[go: up one dir, main page]

JPH05326239A - Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density - Google Patents

Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density

Info

Publication number
JPH05326239A
JPH05326239A JP4149849A JP14984992A JPH05326239A JP H05326239 A JPH05326239 A JP H05326239A JP 4149849 A JP4149849 A JP 4149849A JP 14984992 A JP14984992 A JP 14984992A JP H05326239 A JPH05326239 A JP H05326239A
Authority
JP
Japan
Prior art keywords
pure iron
soft magnetic
flux density
magnetic powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4149849A
Other languages
Japanese (ja)
Inventor
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4149849A priority Critical patent/JPH05326239A/en
Publication of JPH05326239A publication Critical patent/JPH05326239A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce Fe-N based soft magnetic powder having high saturation flux density by subjecting pure iron flakes, having ensemble texture where (100) crystal faces are integrated in parallel with the plate surface, to high energy grinding under an atmosphere mainly composed of nitrogen and hydrogen. CONSTITUTION:A pure iron hot rolled plate is cold rolled to produce a cold rolled thin pure iron band having ensemble texture where (100) crystal faces are integrated in parallel with the plate surface. The cold rolled thin pure iron band is then cut to produce pure iron flakes which are filled, together with stainless steel balls, in a stainless steel container. Ammonia gas atmosphere is then brought into the stainless steel container, which is subsequently rotated to carry out high energy grinding by means of a planetary ball mill. This method realizes low cost mass production of alloy powder having high saturation flux density and abundant in Fe16N2 Phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高い飽和磁束密度を
有する軟磁性粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing soft magnetic powder having a high saturation magnetic flux density.

【0002】[0002]

【従来の技術】従来、モーターやトランスなどの磁心、
さらに磁気シールドのための樹脂結合軟磁性複合部材な
どは、純Fe粉末などの軟磁性粉末に、所定割合のエポ
キシ樹脂などの樹脂結合剤を配合し、混合した後、所定
形状の圧粉体に加圧成形し、この圧粉体に樹脂硬化処理
を施すことにより製造されている。また、純Fe粉末よ
りも高い飽和磁束密度を必要とする場合には、Fe−C
o合金粉末が用いられることも良く知られているところ
である。
2. Description of the Related Art Conventionally, magnetic cores of motors and transformers,
Furthermore, resin-bonded soft magnetic composite members for magnetic shields, etc., are made by mixing soft magnetic powder such as pure Fe powder with a resin binder such as epoxy resin in a prescribed ratio and mixing them into a powder compact having a prescribed shape. It is manufactured by pressure molding and subjecting the green compact to a resin curing treatment. When a saturation magnetic flux density higher than that of pure Fe powder is required, Fe-C
It is well known that o alloy powder is used.

【0003】しかし、Fe−Co合金粉末は、純Fe粉
末よりも高価であるために純Fe粉末とほぼ同程度に安
価でかつ純Fe粉末よりも高い飽和磁束密度を有する軟
磁性粉末が求められており、かかる観点から、近年、純
Fe粉末よりも高い飽和磁束密度を有する準安定Fe16
2 化合物を含むFe−N合金粉末またはFe−Si−
N合金粉末が注目されてきた。
However, since the Fe-Co alloy powder is more expensive than the pure Fe powder, there is a demand for a soft magnetic powder that is almost as cheap as the pure Fe powder and has a saturation magnetic flux density higher than that of the pure Fe powder. From this viewpoint, in recent years, metastable Fe 16 having a saturation magnetic flux density higher than that of pure Fe powder has been obtained.
Fe—N alloy powder or Fe—Si— containing N 2 compound
N alloy powder has received attention.

【0004】上記準安定Fe162 化合物を含むFe−
N合金またはFe−Si−N合金を製造する方法として
は、窒素を含む雰囲気中で蒸着やスパッタリングする方
法、または(100)結晶面が板面に平行に集積した集
合組織を有する純Fe薄帯またはSi:1〜18at%
含有のFe−Si系合金薄帯を窒素雰囲気中で窒化処理
する方法などが知られている(例えば、特開昭61−1
57634号公報などを参照)。
Fe-containing the above metastable Fe 16 N 2 compound
The N alloy or the Fe-Si-N alloy can be produced by vapor deposition or sputtering in an atmosphere containing nitrogen, or a pure Fe ribbon having a texture in which (100) crystal planes are accumulated parallel to the plate surface. Or Si: 1-18 at%
A method of nitriding the contained Fe-Si alloy ribbon in a nitrogen atmosphere is known (for example, JP-A-61-1).
No. 57634, etc.).

【0005】(100)結晶面が板面に平行に集積した
集合組織を有する純Fe薄帯は、純Feを冷間圧延する
ことにより製造することができる。また(100)結晶
面が板面に平行に集積した集合組織を有するSi:1〜
18at%含有のFe−Si系合金薄帯は、Si:1〜
18at%含有のFe−Si系合金溶湯を単ロール法ま
たは双ロール法などの液体急冷法により薄帯化し、この
薄帯を1000℃以上の温度で焼鈍を施すことにより
(100)結晶面を有する結晶粒を選択的に成長させる
ことにより製造することができる。
A pure Fe ribbon having a texture in which (100) crystal planes are accumulated parallel to the plate surface can be manufactured by cold rolling pure Fe. Further, Si having a texture in which (100) crystal planes are accumulated parallel to the plate surface: 1 to 1
The Fe-Si alloy ribbon containing 18 at% has a Si: 1 to 1
A Fe-Si alloy melt containing 18 at% is made into a ribbon by a liquid quenching method such as a single roll method or a twin roll method, and this ribbon is annealed at a temperature of 1000 ° C. or more to have a (100) crystal face. It can be manufactured by selectively growing crystal grains.

【0006】かかる板面に平行に集積した(100)結
晶面の集積度の高い集合組織を有する純Fe薄帯または
Fe−Si系合金薄帯を窒素雰囲気中で窒化処理すると
準安定Fe162 化合物の生成率は高くなると言われて
いる。
When a pure Fe ribbon or an Fe-Si alloy ribbon having a highly integrated texture of (100) crystal planes accumulated in parallel with the plate surface is subjected to a nitriding treatment in a nitrogen atmosphere, metastable Fe 16 N is produced. It is said that the production rate of the two compounds will increase.

【0007】[0007]

【発明が解決しようとする課題】しかし、準安定Fe16
2 化合物を多く含み高い飽和磁束密度を有するFe−
N系合金粉末またはFe−Si−N系合金の粉末を量産
する方法については今だ知られておらず、前記従来の準
安定Fe162 化合物を含むFe−N系合金薄帯もしく
はFe−Si−N合金系薄帯を粉砕して製造することも
考えられるが、前記薄帯を窒素雰囲気中で単に窒化処理
しても準安定Fe162 化合物の生成率は十分でなく、
なお一層準安定Fe162 化合物を多く含みかつより大
きな飽和磁束密度を有する軟磁性粉末が求められてい
た。
However, the metastable Fe 16
Fe-containing a large amount of N 2 compound and having a high saturation magnetic flux density
A method for mass-producing N-based alloy powder or Fe-Si-N-based alloy powder has not been known yet, and the Fe-N-based alloy ribbon or Fe- containing the conventional metastable Fe 16 N 2 compound has been known. Although it is possible to manufacture the Si—N alloy-based ribbon by crushing it, the production rate of the metastable Fe 16 N 2 compound is not sufficient even if the ribbon is simply nitrided in a nitrogen atmosphere.
Further, there has been a demand for a soft magnetic powder which further contains a large amount of metastable Fe 16 N 2 compound and has a larger saturation magnetic flux density.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
さらに大きな飽和磁束密度を有する軟磁性粉末を得るべ
く研究を行った結果、(100)結晶面が板面に平行に
集積した集合組織を有する薄帯を裁断して得られた純鉄
フレークまたはFe−Si系合金フレークを、粉砕用ボ
ールとともに強力ボールミル、例えばアトライターミル
に充填し、窒素および水素を主体とする雰囲気中にて攪
拌し、粉砕と圧着を繰り返すことにより機械的に合金化
する処理(以下、高エネルギー粉砕処理という)を施す
ことにより、準安定Fe162相含有率が従来よりも高
くかつ大きな飽和磁束密度を有するFe−N系軟磁性粉
末またはFe−Si−N系軟磁性粉末が得ることができ
るという知見を得たのである。
Therefore, the present inventors have
As a result of research to obtain a soft magnetic powder having a larger saturation magnetic flux density, pure iron flakes or Fe obtained by cutting a thin ribbon having a texture in which (100) crystal planes are accumulated parallel to the plate surface. A process of filling the Si-based alloy flakes together with grinding balls into a strong ball mill, for example, an attritor mill, stirring them in an atmosphere mainly composed of nitrogen and hydrogen, and mechanically alloying by repeating grinding and pressure bonding. By performing (hereinafter, referred to as high energy pulverization treatment), Fe—N-based soft magnetic powder or Fe—Si—N-based soft magnetic powder having a higher metastable Fe 16 N 2 phase content and a larger saturation magnetic flux density than ever before. We have found that magnetic powder can be obtained.

【0009】この発明は、かかる知見に基づいて成され
たものであって、 (1) (100)結晶面が板面に平行に集積した集合
組織を有する純鉄薄帯を裁断して得られた純鉄フレーク
に窒素および水素を主体とする雰囲気中にて高エネルギ
ー粉砕処理を施し、準安定Fe162 相を形成する高い
飽和磁束密度を有するFe−N系軟磁性粉末の製造方
法。 (2) (100)結晶面が板面に平行に集積した集合
組織を有するFe−Si系合金薄帯を裁断して得られた
Fe−Si系合金フレークに窒素および水素を主体とす
る雰囲気中にて高エネルギー粉砕処理を施し、準安定F
162 相を形成する高い飽和磁束密度を有するFe−
Si−N系軟磁性粉末の製造方法、に特徴を有するもの
である。
The present invention has been made on the basis of such findings, and is obtained by cutting (1) a pure iron ribbon having a texture in which (100) crystal planes are accumulated parallel to a plate surface. A method for producing an Fe-N-based soft magnetic powder having a high saturation magnetic flux density, which forms a metastable Fe 16 N 2 phase by subjecting pure iron flakes to high energy pulverization treatment in an atmosphere mainly containing nitrogen and hydrogen. (2) Fe-Si alloy flakes obtained by cutting Fe-Si alloy ribbons having a texture in which (100) crystal planes are integrated parallel to the plate surface, in an atmosphere mainly containing nitrogen and hydrogen. High-energy crushing process is applied at
Fe− having a high saturation magnetic flux density forming an e 16 N 2 phase
The method is characterized by a method for producing a Si—N soft magnetic powder.

【0010】(100)結晶面が板面に平行に集積した
集合組織を有する純鉄フレークまたはFe−Si系合金
フレークを粉砕用ボールとともに強力ボールミルに充填
し、窒素および水素を主体とする雰囲気中にて攪拌し、
粉砕と圧着を繰り返すことにより高エネルギー粉砕処理
を施すと、活性化した状態で窒化処理を施すことにな
り、bcc(体心立方晶)Fe格子中に侵入したN2
選択配位を促進し、もってbct(体心正方晶)Fe16
2 相の生成率を高める効果があり、したがって、高い
飽和磁束密度を有するFe−N系軟磁性粉末またはFe
−Si−N系軟磁性粉末を製造することができるものと
考えられる。
Pure iron flakes or Fe-Si alloy flakes having a texture in which (100) crystal planes are accumulated parallel to the plate surface are filled in a strong ball mill together with grinding balls in an atmosphere mainly containing nitrogen and hydrogen. Stir at
When high-energy pulverization treatment is performed by repeating pulverization and pressure bonding, nitriding treatment is performed in an activated state, which promotes selective coordination of N 2 penetrating into the bcc (body-centered cubic) Fe lattice. , So bct (body centered tetragonal) Fe 16
Fe-N-based soft magnetic powder or Fe having an effect of increasing the N 2 phase production rate and therefore having a high saturation magnetic flux density
It is considered that the -Si-N soft magnetic powder can be produced.

【0011】窒化処理すべき素材が、他の結晶方位ある
いはランダムな結晶方位を有していると、侵入したN2
はランダムな結晶位置を占めやすく、bcc不規則固溶
体が形成される傾向が強いため、bct(体心正方晶)
Fe162 相の生成率が低くなるので好ましくない。
If the material to be nitrided has another crystal orientation or a random crystal orientation, the penetrated N 2
Is likely to occupy a random crystal position and has a strong tendency to form a bcc disordered solid solution, so bct (body-centered tetragonal)
The Fe 16 N 2 phase production rate is low, which is not preferable.

【0012】前記フレークの厚さは、400μm以下の
範囲内にあるのが好ましく、400μmを越えると、窒
素および水素を主体とする雰囲気中にて高エネルギー粉
砕処理を施しても均一な窒化が行えず、Fe162 相の
生成率が低くなるので好ましくない。なお、この発明で
用いるFe−Si系合金薄帯は、Siを1〜18at%
含有するものが好ましい。
The thickness of the flakes is preferably in the range of 400 μm or less, and when it exceeds 400 μm, uniform nitriding can be performed even if high-energy crushing treatment is performed in an atmosphere mainly containing nitrogen and hydrogen. In addition, the production rate of the Fe 16 N 2 phase decreases, which is not preferable. The Fe-Si alloy ribbon used in the present invention contains 1 to 18 at% of Si.
What is contained is preferable.

【0013】[0013]

【実施例】次に、この発明を実施例にもとずいて具体的
に説明する。 実施例1、 厚さ:2.5mmの純鉄熱延板を厚さ:250μmにな
るまで冷間圧延することにより(100)結晶面が板面
に平行に集積した集合組織を有する冷間圧延純鉄薄帯を
製造し、この冷間圧延純鉄薄帯を長さ:2mm、幅:1
mmの寸法に裁断して純鉄フレークを作製し、この純鉄
フレーク15gをステンレス鋼製ボールと共にステンレ
ス鋼製容器に充填し、ステンレス鋼製容器内をアンモニ
アガス雰囲気とし、公転速度:300rpm.で40時
間ステンレス鋼製容器を回転するという条件で遊星ボー
ルミルによる高エネルギー粉砕処理を施し、準安定Fe
162 化合物を含む本発明Fe−N系軟磁性粉末を製造
した。
EXAMPLES Next, the present invention will be specifically described based on Examples. Example 1 Cold rolling of a pure iron hot-rolled sheet having a thickness of 2.5 mm to a thickness of 250 μm by cold rolling having a texture in which (100) crystal planes were accumulated parallel to the sheet surface. Manufacture pure iron ribbon, this cold rolled pure iron ribbon length: 2mm, width: 1
The pure iron flakes were cut into a size of mm to prepare 15 g of the pure iron flakes, and 15 g of the pure iron flakes were filled in a stainless steel container together with a stainless steel ball. High-energy pulverization processing with a planetary ball mill was performed under the condition that the stainless steel container was rotated for 40 hours at
Fe—N based soft magnetic powder of the present invention containing 16 N 2 compound was prepared.

【0014】比較例1 (100)結晶面がランダム配向した厚さ:250μm
の熱延純鉄薄帯を用意し、この熱延純鉄薄帯を長さ:2
mm、幅:1mmの寸法に裁断して比較純鉄フレークを
作製し、この比較純鉄フレーク15gをステンレス鋼製
ボールと共にステンレス鋼製容器に充填し、以下、実施
例1と全く同様にして高エネルギー粉砕処理を施し、準
安定Fe162 化合物を含む比較Fe−N系軟磁性粉末
を製造した。
Comparative Example 1 Thickness with (100) crystal planes randomly oriented: 250 μm
Prepare a hot-rolled pure iron ribbon, and length of this hot-rolled pure iron ribbon: 2
mm, width: 1 mm was cut to prepare comparative pure iron flakes, and 15 g of the comparative pure iron flakes were filled in a stainless steel container together with stainless steel balls. An energy crushing process was performed to produce a comparative Fe—N-based soft magnetic powder containing a metastable Fe 16 N 2 compound.

【0015】従来例1 (100)結晶面が板面に平行に集積した集合組織を有
する純Fe薄帯をBox炉に装入し、これを窒素雰囲気
中で窒化処理し、準安定Fe162 化合物を含むFe−
N合金薄帯を製造し、この準安定Fe162 化合物を含
むFe−N合金薄帯を通常のボールミルにて微粉砕し、
準安定Fe162 化合物を含む従来Fe−N系軟磁性粉
末を製造した。
Conventional Example 1 A pure Fe ribbon having a texture in which (100) crystal planes are integrated parallel to the plate surface is charged into a Box furnace, and this is nitrided in a nitrogen atmosphere to obtain metastable Fe 16 N. Fe- containing 2 compounds
An N alloy ribbon was produced, and the Fe—N alloy ribbon containing the metastable Fe 16 N 2 compound was finely pulverized by a usual ball mill,
A conventional Fe—N based soft magnetic powder containing a metastable Fe 16 N 2 compound was produced.

【0016】実施例2、 Si:9at%含有のFe−Si系合金溶湯を単ロール
法により厚さ:150μm薄帯を製造し、この薄帯を真
空中、1150℃で4時間保持の焼鈍を施すことにより
(100)結晶面を有する結晶粒を選択的に成長させ、
(100)結晶面が板面に平行に集積した集合組織を有
するFe−Si系合金薄帯を製造し、このFe−Si系
合金薄帯を長さ:2mm、幅:1mmの寸法に裁断して
Fe−Si系合金フレークを作製した。このFe−Si
系合金フレーク15gをステンレス鋼製ボールと共にス
テンレス鋼製容器に充填し、ステンレス鋼製容器内をア
ンモニアガス雰囲気とし、公転速度:300rpm.で
40時間ステンレス鋼製容器を回転するという条件で遊
星ボールミルによる高エネルギー粉砕処理を施し、準安
定Fe162 化合物を含む本発明Fe−Si−N系軟磁
性粉末を製造した。
Example 2 A thin Fe-Si alloy melt containing 9 at% of Si was produced by a single roll method to produce a thin ribbon of 150 μm, and the thin ribbon was annealed in vacuum at 1150 ° C. for 4 hours. By selectively growing crystal grains having a (100) crystal face,
An Fe—Si alloy ribbon having a texture in which (100) crystal planes are accumulated parallel to the plate surface is produced, and the Fe—Si alloy ribbon is cut into a length: 2 mm and a width: 1 mm. To produce Fe-Si alloy flakes. This Fe-Si
15 g of the system alloy flake together with a stainless steel ball were filled in a stainless steel container, the inside of the stainless steel container was made into an ammonia gas atmosphere, and the revolution speed was 300 rpm. High-energy pulverization treatment with a planetary ball mill was carried out under the condition that the stainless steel container was rotated for 40 hours in order to produce the Fe—Si—N soft magnetic powder of the present invention containing a metastable Fe 16 N 2 compound.

【0017】比較例2 Si:9at%含有のFe−Si系合金溶湯を単ロール
法により厚さ:150μm薄帯を製造し、前記焼鈍を施
すこと無く(100)結晶面がランダム配向した厚さ:
250μmのFe−Si系合金薄帯を製造し、このFe
−Si系合金薄帯を長さ:2mm、幅:1mmの寸法に
裁断して比較Fe−Si系合金フレークを作製し、この
比較Fe−Si系合金フレーク15gをステンレス鋼製
ボールと共にステンレス鋼製容器に充填し、以下、実施
例2と全く同様にして高エネルギー粉砕処理を施し、準
安定Fe162 化合物を含む比較Fe−Si−N系軟磁
性粉末を製造した。
Comparative Example 2 A melt of Fe-Si alloy containing 9 at% of Si was prepared by a single roll method to produce a thin ribbon of 150 μm, and the (100) crystal plane was randomly oriented without annealing. :
A Fe-Si alloy ribbon of 250 μm was manufactured and
A comparative Fe-Si alloy flake was prepared by cutting a -Si alloy thin strip into dimensions of length: 2 mm and width: 1 mm, and 15 g of this comparative Fe-Si alloy flake was made of stainless steel together with stainless steel balls. The mixture was filled in a container and thereafter subjected to high energy pulverization treatment in exactly the same manner as in Example 2 to produce a comparative Fe-Si-N soft magnetic powder containing a metastable Fe 16 N 2 compound.

【0018】従来例2 (100)結晶面が板面に平行に集積した集合組織を有
するFe−Si系合金薄帯をBox炉に装入し、これを
窒素雰囲気中で窒化処理し、準安定Fe162化合物を
含むFe−Si−N合金薄帯を製造し、この準安定Fe
162 化合物を含むFe−Si−N合金薄帯を通常のボ
ールミルにて微粉砕し、準安定Fe162 化合物を含む
従来Fe−Si−N系軟磁性粉末を製造した。
Conventional Example 2 A Fe-Si alloy ribbon having a texture in which (100) crystal planes are integrated parallel to the plate surface is loaded into a Box furnace, and this is nitrided in a nitrogen atmosphere to be metastable. An Fe—Si—N alloy ribbon containing a Fe 16 N 2 compound was produced, and this metastable Fe was produced.
The Fe—Si—N alloy ribbon containing the 16 N 2 compound was finely pulverized with a usual ball mill to produce a conventional Fe—Si—N soft magnetic powder containing the metastable Fe 16 N 2 compound.

【0019】これら本発明Fe−N系軟磁性粉末、本発
明Fe−Si−N系軟磁性粉末、比較Fe−N系軟磁性
粉末、比較Fe−Si−N系軟磁性粉末、従来Fe−N
系軟磁性粉末、従来Fe−Si−N系軟磁性粉末につい
て、200KV透過電子顕微鏡を用い、その結果の回折
パターンの中のFe162 相の反射を用いて、暗視野像
を結像し、この写真からFe162 相の体積分率を算出
し求めた。さらに、前記粉末の飽和磁束密度(Bs )を
振動試料型磁力計を用いて10kOeの磁界を印加して
測定した。これらFe162 相の体積分率および飽和磁
束密度(Bs )の測定値を表1に示す。
These Fe--N type soft magnetic powders of the present invention, Fe--Si--N type soft magnetic powders of the present invention, comparative Fe--N type soft magnetic powders, comparative Fe--Si--N type soft magnetic powders, conventional Fe--N
System soft magnetic powders and conventional Fe-Si-N soft magnetic powders were imaged in dark field using a 200KV transmission electron microscope and Fe 16 N 2 phase reflection in the resulting diffraction pattern. The volume fraction of the Fe 16 N 2 phase was calculated and determined from this photograph. Further, the saturation magnetic flux density (B s ) of the powder was measured using a vibrating sample magnetometer by applying a magnetic field of 10 kOe. Table 1 shows measured values of the volume fraction and the saturation magnetic flux density (B s ) of these Fe 16 N 2 phases.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】表1に示に示される結果から、(10
0)結晶面が板面に平行に集積した集合組織を有する純
鉄フレークまたはFe−Si系合金フレークをアンモニ
アガス雰囲気中にて高エネルギー粉砕処理を施す本発明
法の実施例1および2により得られた本発明Fe−N系
軟磁性粉末および本発明Fe−Si−N系軟磁性粉末
は、従来例1および2により得られた従来Fe−N系軟
磁性粉末および従来Fe−Si−N系軟磁性粉末に比べ
て、生成されるFe162 相の体積分率が大きく、かつ
飽和磁束密度も優れていることが分かる。
From the results shown in Table 1, (10
0) Obtained by Examples 1 and 2 of the method of the present invention in which pure iron flakes or Fe-Si alloy flakes having a texture in which crystal planes are accumulated parallel to the plate surface are subjected to high energy pulverization treatment in an ammonia gas atmosphere. The Fe-N-based soft magnetic powder of the present invention and the Fe-Si-N-based soft magnetic powder of the present invention thus obtained are the conventional Fe-N-based soft magnetic powder and the conventional Fe-Si-N-based soft magnetic powder obtained in Conventional Examples 1 and 2, respectively. It can be seen that the Fe 16 N 2 phase produced has a large volume fraction and an excellent saturation magnetic flux density as compared with the soft magnetic powder.

【0022】また、比較例1および2に見られるよう
に、(100)結晶面がランダムな純鉄フレークまたは
Fe−Si系合金フレークをアンモニアガス雰囲気中に
て高エネルギー粉砕処理して得られた比較Fe−N系軟
磁性粉末および比較Fe−Si−N系軟磁性粉末も、十
分なFe162 相は生成されず、したがって、飽和磁束
密度も低いことが分かる。上述のように、(100)結
晶面が板面に平行に集積した集合組織を有する純鉄フレ
ークまたはFe−Si系合金フレークを用い、これを高
エネルギー粉砕処理することにより初めて、Fe162
相を多く含みかつ飽和磁束密度の高い合金粉末を安価に
大量に製造することができ、産業上優れた効果を奏する
ものである。
Further, as seen in Comparative Examples 1 and 2, it was obtained by subjecting pure iron flakes having random (100) crystal planes or Fe-Si alloy flakes to high energy pulverization in an ammonia gas atmosphere. It can be seen that neither the comparative Fe-N soft magnetic powder nor the comparative Fe-Si-N soft magnetic powder produced a sufficient Fe 16 N 2 phase, and therefore the saturation magnetic flux density was low. As described above, the pure iron flakes or the Fe-Si alloy flakes having the texture in which the (100) crystal planes are accumulated in parallel with the plate surface are used, and the Fe 16 N 2 is first subjected to the high energy pulverization treatment.
The alloy powder containing a large amount of phases and having a high saturation magnetic flux density can be produced inexpensively in a large amount, and has an excellent industrial effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/14 // C23C 8/26 7516−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/14 // C23C 8/26 7516-4K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (100)結晶面が板面に平行に集積し
た集合組織を有する純鉄薄帯を裁断して得られた純鉄フ
レークに、窒素および水素を主体とする雰囲気中にて高
エネルギー粉砕処理を施すことにより準安定Fe162
相を形成することを特徴とする高い飽和磁束密度を有す
るFe−N系軟磁性粉末の製造方法。
1. A pure iron flake obtained by cutting a pure iron ribbon having a texture in which (100) crystal planes are accumulated parallel to a plate surface, in a nitrogen- and hydrogen-based atmosphere. Metastable Fe 16 N 2 by energy-grinding treatment
A method for producing an Fe-N-based soft magnetic powder having a high saturation magnetic flux density, which comprises forming a phase.
【請求項2】 (100)結晶面が板面に平行に集積し
た集合組織を有するFe−Si系合金薄帯を裁断して得
られたFe−Si系合金フレークに、窒素および水素を
主体とする雰囲気中にて高エネルギー粉砕処理を施すこ
とにより準安定Fe162 相を形成することを特徴とす
る高い飽和磁束密度を有するFe−Si−N系軟磁性粉
末の製造方法。
2. An Fe—Si alloy flake obtained by cutting an Fe—Si alloy ribbon having a texture in which (100) crystal planes are integrated parallel to a plate surface, and nitrogen and hydrogen are mainly contained in the flakes. Forming a metastable Fe 16 N 2 phase by performing high-energy pulverization treatment in an atmosphere for controlling the Fe—Si—N soft magnetic powder having a high saturation magnetic flux density.
JP4149849A 1992-05-18 1992-05-18 Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density Withdrawn JPH05326239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149849A JPH05326239A (en) 1992-05-18 1992-05-18 Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149849A JPH05326239A (en) 1992-05-18 1992-05-18 Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density

Publications (1)

Publication Number Publication Date
JPH05326239A true JPH05326239A (en) 1993-12-10

Family

ID=15483998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149849A Withdrawn JPH05326239A (en) 1992-05-18 1992-05-18 Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density

Country Status (1)

Country Link
JP (1) JPH05326239A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536777A (en) * 2013-06-27 2016-11-24 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Magnet containing iron nitride material and iron nitride material
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
JP2019137904A (en) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 Soft magnetic alloy powder, manufacturing method thereof, and powder magnetic core using the same
JP2019212849A (en) * 2018-06-08 2019-12-12 パナソニックIpマネジメント株式会社 Method for recycling magnetic substance material
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2016536777A (en) * 2013-06-27 2016-11-24 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Magnet containing iron nitride material and iron nitride material
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US12338536B2 (en) 2014-06-30 2025-06-24 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US11062829B2 (en) 2018-02-15 2021-07-13 Panasonic Intellectual Property Management Co., Ltd. Soft magnetic alloy powder, production method thereof, and dust core using same
CN110153383A (en) * 2018-02-15 2019-08-23 松下知识产权经营株式会社 Soft magnetic alloy powder, method for producing the same, and dust core using the same
JP2019137904A (en) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 Soft magnetic alloy powder, manufacturing method thereof, and powder magnetic core using the same
JP2019212849A (en) * 2018-06-08 2019-12-12 パナソニックIpマネジメント株式会社 Method for recycling magnetic substance material
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Similar Documents

Publication Publication Date Title
US11996232B2 (en) Applied magnetic field synthesis and processing of iron nitride magnetic materials
JP2024038123A (en) Grain boundary engineering of sintered magnetic alloys and compositions derived therefrom
US5963774A (en) Method for producing cast alloy and magnet
US20120112863A1 (en) Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
JPH0974006A (en) Magnetic material and bonded magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2015142119A (en) Rare earth magnet manufacturing method
CN103180917A (en) Rare earth-iron-nitrogen alloy material and preparation method thereof, rare earth-iron alloy material and preparation method thereof
JPH05326239A (en) Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density
JPS60131949A (en) Iron-rare earth-nitrogen permanent magnet
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JPH0831385B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JP3247508B2 (en) permanent magnet
JP3469496B2 (en) Manufacturing method of magnet material
JPH07118703A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JPH0831386B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH0641617A (en) Production of fe-n or fe-si-n soft magnetic powder having high saturation magnetic flux density
JPH0336895B2 (en)
JPH07118702A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JPH06151144A (en) Manufacture of fe-n-based soft magnetic powder having high saturated magnetic flux density
JPH0590018A (en) Manufacture of magnetic powder
JPH04293702A (en) Production of soft magnetic powder low in coercive force
JPH0641616A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JP3795694B2 (en) Magnetic materials and bonded magnets

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803