いることもできる。Alでは
金属の融点が660℃と低く、その使用温度が制限され
る場合がある。MgのHIP処理のように、炉内温度が
300℃とこれよりも低い場合は問題がないが、炉内温
度が高い場合は、溶融するので表面積が減少したり取り
扱いが複雑になったりする。このような場合、合金にし
て融点を高めて用いることができる。Ti−36Al合
金にすると融点は1460℃に上昇する。
These Al, Cr or Ti metals may be used as pure metals, but since they do not lose the above-mentioned effects even in the state of an alloy, they can be used as an alloy. In Al, the melting point of metal is as low as 660 ° C., and its use temperature may be limited. There is no problem when the temperature inside the furnace is 300 ° C. or lower as in the case of HIP treatment of Mg, but when the temperature inside the furnace is high, it melts and the surface area decreases and handling becomes complicated. In such a case, the alloy can be used by increasing its melting point. When a Ti-36Al alloy is used, the melting point rises to 1460 ° C.

【0020】他に、入手が容易で使用し易い合金として
は、Cr系で、Fe−18Cr、Cr−25Al、Cr
−15Ti、Cr−25Si、Ti系でTi−6Al−
4V、Ti−5Al−25Sn、Cr、Ti、Alを含
むFe系のスーパーアロイ(例えば、Fe−15Cr−
3.5Mo−15Co−4Ti−5Al)等無数にあ
る。
Other alloys that are easily available and easy to use are Cr-based alloys such as Fe-18Cr, Cr-25Al and Cr.
-15Ti, Cr-25Si, Ti-based Ti-6Al-
Fe-based superalloy containing 4V, Ti-5Al-25Sn, Cr, Ti, and Al (for example, Fe-15Cr-
3.5Mo-15Co-4Ti-5Al) and so on.

【0021】なお、これまでの説明から類推出来るよう
に、酸素親和力の大きい金属や窒素親和力の大きい金属
であれば、後述するように寸法を限定すれば、不純物固
定材として用いることができる。これらの不純物固定材
は処理品の種類によって適宜選択することができる。例
えば、セラミックスの処理では、ppmオーダー含有され
るH2 は問題にならないので、Al系やCr系の固定材
を使用するなどである。
As can be inferred from the above description, a metal having a large oxygen affinity or a metal having a large nitrogen affinity can be used as an impurity fixing material if the dimensions are limited as described later. These impurity fixing materials can be appropriately selected depending on the type of processed product. For example, in the processing of ceramics, since H 2 contained in the ppm order does not matter, an Al-based or Cr-based fixing material is used.

【0022】不純物固定材は、その寸法が小さく且つ形
状が複雑であるほど、単位容積当たりの表面積が大きく
なり効果的であると考えられるが、他方、壊れ易く微細
片を発生し易くなる。微細片が発生すると、これが炉内
に入ったときはArガスや製品表面を汚染することにな
る。
It is considered that the smaller the size of the impurity fixing material and the more complicated the shape thereof, the larger the surface area per unit volume, which is considered to be effective. However, on the other hand, the impurity fixing material is liable to be broken and fine pieces are easily generated. If fine particles are generated, when they enter the furnace, they will contaminate Ar gas and the product surface.

【0023】この微細片の発生を防ぐために、目開き
2.0mmの篩上に残るものとする。線状の場合は径が
0.5mm以上のものを用いて微細片の発生を防ぐ。
In order to prevent the generation of these fine pieces, the fine particles are left on the sieve having an opening of 2.0 mm. In the case of a linear shape, one having a diameter of 0.5 mm or more is used to prevent generation of fine pieces.

【0024】又、これらの不純物固定材をArガスに接
触させる場所については、HIP処理炉内の場合と炉外
のArガス流路の場合とが考えられる。しかし、炉外で
接触させる場合は、反応を促進するために加熱しなけれ
ばならないとか、発生する微細片をArガス中に持ち込
まないために流路断面積を大きくしてフィルターを設置
する等の方策が必要である。それにも増して重要なこと
は、処理中に発生する不純物を含んだ状態でHIP処理
が行われてしまうことである。
Further, the place where these impurity fixing materials are brought into contact with Ar gas may be in the HIP processing furnace or in the Ar gas flow path outside the furnace. However, when they are contacted outside the furnace, they must be heated in order to accelerate the reaction, or in order to prevent the generated fine particles from being brought into the Ar gas, the cross-sectional area of the flow path must be increased to install a filter, etc. Measures are needed. What is more important than that is that the HIP process is carried out in a state in which impurities generated during the process are included.

【0025】即ち、HIP処理を開始した直後はArガ
スは高純度を維持しているが、処理品等から発生するガ
スで処理炉内のArガスはその純度が低下し、処理の後
半では処理品は不純物に曝されることになる。この状況
を避けるためには、HIP処理炉内で不純物を除かなけ
ればならない。
That is, immediately after the HIP process is started, the Ar gas maintains a high purity, but the gas generated from the processed product reduces the purity of the Ar gas in the processing furnace. In the latter half of the process, the Ar gas is processed. The item will be exposed to impurities. In order to avoid this situation, impurities have to be removed in the HIP treatment furnace.

【0026】HIP処理炉内で接触させると、不純物の
発生量が多く、これを除去しなければ処理中に許容範囲
を超える場合でも、不純物濃度の上昇を防ぐことが出来
る。
When contact is made in the HIP processing furnace, a large amount of impurities are generated, and if the impurities are not removed, it is possible to prevent an increase in the impurity concentration even if it exceeds the permissible range during processing.

【0027】前記した寸法・形状の不純物固定材であれ
ば、処理炉内に放置しても微細片発生の心配はなく、炉
内のArガスと充分に接触する状態でこれに曝すことが
出来る。このため、不純物濃度が高まることなく低不純
物濃度の状態が維持されたままHIP処理を完成させる
ことができる。
If the impurity fixing material having the above-mentioned size and shape is used, there is no concern that fine particles will be generated even if it is left in the processing furnace, and it can be exposed to Ar gas in the furnace in a state of being sufficiently in contact therewith. .. Therefore, it is possible to complete the HIP process while maintaining the low impurity concentration state without increasing the impurity concentration.

【0028】[0028]

【実施例】不純物固定材を用いてArガスを再生しなが
ら、アルミナ粒子、ステンレス鋳物、炭素鋼のHIP処
理を行い、その再生状況を調査すると共に製品の変質に
ついても調べた。
[Examples] While regenerating Ar gas using an impurity fixing material, alumina particles, stainless castings, and carbon steel were subjected to HIP treatment, and the state of regeneration was investigated and the alteration of the product was also investigated.

【0029】不純物固定材を炉内でArガスに接触させ
た場合、及び、炉外のArガス流路で接触させた場合に
ついて調べ比較した。
The case where the impurity fixing material was brought into contact with Ar gas in the furnace and the case where it was brought into contact with the Ar gas flow path outside the furnace were examined and compared.

【0030】図1に前者の場合の位置関係を示す。不純
物固定材1をHIP処理炉2の内部に置き、ガス貯蔵タ
ンク3からArガスをHIP処理炉2へポンプで加圧し
て送り込む。HIP処理に使われたArガスは、ガス貯
蔵タンク3に戻され再び循環使用される。不純物の調査
では、HIP処理炉2の入り側と出側とから各々サンプ
ルを分析計4に送って分析を行い、HIP操業前と操業
後の各々の不純物量を調べた。
FIG. 1 shows the positional relationship in the former case. The impurity fixing material 1 is placed inside the HIP processing furnace 2, and Ar gas is pumped from the gas storage tank 3 into the HIP processing furnace 2 and fed. The Ar gas used for the HIP process is returned to the gas storage tank 3 and reused again. In the investigation of impurities, samples were sent to the analyzer 4 from the inlet side and the outlet side of the HIP processing furnace 2 for analysis, and the amount of impurities before and after the HIP operation was examined.

【0031】同じ方法で、不純物固定材に平均径0.1
mmのTi繊維を用いた従来例についても調査を行い比
較した。
In the same manner, the impurity fixing material has an average diameter of 0.1.
A conventional example using mm mm Ti fiber was also investigated and compared.

【0032】図2に後者の場合の位置関係を示す。ガス
貯蔵タンク3からArガスをHIP処理炉2へポンプで
加圧して送り込み、HIP処理に使われたArガスをガ
ス貯蔵タンク3に戻し再び循環使用することは、図1の
場合と同じである。HIP処理炉2の外部のArガス流
路に再生装置5を設け、その中に不純物固定材1を収納
した。再生装置5は必要に応じてその内部を加熱、加圧
できるようになっている。不純物の調査では、HIP処
理炉2の入り側と出側及び再生処理装置の出側とから各
々サンプルを分析計4に送って分析を行い、HIP操業
前と操業後及び再生後の各々の位置で、Arガス中の不
純物量を調べた。因に操業前のArガスも再生したもの
である。HIP操業前と操業後の不純物量の差は、再生
処理を行わない場合の不純物量で、これを用いてこの発
明の実施例と比較例とについて考察した。
FIG. 2 shows the positional relationship in the latter case. It is the same as in the case of FIG. 1 that Ar gas from the gas storage tank 3 is pressurized and sent to the HIP processing furnace 2 by a pump, and Ar gas used for HIP processing is returned to the gas storage tank 3 and circulated again. .. The regeneration device 5 was provided in the Ar gas flow path outside the HIP processing furnace 2, and the impurity fixing material 1 was housed therein. The inside of the regenerator 5 can be heated and pressurized as needed. In the investigation of impurities, samples are sent from the inlet side and outlet side of the HIP processing furnace 2 and the outlet side of the regeneration processing device to the analyzer 4 for analysis, and each position before and after HIP operation and after regeneration and after regeneration. Then, the amount of impurities in the Ar gas was examined. Incidentally, the Ar gas before the operation is also regenerated. The difference in the amount of impurities before and after the HIP operation is the amount of impurities in the case where the regeneration treatment is not performed, and using this, the Examples and Comparative Examples of the present invention were considered.

【0033】製品の変質については、アルミナ焼結品で
は表面変色を調べ、ステンレス焼結品では表面酸化層厚
を調べ、炭素鋼では表面外観を調べた。
Regarding the alteration of the product, the alumina sintered product was examined for surface discoloration, the stainless sintered product was examined for surface oxide layer thickness, and the carbon steel was examined for surface appearance.

【0034】HIP操業条件とArガス再生処理条件及
び調査の結果を表1に示す。Arガスの浄化状況につい
ては、HIP操業と再生処理による不純物の増加量を数
字で示すとともに、総合的に〇、×の表示も行った。即
ち、〇;満足に浄化×;浄化程度不満である。
Table 1 shows HIP operation conditions, Ar gas regeneration treatment conditions, and investigation results. Regarding the purification status of Ar gas, the amount of impurities increased by the HIP operation and the regeneration treatment was shown by numbers, and a total of 0 and X was also displayed. That is, ◯: Satisfactory purification ×: Dissatisfaction with the degree of purification

【0035】なお、製品の変質については、各々、品質
特性が、低下せずに安定しているものを〇、バラツキが
認められるものを△、特性に低下が見られバラツキが明
瞭なものを×で評価し、表に記入した。
Regarding the deterioration of the products, the quality characteristics are stable and not deteriorated, respectively, ◯, variations are recognized, Δ: deterioration is clearly observed, and characteristics are clearly distorted. Was evaluated and filled in the table.

【0036】[0036]

【表2】 [Table 2]

【0037】HIP処理炉内で不純物固定材を働かせて
いる発明の実施例では、No.1乃至No.4の全ての例で不純
物の増加量は1 ppm以下であり、僅かではあるが寧ろ不
純物は減少の傾向さえ見られる。この状況は十分に満足
なArガスの浄化がおこなわれていることであり、製品
の変質は全く認められない。
In the examples of the invention in which the impurity fixing material is working in the HIP processing furnace, the increase amount of impurities is 1 ppm or less in all the examples of No. 1 to No. 4, and the impurities are slightly different. Is even decreasing. This situation means that Ar gas is sufficiently purified, and no alteration of the product is observed.

【0038】HIP操業後炉外で再生した比較例Aで
は、何れの不純物もその増加量は少ない。しかし、HI
P処理の終了時には、製品は比較例Bに示される不純物
量を含んだ雰囲気に曝されていたため、製品には変質が
認められた。
In Comparative Example A regenerated outside the furnace after HIP operation, the amount of increase of any impurities was small. But HI
At the end of the P treatment, the product was exposed to the atmosphere containing the amount of impurities shown in Comparative Example B, so that the product was found to be altered.

【0039】再生処理を行わない比較例Bでは、処理品
によって種類は異なるが、不純物の量が増えている。ア
ルミナを処理したNo.7及びステンレスを処理したNo.8で
はH2 の増加が目立ち、炭素鋼を処理したNo.9ではCO
2 の増加が顕著である。製品の特性値はバラツキ変質が
見られた。
In Comparative Example B in which the regenerating process is not performed, the amount of impurities is increased, although the type differs depending on the processed product. An increase in H 2 was conspicuous in No. 7 treated with alumina and No. 8 treated with stainless steel, while CO increased in No. 9 treated with carbon steel.
The increase of 2 is remarkable. The characteristic values of the product were found to vary and change.

【0040】従来例のNo.10 では、Ti繊維に微細片の
汚染により、製品表面にむらが見られ、分析サンプル中
にTiと共にH、Cが検出された。
In No. 10 of the conventional example, unevenness was observed on the product surface due to contamination of fine particles on the Ti fiber, and H and C were detected together with Ti in the analysis sample.

【0041】処理品から発生する不純物以外に、他から
混入するガスもあり得る。例えば、Arガス流路に極く
僅かなリークがあっても、N2 やO2 或いは炭化水素の
濃度が高くなることがある。このような場合でも、炉内
の不純物固定材は処理品がこれらの不純物に曝されるこ
とを十分に防いでいる。
In addition to impurities generated from the processed product, there may be gas mixed in from other sources. For example, even if there is a very slight leak in the Ar gas flow channel, the concentration of N 2 , O 2 or hydrocarbon may increase. Even in such a case, the impurity fixing material in the furnace sufficiently prevents the treated product from being exposed to these impurities.

【0042】[0042]

【発明の効果】以上述べてきたように、この発明によれ
ば、Cr、Al及びTiの不純物固定材を壊れにくい安
定な形状・寸法にして、HIP処理炉内でArガスと充
分に接触させる。このため、HIP処理中に急速に不純
物が発生してもその濃度が高まらず、焼結製品は不純物
の影響を全く受けることがなく、品質の良い製品を安定
して製造される。加えて、不純物固定材の使用に際して
何ら特別の装置を必要としない。このように、簡便な方
法で製品の品質を高めるこの発明の効果は大きい。
As described above, according to the present invention, the impurity fixing material of Cr, Al and Ti is made into a stable shape and size which is not easily broken and is sufficiently contacted with Ar gas in the HIP processing furnace. .. Therefore, even if impurities are rapidly generated during the HIP process, the concentration thereof does not increase, and the sintered product is not affected by the impurities at all, and a product of good quality can be stably manufactured. In addition, no special device is required for using the impurity fixing material. In this way, the effect of the present invention for improving the quality of products by a simple method is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例である不純物固定材をAr
ガスに接触させる位置を示す図。
FIG. 1 is a perspective view of an impurity fixing material according to an embodiment of the present invention, which is Ar.
The figure which shows the position which contacts gas.

【図2】実施例である不純物固定材をArガスに接触さ
せる一例を示す図。
FIG. 2 is a diagram showing an example of bringing an impurity fixing material, which is an embodiment, into contact with Ar gas.

【符号の説明】[Explanation of symbols]

1 不純物固定材 2 HIP処理炉 3 ガス貯蔵タンク 4 分析計 5 再生装置 6 処理品 1 Impurity Fixing Material 2 HIP Treatment Furnace 3 Gas Storage Tank 4 Analyzer 5 Regeneration Device 6 Treated Product

Claims (1)

【特許請求の範囲】 【請求項1】 操業に用いるArガスを、Cr、Al若
しくはTiの金属又はこれらの一種以上を含む合金であ
って目開き2.0mmの篩上に残る塊状又は径が0.5
mm以上の太さの線状の不純物固定材に熱間等方圧縮処
理炉内で接触させることによって、前記Arガス中の不
純物を除去することを特徴とする熱間等方圧縮用Arガ
スの再生方法。
Claim: What is claimed is: 1. Ar gas used for the operation is a metal such as Cr, Al or Ti or an alloy containing one or more of them, and the lumps or diameters which remain on the sieve having an opening of 2.0 mm. 0.5
The impurities in the Ar gas are removed by bringing them into contact with a linear impurity fixing material having a thickness of mm or more in a hot isotropic compression treatment furnace. How to play.
JP3190266A 1991-07-30 1991-07-30 Method for regenerating gaseous ar for hot isotropic pressing Pending JPH0533009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3190266A JPH0533009A (en) 1991-07-30 1991-07-30 Method for regenerating gaseous ar for hot isotropic pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3190266A JPH0533009A (en) 1991-07-30 1991-07-30 Method for regenerating gaseous ar for hot isotropic pressing

Publications (1)

Publication Number Publication Date
JPH0533009A true JPH0533009A (en) 1993-02-09

Family

ID=16255289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3190266A Pending JPH0533009A (en) 1991-07-30 1991-07-30 Method for regenerating gaseous ar for hot isotropic pressing

Country Status (1)

Country Link
JP (1) JPH0533009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949512A (en) * 1995-03-03 1999-09-07 Sharp Kabushiki Kaisha Mounted substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949512A (en) * 1995-03-03 1999-09-07 Sharp Kabushiki Kaisha Mounted substrate

Similar Documents

Publication Publication Date Title
US7594955B2 (en) Process for recovering rare gases using gas-recovering container
US7862645B2 (en) Removal of gaseous contaminants from argon
RU2123971C1 (en) Method and apparatus for removing gas impurities from hydrogen flow
EP0454531A1 (en) Process and apparatus for the preparation of ultra-pure nitrogen
US3406496A (en) Separation of hydrogen from other gases
GB1574801A (en) Gas separation
JPS62269728A (en) One process method for purifying inert gas
EP0129444A2 (en) Methods for obtaining high-purity carbon monoxide
TWI409216B (en) Processing method and refining method of inert gas and gas processing cylinder
US6261528B1 (en) Hydrogen purification using metal hydride getter material
JPH0533009A (en) Method for regenerating gaseous ar for hot isotropic pressing
JPH04292413A (en) Method of refining ammonia
JPS59107910A (en) Method for purifying gaseous argon
US9782766B2 (en) Regeneration process for metal catalyst based gas purifiers
JP5461144B2 (en) Noble gas purification method
US6905665B2 (en) Method for purifying carbon monoxide
JPH02293310A (en) Equipment for high-purity refining of rare gas
CA1041026A (en) Process for the recovery of carbonyls and carbon monoxide from carbonyl process gases
JP3324799B2 (en) Noble gas purification method
EP0829292B1 (en) Removal of H2 and/or CO impurities from an inert fluidum in liquid state
KR100356611B1 (en) Purification Method and Apparatus for Nitrogen
JPH0459917A (en) Method of degassing from molten metal
JPH08269502A (en) Method for suppressing activity of active metal
KR100325102B1 (en) Nitrogen reduction method of molten iron and molten steel by hydrogen gas blowing
JP3166930B2 (en) Noble gas purification equipment