JPH05323117A - Polarizing device and projection type display device using same - Google Patents
Polarizing device and projection type display device using sameInfo
- Publication number
- JPH05323117A JPH05323117A JP4127161A JP12716192A JPH05323117A JP H05323117 A JPH05323117 A JP H05323117A JP 4127161 A JP4127161 A JP 4127161A JP 12716192 A JP12716192 A JP 12716192A JP H05323117 A JPH05323117 A JP H05323117A
- Authority
- JP
- Japan
- Prior art keywords
- incident
- thin film
- light
- polarization
- prism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 91
- 239000010409 thin film Substances 0.000 claims abstract description 57
- 230000010287 polarization Effects 0.000 claims description 99
- 238000002834 transmittance Methods 0.000 claims description 29
- 239000004973 liquid crystal related substance Substances 0.000 claims description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000010408 film Substances 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 239000005083 Zinc sulfide Substances 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 5
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 5
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 17
- 239000011521 glass Substances 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 210000002858 crystal cell Anatomy 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- -1 pentoxide Ditantalum Chemical compound 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
- Projection Apparatus (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自然光が入射すると直
線偏光に近い光が出射する偏光装置およびその偏光装置
を用いた投写型表示装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing device that emits light close to linearly polarized light when natural light enters, and a projection type display device using the polarizing device.
【0002】[0002]
【従来の技術】大画面映像を得るために、ライトバルブ
に映像信号に応じた光学像を形成し、その光学像に光を
照射し、投写レンズによりスクリーン上に拡大投写する
方法が従来よりよく知られている。最近では、ライトバ
ルブとして液晶表示装置を用いる投写型表示装置が注目
されている。2. Description of the Related Art In order to obtain a large screen image, a method of forming an optical image according to an image signal on a light valve, irradiating the optical image with light, and enlarging and projecting it on a screen by a projection lens is better than before. Are known. Recently, attention has been paid to a projection display device using a liquid crystal display device as a light valve.
【0003】この液晶表示装置を用いた投写型表示装置
の概略構成を(図11)に示す。光源1から出た光は液
晶表示装置2を透過して投写レンズ3に入射する。液晶
表示装置2は、液晶セル4、入射側偏光板5、出射側偏
光板6で構成されている。液晶セル4は、2枚のガラス
基板7、8の間にツイストネマティック液晶9を封入し
たものであり、ガラス基板7、8の液晶層側面には、そ
れぞれマトリックス状透明電極が設けられている。入射
側偏光板5と出射側偏光板6の各偏光軸は直交してい
る。透明電極に電圧を印加しない場合、入射側偏光板を
出射した直線偏光が液晶セル4内で旋光性により90°
回転するので、透過率は最大となる。電圧を印加すると
電圧に応じて旋光性が減少し、透過率が減少する。この
ようにして、液晶表示装置2に透過率の変化として映像
信号に応じた光学像が形成され、この光学像は投写レン
ズ3によりスクリーン10上に拡大投写される。A schematic structure of a projection type display device using this liquid crystal display device is shown in FIG. The light emitted from the light source 1 passes through the liquid crystal display device 2 and enters the projection lens 3. The liquid crystal display device 2 includes a liquid crystal cell 4, an incident side polarization plate 5, and an emission side polarization plate 6. The liquid crystal cell 4 is one in which a twisted nematic liquid crystal 9 is sealed between two glass substrates 7 and 8, and matrix transparent electrodes are provided on the liquid crystal layer side surfaces of the glass substrates 7 and 8, respectively. The polarization axes of the incident side polarization plate 5 and the emission side polarization plate 6 are orthogonal to each other. When no voltage is applied to the transparent electrode, the linearly polarized light emitted from the incident side polarization plate is 90 ° in the liquid crystal cell 4 due to the optical rotatory power.
Since it rotates, the transmittance becomes maximum. When a voltage is applied, the optical rotatory power decreases according to the voltage, and the transmittance decreases. In this way, an optical image corresponding to the video signal is formed on the liquid crystal display device 2 as a change in transmittance, and this optical image is enlarged and projected on the screen 10 by the projection lens 3.
【0004】[0004]
【発明が解決しようとする課題】(図11)に示した構
成で、入射側偏光板5の自然光に対する透過率は約40
%であり、透過しない成分の大半は吸収され熱になる。
入射側偏光板5の温度が上昇すると、輻射により液晶セ
ル4も温度上昇する。偏光板と液晶は耐熱性、耐光性に
限界があり、強烈光の照射により偏光板の偏光度劣化、
液晶セルの画質劣化を生じるため、高画質の投写画像を
長期間維持することが困難である。With the structure shown in FIG. 11, the incident side polarizing plate 5 has a transmittance of about 40 for natural light.
%, And most of the non-permeable components are absorbed and become heat.
When the temperature of the incident side polarization plate 5 rises, the temperature of the liquid crystal cell 4 also rises due to radiation. The polarizing plate and liquid crystal have limited heat resistance and light resistance, and the polarization degree of the polarizing plate deteriorates due to intense light irradiation.
Since the image quality of the liquid crystal cell deteriorates, it is difficult to maintain a high quality projected image for a long period of time.
【0005】この問題に対し、一般的には液晶セル4、
偏光板5、6を冷却ファンにより冷却するが、冷却ファ
ンの騒音が問題となる。入射側偏光板5に直線偏光を入
射させれば、入射側偏光板5の光吸収量が低減すること
から、光源1の直後に偏光ビームスプリッタを配置する
方法(米国特許4,464,018号公報)が提案され
ている。また、ガラスの代わりに液体を用いた偏光ビー
ムスプリッタ(米国特許明細書第4,464,019
号)も提案されている。しかし、従来提案されている偏
光ビームスプリッタはいずれも体積が大きく、セットを
コンパクトにまとめるのが困難という問題がある。In response to this problem, generally, the liquid crystal cell 4,
Although the polarizing plates 5 and 6 are cooled by a cooling fan, noise of the cooling fan poses a problem. If linearly polarized light is made incident on the incident side polarizing plate 5, the amount of light absorption of the incident side polarizing plate 5 is reduced. Therefore, a method of disposing a polarizing beam splitter immediately after the light source 1 (US Pat. No. 4,464,018) Gazette) has been proposed. In addition, a polarizing beam splitter using a liquid instead of glass (see US Pat. No. 4,464,019).
No.) is also proposed. However, the polarization beam splitters proposed hitherto all have a large volume, and there is a problem that it is difficult to assemble a set compactly.
【0006】また、結晶体の複屈折性を利用した偏光子
であるグラントムソンプリズムやグランテイラープリズ
ムは、非常に高価であるため採用は難しい。Further, Glan-Thompson prisms and Glan-Taylor prisms, which are polarizers utilizing the birefringence of a crystal, are very expensive and difficult to adopt.
【0007】光源の直後に前置偏光板を配置することも
考えられ、前置偏光板は入射側偏光板ほど高偏光度を要
求されないので、前置偏光板としてヨウ素系偏光板に比
べて耐熱性、耐光性が有利な染料系偏光板を用いる方法
(特開昭63−4217号公報)が提案されている。し
かし、前置偏光板により入射側偏光板の発熱は抑制され
るが、光源の近くは温度が高く、前置偏光板の耐熱性、
耐光性の限界を越えてしまうので、採用は困難である。
いずれにしても、入射側偏光板の耐熱性、耐光性の限界
を克服しようとすると新たな問題を生じるため、明るく
高画質の投写画像を得るのは困難であった。It is conceivable to arrange a front polarizing plate immediately after the light source. Since the front polarizing plate is not required to have a high degree of polarization as much as the incident side polarizing plate, the front polarizing plate has a higher heat resistance than the iodine type polarizing plate. A method using a dye-based polarizing plate which is advantageous in light resistance and light resistance (Japanese Patent Laid-Open No. 63-4217) has been proposed. However, the front polarizing plate suppresses the heat generation of the incident side polarizing plate, but the temperature is high near the light source, and the heat resistance of the front polarizing plate is
It is difficult to adopt because it exceeds the limit of light resistance.
In any case, it is difficult to obtain a bright and high-quality projected image because a new problem arises when trying to overcome the heat resistance and light resistance limits of the incident side polarization plate.
【0008】[0008]
【課題を解決するための手段】この目的を達成するため
本発明の偏光装置は、光が略垂直に入射した後、斜めに
出射する入射側プリズムと、入射側プリズムから空気層
へ出射した光が斜めに入射した後、略垂直に出射する出
射側プリズムとで構成され、入射側プリズムと出射側プ
リズムが空気層を形成するそれぞれの面に入射側プリズ
ムと出射側プリズムの屈折率より高い屈折率を有する光
学薄膜を着け偏光選択性ミラー面とし、所定の光軸に沿
って入射するP偏光に対して透過率が略最大となるよう
に、それぞれの偏光選択性ミラー面を光軸に対して傾斜
させたものである。In order to achieve this object, a polarizing device of the present invention is provided with an incident-side prism in which light is incident substantially vertically and then is obliquely emitted, and light emitted from the incident-side prism to an air layer. Is formed by an exit side prism that emits light in a substantially vertical direction after obliquely entering, and the refraction index higher than the refraction index of the entrance side prism and the exit side prism is formed on each surface of the entrance side prism and the exit side prism forming an air layer. A polarization-selective mirror surface with an optical thin film having a refractive index, and each polarization-selective mirror surface with respect to the optical axis so that the transmittance is approximately maximum for P-polarized light incident along a predetermined optical axis. It is a slant.
【0009】本発明の偏光装置は入射側プリズムと出射
側プリズムの間に少なくとも1つの平行平面板を配置
し、少なくとも2つ以上の空気層を形成して用いること
もできる。また、本発明の偏光装置は、複数の入射側プ
リズムと出射側プリズムが形成する空気層の断面がジグ
ザグとなるように配置して用いることもできる。The polarizing device of the present invention can also be used by disposing at least one parallel plane plate between the entrance side prism and the exit side prism and forming at least two or more air layers. Further, the polarizing device of the present invention can also be arranged and used so that the cross section of the air layer formed by the plurality of incident-side prisms and the exit-side prism is zigzag.
【0010】また、本発明の偏光装置はライトバルブを
用いた投写型表示装置に用いることができる。Further, the polarizing device of the present invention can be used in a projection type display device using a light valve.
【0011】[0011]
【作用】光線が空気中から光学薄膜を透過して基板に斜
めに入射する場合の反射率は、S偏光入射とP偏光入射
の2つの場合に分けて考えるとよく、S偏光反射率
RS、P偏光反射率RPは次のように表わせる。The reflectance when light passes through the optical thin film from the air and is obliquely incident on the substrate can be considered separately for the two cases of S-polarized light incidence and P-polarized light incidence, and S-polarized light reflectance R S , P polarized light reflectance R P can be expressed as follows.
【0012】[0012]
【数9】 [Equation 9]
【0013】[0013]
【数10】 [Equation 10]
【0014】[0014]
【数11】 [Equation 11]
【0015】[0015]
【数12】 [Equation 12]
【0016】[0016]
【数13】 [Equation 13]
【0017】[0017]
【数14】 [Equation 14]
【0018】[0018]
【数15】 [Equation 15]
【0019】ここに、rS1、rS2、rP1、rP2は光学薄
膜により形成される境界面の反射係数であり、添字Sは
S偏光入射、添字PはP偏光入射、添字1は外部媒質と
光学薄膜の境界面、添字2は光学薄膜と基板の境界面を
表わす。dは光学薄膜の膜厚、λは空気中での光線の主
波長である。n0は外部媒質の屈折率、n1は光学薄膜の
屈折率、n2は基板の屈折率、θ0は外部媒質から光学薄
膜に入射する光線の入射角、θ1は光学薄膜中の屈折
角、θ2は基板中の屈折角であり、スネルの法則から、
次式の関係が成り立つ。Where r S1 , r S2 , r P1 and r P2 are reflection coefficients of the boundary surface formed by the optical thin film, the subscript S is S-polarized light incident, the subscript P is P-polarized light incident, and the subscript 1 is external. The interface between the medium and the optical thin film, the subscript 2 indicates the interface between the optical thin film and the substrate. d is the film thickness of the optical thin film, and λ is the dominant wavelength of the light beam in the air. n 0 is the refractive index of the external medium, n 1 is the refractive index of the optical thin film, n 2 is the refractive index of the substrate, θ 0 is the incident angle of the light ray incident on the optical thin film from the external medium, and θ 1 is the refraction in the optical thin film. The angle θ 2 is the refraction angle in the substrate, and from Snell's law,
The following equation holds.
【0020】[0020]
【数16】 [Equation 16]
【0021】以上の式から入射角θ0が与えられたと
き、RS,RPは sin2(γ/2)の関数となり、膜厚
d、波長λによって異なる値をとることが分かる。外部
媒質を空気(n0=1)、基板の屈折率をn2=1.52
とし、n1>n2 とした場合、RS、RPは、(図1)に
示すように、それぞれ2つの曲線の間(斜線を付した領
域)に存在する。2つの曲線のうち、一方は sin2(γ
/2)=1の場合であり、他方は sin2(γ/2)=0
の場合である。後者の曲線は光学薄膜の着いていない基
板と空気の境界面における反射率と等しい。From the above equation, it is understood that when the incident angle θ 0 is given, R S and R P are functions of sin 2 (γ / 2), and take different values depending on the film thickness d and the wavelength λ. The external medium is air (n 0 = 1), and the refractive index of the substrate is n 2 = 1.52.
When n 1 > n 2 , R S and R P exist between two curves (hatched areas) as shown in (FIG. 1). One of the two curves is sin 2 (γ
/ 2) = 1 and the other is sin 2 (γ / 2) = 0
Is the case. The latter curve is equal to the reflectance at the interface between the substrate without the optical thin film and the air.
【0022】RPの2つの曲線はそれぞれある入射角
θA、θBで0となり、入射角θCで2つの曲線が交差す
る。(図1)から、光学薄膜がある膜厚の場合に、RP
が最小となる入射角θ0は、θAとθBの間に存在し、ま
た、θA≦θ0≦θBのとき、RSがRPに比べてかなり高
くなることが分かる。透過率は100%から反射率を引
いたものと考えればよいから、P偏光透過率が最大とな
る入射角θ0は、θAとθBの間に存在し、θA≦θ0≦θB
のとき、P偏光透過率が100%に近くなり、S偏光透
過率が100%よりかなり小さくなる。なお、RSを高
くするには、入射角はθA≦θ0≦θCと選ぶよりも、θC
≦θ0≦θBと選ぶのが望ましい。The two curves of R P are 0 at certain incident angles θ A and θ B , and the two curves intersect at an incident angle θ C. From (Fig. 1), R P
It can be seen that the incident angle θ 0 that minimizes R is between θ A and θ B , and that when θ A ≦ θ 0 ≦ θ B , R S is considerably higher than R P. Since it can be considered that the transmittance is 100% minus the reflectance, the incident angle θ 0 at which the P-polarized light transmittance is maximum exists between θ A and θ B , and θ A ≦ θ 0 ≦ θ B
At this time, the P polarized light transmittance becomes close to 100%, and the S polarized light transmittance becomes considerably smaller than 100%. For increasing R S , the incident angle should be θ C rather than θ A ≦ θ 0 ≦ θ C.
It is desirable to select ≦ θ 0 ≦ θ B.
【0023】(図1)から、入射角θ0がθBであり、そ
してsin2(γ/2)=1となれば、RPが0%となり、
RS が非常に高い値になることが分かる。このための条
件として、(数10)、(数13)、(数14)、(数
15)から、次の2つが導かれる。From FIG. 1, if the incident angle θ 0 is θ B and sin 2 (γ / 2) = 1, then R P becomes 0%,
It can be seen that R S has a very high value. As conditions for this, the following two are derived from (Equation 10), (Equation 13), (Equation 14), (Equation 15).
【0024】[0024]
【数17】 [Equation 17]
【0025】[0025]
【数18】 [Equation 18]
【0026】(数16)、(数17)より、空気中での
入射角θ0は次のようになる。From (Equation 16) and (Equation 17), the incident angle θ 0 in air is as follows.
【0027】[0027]
【数19】 [Formula 19]
【0028】[0028]
【数20】 [Equation 20]
【0029】RPが0%となる現象は、屈折率の異なる
2つの媒質の境界面においてある入射角でRPが0%と
なる現象とよく似ている。この場合の入射角または屈折
角は、一般的にブリュースター角と呼ばれている。(数
17)、(数19)のθ0は、一般的なブリュースター
角と区別して疑似ブリュースター角と呼ぶことにする。
(数17)、(数18)の条件が成り立つときのRS
は、(数9)を利用すると、次のようになる。The phenomenon in which R P is 0%, R P is similar to the phenomenon which becomes 0% at an incident angle that is at the interface two different media having refractive index. The incident angle or refraction angle in this case is generally called Brewster's angle. Θ 0 in (Equation 17) and (Equation 19) will be referred to as a pseudo Brewster angle in distinction from a general Brewster angle.
R S when the conditions of (Equation 17) and (Equation 18) are satisfied
Is as follows by using (Equation 9).
【0030】[0030]
【数21】 [Equation 21]
【0031】(数21)でn0=1とすると、n1がn2
に比べて大きいほど、RSが大きくなることが分かる。
つまり、RS を大きくするには、ガラス基板に比べてで
きる限り高屈折率の光学薄膜を着けるとよい。When n 0 = 1 in (Equation 21), n 1 is n 2
More, that R S increases seen larger than the.
That is, in order to increase R S , it is preferable to wear an optical thin film having a refractive index as high as possible as compared with the glass substrate.
【0032】光が基板中から光学薄膜へ斜めに入射し外
部媒質へ出射する場合も同様であり、RPが0%となる
条件は(数17)、(数18)を満たしているときに成
り立つ。この場合の疑似ブリュースター角θ2も(数1
6)、(数17)、(数20)より、次のようになる。The same applies to the case where light obliquely enters the optical thin film from the substrate and exits to the external medium, and the condition that R P is 0% is that when (Equation 17) and (Equation 18) are satisfied. It holds. The pseudo Brewster angle θ 2 in this case is also (Equation 1
From (6), (Equation 17), and (Equation 20), the following is obtained.
【0033】[0033]
【数22】 [Equation 22]
【0034】また、RSも同様に(数21)より求めら
れる。S偏光透過率を低くするためにn1を高くすると
空気中での入射角θ0が大きくなり、プレートタイプの
偏光選択性ミラーでは光軸方向の厚さが極端に長くな
る。本発明の偏光装置は、斜めの空気層を形成する偏光
選択性ミラー面を備えたプリズムタイプであり、光は光
軸に対してプリズムへ略垂直に入射後、基板側から偏光
選択性ミラー面へ入射角θ2で入射し、空気層中で斜め
となって再びもう一方の偏光選択性ミラー面へ入射角θ
0で入射するようにし、さらにプリズムから略垂直で空
気中へ出射するような構成にしてあるので、偏光選択性
ミラー面の傾ける角度はθ2でよく、一般にθ2<θ0で
あるので光軸方向のスペースは少なくてすみ、偏光装置
のコンパクト化に大きな効果がある。その結果、この偏
光装置を用いて投写型表示装置をコンパクトにまとめら
れる。Similarly, R S can also be obtained from (Equation 21). Increasing n 1 to reduce the S-polarized light transmittance increases the incident angle θ 0 in the air, and the plate-type polarization-selective mirror has an extremely long thickness in the optical axis direction. The polarizing device of the present invention is a prism type provided with a polarization-selective mirror surface that forms an oblique air layer. Light enters the prism substantially perpendicular to the optical axis, and then the polarization-selective mirror surface from the substrate side. Incident on the other polarization-selective mirror surface at an angle of incidence θ 2 and then becomes oblique in the air layer.
Since the light is incident at 0 and is emitted from the prism into the air substantially vertically, the angle of inclination of the polarization-selective mirror surface may be θ 2 , and in general θ 2 <θ 0 , It requires less space in the axial direction, which is very effective in making the polarizing device compact. As a result, the projection display device can be compactly assembled using this polarizing device.
【0035】本発明の偏光装置の利点は以上明らかなよ
うに、安価で、耐熱性、耐光性に優れ、しかも厚さが薄
いことである。また、本発明の偏光装置を用いた投写型
表示装置の利点は、長期にわたり明るく高画質の投写画
像を表示でき、安価で、しかもセットがコンパクトとな
ることである。As is apparent from the above, the advantages of the polarizing device of the present invention are that it is inexpensive, has excellent heat resistance and light resistance, and is thin. Further, an advantage of the projection type display device using the polarizing device of the present invention is that a bright and high quality projection image can be displayed for a long period of time, the cost is low, and the set is compact.
【0036】[0036]
【実施例】本発明の実施例について、添付図面を参照し
ながら説明する。Embodiments of the present invention will be described with reference to the accompanying drawings.
【0037】(図2)は本発明の基本となる偏光装置の
一実施例の構成を示すもので、11は入射側プリズム、
12は出射側プリズム、13は空気層、14は偏光選択
性ミラー面である。空気層13はスペーサー15によ
り、厚さが約0.1mmとなるように略平行に形成され
ている。FIG. 2 shows the construction of an embodiment of the polarizing device which is the basis of the present invention.
Reference numeral 12 is an exit side prism, 13 is an air layer, and 14 is a polarization selective mirror surface. The air layer 13 is formed substantially in parallel by the spacer 15 so as to have a thickness of about 0.1 mm.
【0038】偏光選択性ミラー面14の構成を(図3)
に示す。ガラス基板16に光学薄膜17が設けられてい
る。光学薄膜17は吸収が少なく、高屈折率のものを用
いるのが望ましい。光学薄膜17として可視光の領域で
使用できる材料とその屈折率を(表1)に示す。この中
で、屈折率が2.3と最も高い二酸化チタン、二酸化セ
リウム、硫化亜鉛のいずれかを光学薄膜17として用い
るとよい。The configuration of the polarization-selective mirror surface 14 (FIG. 3)
Shown in. An optical thin film 17 is provided on the glass substrate 16. It is desirable that the optical thin film 17 has a low absorption and a high refractive index. Table 1 shows materials that can be used as the optical thin film 17 in the visible light region and their refractive indexes. Among these, titanium dioxide, cerium dioxide, or zinc sulfide having the highest refractive index of 2.3 is preferably used as the optical thin film 17.
【0039】[0039]
【表1】 [Table 1]
【0040】ガラス基板16中から光学薄膜17への入
射角θ2、或いは空気中から光学薄膜17への入射角θ0
が(数16)、(数17)を満たし、光学薄膜17の
厚さdが主波長において(数18)を満たすようにする
とよい。外部媒質を空気、光学薄膜17を二酸化チタ
ン、基板16を光学ガラスとすると、(表2)に示すよ
うに、n0 =1、n1=2.3、n2=1.52の場合、
θ0=72.2°、θ1=24.5°、θ2=38.8゜
となる。主波長をλ=500nmとすると、d=59.
7nmとなる。このとき、(数21)からRS =0.7
18となる。The incident angle θ 2 from the glass substrate 16 to the optical thin film 17, or the incident angle θ 0 from the air to the optical thin film 17.
May satisfy (Equation 16) and (Equation 17), and the thickness d of the optical thin film 17 may satisfy (Equation 18) at the dominant wavelength. Assuming that the external medium is air, the optical thin film 17 is titanium dioxide, and the substrate 16 is optical glass, as shown in (Table 2), when n 0 = 1, n 1 = 2.3, and n 2 = 1.52,
θ 0 = 72.2 °, θ 1 = 24.5 °, and θ 2 = 38.8 °. If the dominant wavelength is λ = 500 nm, d = 59.
It becomes 7 nm. At this time, R S = 0.7 from (Equation 21)
It will be 18.
【0041】[0041]
【表2】 [Table 2]
【0042】(表2)に示した構成で、(図2)に示し
た偏光装置に平行光が入射する場合の分光透過率特性を
(図4)に示す。入射角θ0、θ2は疑似ブリュースター
角となるθ0=72.2゜、θ2=38.8゜である。波
長領域400〜700nmでP偏光透過率は95%以上
になり、S偏光透過率は10%以下となる。同一の光学
薄膜が2面あるために、S偏光透過率は非常に小さくな
る。(図4)から、(図2)に示した偏光装置は、自然
光が入射した場合に、直線偏光に近い光を効率良く取り
出せることが分かる。FIG. 4 shows the spectral transmittance characteristics when parallel light is incident on the polarizing device shown in FIG. 2 with the configuration shown in Table 2. The incident angles θ 0 and θ 2 are θ 0 = 72.2 ° and θ 2 = 38.8 °, which are pseudo Brewster angles. In the wavelength region of 400 to 700 nm, the P polarized light transmittance becomes 95% or more and the S polarized light transmittance becomes 10% or less. Since there are two surfaces of the same optical thin film, the S polarized light transmittance becomes very small. It can be seen from (FIG. 4) that the polarizing device shown in (FIG. 2) can efficiently extract light close to linearly polarized light when natural light enters.
【0043】偏光装置のS偏光透過率が約20%より小
さければ、入射側偏光板の温度上昇抑制の効果が十分に
認められることを確認している。偏光装置のS偏光透過
率を約20%より小さくするには、偏光選択性ミラー1
面あたりのS偏光反射率がR S ≦0.55となればよ
く、n0=1、n2=1.52とすると、(数21)から
n1 ≧2.0の条件が求められる。この場合の薄膜材料
は、二酸化チタン、二酸化セリウム、硫化亜鉛、五酸化
二タンタル、二酸化ジルコニウム、三酸化二インジウ
ム、酸化亜鉛、二酸化ハフニウムのいずれかを用いれ
ば、光学特性、耐久性ともに良好となる。The S-polarized light transmittance of the polarizing device is less than about 20%.
If not, the effect of suppressing the temperature rise of the incident side polarization plate is sufficient.
It is confirmed that it is recognized. S-polarized light transmission of the polarizing device
In order to make the ratio smaller than about 20%, the polarization selective mirror 1
S-polarized reflectance per surface is R S If ≦ 0.55
N, n0= 1, n2= 1.52, from (Equation 21)
n1 The condition of ≧ 2.0 is required. Thin film material in this case
Is titanium dioxide, cerium dioxide, zinc sulfide, pentoxide
Ditantalum, zirconium dioxide, diindium trioxide
Aluminum, zinc oxide, or hafnium dioxide.
Thus, the optical properties and durability will be good.
【0044】(図5)に示すように、入射側プリズム1
1、出射側プリズム12の間に平行平面板18を配置
し、偏光選択性ミラー面14が形成する空気層13を2
つにすれば、S偏光透過率をさらに低くすることができ
る。この場合のS偏光透過率を約20%より小さくする
には、RS ≦0.33となればよく、n0=1、n2=
1.52とすると、(数21)からn1 ≧1.7の条件
が求められる。この場合の薄膜材料は、二酸化チタン、
二酸化セリウム、硫化亜鉛、五酸化二タンタル、二酸化
ジルコニウム、三酸化二インジウム、酸化亜鉛、二酸化
ハフニウム、三酸化二イットリウム、一酸化シリコンの
いずれかを用いれば、光学特性、耐久性ともに良好とな
る。偏光選択性ミラーの面数が多くなるほど、S偏光透
過率を小さくできる。As shown in FIG. 5, the incident side prism 1
1, a plane parallel plate 18 is arranged between the exit side prisms 12, and the air layer 13 formed by the polarization selective mirror surface 14 is formed into two layers.
In other words, the S-polarized light transmittance can be further reduced. In order to make the S-polarized light transmittance in this case smaller than about 20%, it suffices that R S ≦ 0.33, where n 0 = 1 and n 2 =
If it is set to 1.52, the condition of n 1 ≧ 1.7 is obtained from (Equation 21). The thin film material in this case is titanium dioxide,
If any one of cerium dioxide, zinc sulfide, tantalum pentoxide, zirconium dioxide, diindium trioxide, zinc oxide, hafnium dioxide, yttrium trioxide, and silicon monoxide is used, good optical characteristics and durability will be obtained. As the number of surfaces of the polarization selective mirror increases, the S polarized light transmittance can be reduced.
【0045】また、(図6)および(図7)に示すよう
に、入射側プリズム11、出射側プリズム12、或いは
平行平面板18をそれぞれ複数に分割して空気層13の
断面がジグザグとなるように配置すれば、光軸方向の厚
さが薄くなり、偏光装置をよりコンパクトにできる。Further, as shown in (FIG. 6) and (FIG. 7), the entrance side prism 11, the exit side prism 12, or the plane parallel plate 18 is divided into a plurality of parts, respectively, and the air layer 13 has a zigzag cross section. With this arrangement, the thickness in the optical axis direction becomes thin, and the polarizing device can be made more compact.
【0046】偏光選択性ミラー14によって反射された
不要なS偏光が、偏光装置から斜め方向に出射し、入射
側偏光板に入射する場合がある。この場合には入射側プ
リズム11、および出射側プリズムのP偏光が透過する
面以外に砂摺り加工、および黒色塗装を施し、不要なS
偏光が拡散、または吸収されるようにするとよい。Unwanted S-polarized light reflected by the polarization-selective mirror 14 may emerge obliquely from the polarizing device and enter the incident-side polarization plate. In this case, the surface of the incident side prism 11 and the side of the exit side prism through which P-polarized light is transmitted is sanded and black-painted to eliminate unnecessary S.
The polarized light may be diffused or absorbed.
【0047】(図8)は本発明の偏光装置を前置偏光装
置として用いた投写型表示装置の一実施例の構成を示す
もので、32は光源、33は前置偏光装置、34は入射
側偏光板、35は液晶セル、36は出射側偏光板、37
は投写レンズである。前置偏光装置33は(図6)に示
したものと同一の構成である。FIG. 8 shows the construction of an embodiment of a projection type display device using the polarizing device of the present invention as a front polarizing device. 32 is a light source, 33 is a front polarizing device, and 34 is an incident light. Side polarizing plate, 35 is a liquid crystal cell, 36 is an outgoing side polarizing plate, 37
Is a projection lens. The front polarization device 33 has the same configuration as that shown in FIG.
【0048】光源32はランプと凹面鏡で構成され、ラ
ンプから出た光は凹面鏡により集光されて、前置偏光装
置33、入射側偏光板34、液晶セル35、出射側偏光
板36の順に透過して、投写レンズ37に入射する。入
射側偏光板34の偏光軸38と出射側偏光板36の偏光
軸39は、それぞれ画面垂直方向40に対して+45
°、−45°としている。前置偏光装置33は、隣接す
る偏光選択性ミラー面14の交線41が入射側偏光板3
4の偏光軸38と垂直となるように配置している。The light source 32 is composed of a lamp and a concave mirror, and the light emitted from the lamp is condensed by the concave mirror and is transmitted in the order of the front polarizing device 33, the incident side polarizing plate 34, the liquid crystal cell 35, and the emitting side polarizing plate 36. Then, it enters the projection lens 37. The polarization axis 38 of the entrance-side polarization plate 34 and the polarization axis 39 of the exit-side polarization plate 36 are +45 relative to the screen vertical direction 40, respectively.
And -45 °. In the pre-polarizer 33, the line 41 of intersection of the adjacent polarization-selective mirror surfaces 14 has an incident-side polarization plate 3
It is arranged so as to be perpendicular to the polarization axis 38 of No. 4.
【0049】光源32からの自然光が光軸31に沿って
前置偏光装置33に入射すると、光軸31に沿って強い
P成分42と弱いS成分43が出射し、光軸31に対し
て斜め方向に強いS成分が出射する。この強いS成分は
前置偏光装置33と入射側偏光板34が離れていれば、
入射側偏光板34には入射しない。P成分42は入射側
偏光板34を最大の透過率で透過し、S成分は入射側偏
光板34で吸収される。前置偏光装置33を用いない場
合に比べると、入射側偏光板34の光の吸収量が大幅に
低減するので、発熱量が少なくなり、入射側偏光板34
の温度上昇が抑制される。また、液晶セル35の温度上
昇も抑制される。その結果、入射側偏光板34と液晶セ
ル35の信頼性が向上する。When natural light from the light source 32 is incident on the pre-polarizer 33 along the optical axis 31, a strong P component 42 and a weak S component 43 are emitted along the optical axis 31 and are oblique to the optical axis 31. A strong S component is emitted in the direction. If the pre-polarizer 33 and the incident side polarization plate 34 are separated from each other, this strong S component is
It does not enter the incident side polarization plate 34. The P component 42 is transmitted through the incident side polarizing plate 34 with the maximum transmittance, and the S component is absorbed by the incident side polarizing plate 34. Compared with the case where the front polarizing device 33 is not used, the amount of light absorbed by the incident side polarizing plate 34 is significantly reduced, so that the amount of heat generation is reduced and the incident side polarizing plate 34 is reduced.
Temperature rise is suppressed. Further, the temperature rise of the liquid crystal cell 35 is also suppressed. As a result, the reliability of the incident side polarization plate 34 and the liquid crystal cell 35 is improved.
【0050】本発明の偏光装置は、光軸方向の厚さが薄
くなるので、投写型表示装置の中で偏光装置を配置する
場所の制約が少なくなる。例えば、光源32と液晶セル
35の間に平面ミラーと前置偏光装置33を配置するこ
とができ、平面ミラーの使用により投写型表示装置をコ
ンパクトにすることもできる。Since the polarizing device of the present invention is thin in the direction of the optical axis, there are less restrictions on the location of the polarizing device in the projection display device. For example, a plane mirror and a front polarizing device 33 can be arranged between the light source 32 and the liquid crystal cell 35, and the projection display device can be made compact by using the plane mirror.
【0051】投写型表示装置のランプとして、ハロゲン
ランプ、キセノンランプ、メタルハライドランプを用い
ることが考えられる。プリズム接合型偏光ビームスプリ
ッタは、高温になると接合に用いる接着剤が変色すると
いう問題があるため、光源の近くに配置することができ
ない。しかし、本発明の偏光装置は、ガラス基板、光学
薄膜の耐熱性が良好であるうえ、接着剤を使用しないの
で光源に近接して配置することができる。It is possible to use a halogen lamp, a xenon lamp, or a metal halide lamp as the lamp of the projection display device. The prism-junction type polarization beam splitter cannot be arranged near the light source because the adhesive used for the junction changes its color when the temperature rises. However, in the polarizing device of the present invention, the glass substrate and the optical thin film have good heat resistance, and since an adhesive is not used, the polarizing device can be arranged close to the light source.
【0052】ライトバルブとして液晶表示装置を用いる
場合、投写画像の画質を左右対称とするために、(図
8)に示したように、入射側偏光板34と出射側偏光板
36の各偏光軸38、39を画面垂直方向40に対して
+45°および−45°とするのが一般的である。この
場合、前置偏光装置33からの出射光が効率良く入射側
偏光板34を透過する必要があるので、前置偏光装置3
3の各側面が画面垂直方向40を基準にして45°傾斜
させて配置することになる。これでは、セット全体をコ
ンパクトにまとめるのが困難である。セットをコンパク
トにまとめるには、前置偏光装置33の各側面が画面垂
直方向および画面水平方向に向くのが望ましい。When a liquid crystal display device is used as the light valve, in order to make the image quality of the projected image symmetrical, as shown in FIG. 8, the polarization axes of the incident side polarization plate 34 and the emission side polarization plate 36 are adjusted. Generally, 38 and 39 are + 45 ° and −45 ° with respect to the screen vertical direction 40. In this case, the outgoing light from the pre-polarization device 33 needs to efficiently pass through the incident-side polarization plate 34, so the pre-polarization device 3
Each side surface of 3 is inclined by 45 ° with respect to the vertical direction 40 of the screen. This makes it difficult to compact the entire set. In order to make the set compact, it is desirable that each side surface of the front polarization device 33 is oriented in the screen vertical direction and the screen horizontal direction.
【0053】このためには、(図9)に示すように、入
射側偏光板34の直前に1/2波長板43を配置すると
よい。前置偏光装置33から画面垂直方向に向いた直線
偏光44が出射し、1/2波長板43はその進相軸45
が画面垂直方向40に対して22.5°の方向に向いて
いる。前置偏光装置33からの直線偏光44が1/2波
長板43に入射すると、画面垂直方向に対して偏波面が
45°の方向に向いた直線偏光が出射し、この直線偏光
は入射側偏光板34を透過する。1/2波長板43は、
その進相軸または遅相軸の方向が、前置偏光装置33か
ら出るP偏光成分44の方向と入射側偏光板34の偏光
軸38の方向を2等分する方向に向くように配置すると
よい。1/2波長板は、進相軸に向いた直線偏光と遅相
軸に向いた直線偏光が同一位相で入射した場合に、出射
面で両者の位相差が1/2波長となるものである。(図
9)の構成では、光源32から出る光のスペクトルが広
いので、全波長で位相差を1/2波長とすることは不可
能であるが、視感度の高い緑のスペクトルで位相差が1
/2波長となるようにすれば、実用上問題はないようで
ある。For this purpose, as shown in (FIG. 9), it is advisable to dispose a half-wave plate 43 immediately before the incident side polarization plate 34. Linearly polarized light 44 directed in the vertical direction to the screen is emitted from the front polarization device 33, and the half-wave plate 43 has its fast axis 45.
Is oriented in a direction of 22.5 ° with respect to the screen vertical direction 40. When the linearly polarized light 44 from the front polarizer 33 enters the half-wave plate 43, the linearly polarized light whose polarization plane is oriented at 45 ° with respect to the vertical direction of the screen is emitted. It penetrates the plate 34. The half-wave plate 43 is
The direction of the fast axis or the slow axis may be arranged so as to bisect the direction of the P-polarized component 44 emitted from the pre-polarizer 33 and the direction of the polarization axis 38 of the incident side polarization plate 34. .. The half-wave plate is such that when the linearly polarized light directed to the fast axis and the linearly polarized light directed to the slow axis are incident at the same phase, the phase difference between the two becomes ½ wavelength at the exit surface. .. In the configuration of (FIG. 9), since the spectrum of the light emitted from the light source 32 is wide, it is impossible to reduce the phase difference to ½ wavelength at all wavelengths, but the phase difference is high in the green spectrum with high visibility. 1
It seems that there is no practical problem if the wavelength is set to / 2.
【0054】以下に、本発明の投写型表示装置の他の実
施例について説明する。(図10)はその構成を示した
ものであり、61は光源、62は前置偏光装置、66,
67,68は1/2波長板、69,70,71は入射側
偏光板、72,73,74は液晶セル、75,76,7
7は出射側偏光板、81は投写レンズである。前置偏光
装置62は(図6)に示したものと同じである。Another embodiment of the projection type display device of the present invention will be described below. (FIG. 10) shows its configuration, in which 61 is a light source, 62 is a front polarization device, 66,
67 and 68 are 1/2 wavelength plates, 69, 70 and 71 are incident side polarization plates, 72, 73 and 74 are liquid crystal cells, and 75, 76 and 7
Reference numeral 7 is an exit side polarization plate, and 81 is a projection lens. The pre-polarizer 62 is the same as shown in (FIG. 6).
【0055】光源61は赤、緑、青の3原色の色成分を
含む光を出射する。光源61からの光は前置偏光装置6
2に入射し、画面垂直方向に向いた直線偏光が出射す
る。直線偏光はダイクロイックミラー63,64,平面
ミラー65を組み合わせた色分解光学系に入射し、3つ
の原色光に分解される。各原色光は、それぞれフィール
ドレンズ66,67,68、1/2波長板69,70,
71、入射側偏光板72,73,74、液晶セル75,
76,77、出射側偏光板78,79,80の順に透過
する。各出射側偏光板78,79,80を出射した光
は、ダイクロイックミラー81,82、平面ミラー83
を組み合わせた色合成光学系により、1つの光に合成さ
れた後、投写レンズ84に入射する。この場合も、入射
側偏光板72,73,74を最大の透過率で透過するよ
うに1/2波長板69,70,71が配置されている。
前置偏光装置62が光軸60に沿って直線偏光に近い光
を出射し、不要な偏光成分が光軸60に沿って斜め方向
に出射する。前置偏光装置62から入射側偏光板72,
73,74までの距離が長いため、前置偏光装置62か
ら出射する不要偏光成分は入射側偏光板72,73,7
4には入射しないので、入射側偏光板72,73,74
の吸収が低減し、入射側偏光板72,73,74の発熱
は抑制される。また、前置偏光装置62は耐熱性が良好
なため前置偏光装置62を光源61に近接して配置する
ことができ、また前置偏光装置62が薄いのでセットを
コンパクトにまとめることができる。The light source 61 emits light containing color components of three primary colors of red, green and blue. The light from the light source 61 is the front polarization device 6
It is incident on 2 and linearly polarized light oriented in the vertical direction of the screen is emitted. The linearly polarized light enters a color separation optical system that is a combination of dichroic mirrors 63 and 64 and a plane mirror 65 and is separated into three primary color lights. The respective primary color lights are field lenses 66, 67, 68, half-wave plates 69, 70,
71, incident side polarization plates 72, 73, 74, liquid crystal cell 75,
76, 77 and the outgoing side polarization plates 78, 79, 80 are transmitted in this order. The light emitted from each of the emission side polarization plates 78, 79, 80 is dichroic mirrors 81, 82 and a plane mirror 83.
After being combined into one light by the color combining optical system in which the light is combined, the light is incident on the projection lens 84. Also in this case, the half-wave plates 69, 70, 71 are arranged so as to transmit the incident-side polarization plates 72, 73, 74 with the maximum transmittance.
The front polarization device 62 emits light close to linearly polarized light along the optical axis 60, and unnecessary polarization components are emitted obliquely along the optical axis 60. From the front polarizing device 62 to the incident side polarizing plate 72,
Since the distances to 73 and 74 are long, unnecessary polarization components emitted from the front polarization device 62 are incident side polarization plates 72, 73 and 7
4 does not enter, so the incident side polarization plates 72, 73, 74
Of the incident side polarization plates 72, 73, 74 is suppressed. Further, since the front polarizing device 62 has good heat resistance, the front polarizing device 62 can be arranged close to the light source 61, and since the front polarizing device 62 is thin, the set can be compacted.
【0056】また、(図10)に示した構成では、前置
偏光装置62から斜め方向に出射するS成分が入射側偏
光板73に入射し、入射側偏光板73の発熱が大きくな
る場合がある。この場合には、前置偏光装置62を(図
10)に示した状態から90゜回転して配置し、前置偏
光装置62から出射するP成分の方向が画面垂直方向と
平行になるようにするとよい。こうすることにより、入
射側偏光板73の発熱が抑制される。さらに、前置偏光
装置62から斜め方向に出射するS成分が色分解光学系
の匡体の内壁で吸収されるようにするとよい。Further, in the structure shown in FIG. 10, the S component obliquely emitted from the front polarizing device 62 may enter the incident side polarizing plate 73, and the heat generation of the incident side polarizing plate 73 may increase. is there. In this case, the front polarization device 62 is rotated by 90 ° from the state shown in FIG. 10 so that the direction of the P component emitted from the front polarization device 62 is parallel to the vertical direction of the screen. Good to do. By doing so, heat generation of the incident side polarization plate 73 is suppressed. Further, the S component emitted obliquely from the front polarization device 62 may be absorbed by the inner wall of the housing of the color separation optical system.
【0057】以上の実施例ではライトバルブとして液晶
表示装置を用いた例を示したが、電気光学結晶など映像
信号に応じて旋光性や複屈折性などの変化として光学像
を形成し、少なくとも入射側に偏光板を用いるものなら
ライトバルブとして用いることができる。Although the liquid crystal display device is used as a light valve in the above embodiments, an optical image is formed as a change in optical rotatory power or birefringence according to a video signal such as an electro-optical crystal, and at least an incident light is incident. If a polarizing plate is used on the side, it can be used as a light valve.
【0058】[0058]
【発明の効果】以上のように本発明の偏光装置は、ガラ
ス基板に光学薄膜を着けたものであるので、安価で、耐
熱性、耐光性に優れ、しかも斜めの空気層を形成する偏
光選択性ミラー面を備えたプリズムタイプであるので厚
さの薄い偏光装置を提供することができ、また、この偏
光装置を用いることにより入射側偏光板の信頼性が向上
するので、長期にわたり明るく高画質の投写画像を表示
でき、安価で、しかもコンパクトな投写型表示装置を提
供することができ、非常に大きな効果がある。As described above, since the polarizing device of the present invention has the optical thin film attached to the glass substrate, it is inexpensive, excellent in heat resistance and light resistance, and moreover, polarized light selection which forms an oblique air layer. Since it is a prism type with a reflective mirror surface, it is possible to provide a thin polarizing device, and by using this polarizing device, the reliability of the incident side polarizing plate is improved, so that it is bright and has high image quality for a long time. It is possible to provide an inexpensive and compact projection-type display device capable of displaying the projection image of, and it is very effective.
【図1】偏光選択性ミラーの反射率と入射角の関係を示
す特性図FIG. 1 is a characteristic diagram showing the relationship between the reflectance and the incident angle of a polarization selective mirror.
【図2】本発明の偏光装置の一実施例の構成図FIG. 2 is a configuration diagram of an embodiment of a polarizing device of the present invention.
【図3】偏光選択性ミラーの構成を示す概略構成図FIG. 3 is a schematic configuration diagram showing a configuration of a polarization selective mirror.
【図4】本発明の偏光装置の分光透過率特性を示す特性
図FIG. 4 is a characteristic diagram showing spectral transmittance characteristics of the polarizing device of the present invention.
【図5】本発明の偏光装置の他の実施例の構成を示す概
略構成図FIG. 5 is a schematic configuration diagram showing the configuration of another embodiment of the polarizing device of the present invention.
【図6】本発明の偏光装置の他の実施例の構成を示す概
略構成図FIG. 6 is a schematic configuration diagram showing the configuration of another embodiment of the polarizing device of the present invention.
【図7】本発明の偏光装置の他の実施例の構成を示す概
略構成図FIG. 7 is a schematic configuration diagram showing the configuration of another embodiment of the polarizing device of the present invention.
【図8】本発明の投写型表示装置の一実施例の構成を示
す斜視図FIG. 8 is a perspective view showing the configuration of an embodiment of the projection display device of the present invention.
【図9】本発明の投写型表示装置の他の実施例の構成を
示す斜視図FIG. 9 is a perspective view showing the configuration of another embodiment of the projection display device of the present invention.
【図10】本発明の投写型表示装置の他の実施例の構成
を示す概略構成図FIG. 10 is a schematic configuration diagram showing the configuration of another embodiment of the projection display device of the present invention.
【図11】従来の投写型表示装置の概略構成図FIG. 11 is a schematic configuration diagram of a conventional projection display device.
11 入射側プリズム 12 出射側プリズム 13 空気層 14 偏光選択性ミラー面 33 偏光装置 34 入射側偏光板 35 液晶セル 36 出射側偏光板 37 投写レンズ 62 偏光装置 72,73,74 入射側偏光板 75,76,77 液晶セル 78,79,80 出射側偏光板 84 投写レンズ 11 incident side prism 12 emission side prism 13 air layer 14 polarization selective mirror surface 33 polarizing device 34 incident side polarizing plate 35 liquid crystal cell 36 emission side polarizing plate 37 projection lens 62 polarizing device 72, 73, 74 incident side polarizing plate 75, 76,77 Liquid crystal cell 78,79,80 Emission side polarizing plate 84 Projection lens
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03B 33/12 7316−2K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03B 33/12 7316-2K
Claims (21)
入射側プリズムと、前記入射側プリズムから空気層へ出
射した光が斜めに入射した後、略垂直に出射する出射側
プリズムとで構成され、前記入射側プリズムと前記出射
側プリズムが前記空気層を形成するそれぞれの面に前記
入射側プリズムと前記出射側プリズムの屈折率より高い
屈折率を有する光学薄膜を着けて偏光選択性ミラー面と
し、所定の光軸に沿って入射するP偏光に対して透過率
が略最大となるように、それぞれの前記偏光選択性ミラ
ー面を前記光軸に対して傾斜させた偏光装置。1. An incident-side prism that obliquely emits light after being incident substantially vertically, and an outgoing-side prism that emits light that is obliquely incident to the air layer from the incident-side prism and then substantially vertically exits. The incident-side prism and the exit-side prism are provided with optical thin films having a refractive index higher than that of the incident-side prism and the exit-side prism on their respective surfaces forming the air layer. A polarization device in which each of the polarization selective mirror surfaces is tilted with respect to the optical axis so that the transmittance becomes substantially maximum for P-polarized light incident along a predetermined optical axis as a mirror surface.
をn1、プリズムの屈折率をn2、前記光学薄膜の膜厚を
d、空気層への出射角、または空気層からの入射角をθ
0、前記光学薄膜中の屈折角をθ1、前記プリズム中から
前記光学薄膜面への入射角、または前記光学薄膜面から
前記プリズム中への屈折角をθ2、空気中における主波
長をλとして、次の条件を満足する請求項1記載の偏光
装置。 【数1】 【数2】 2. The refractive index in air is n 0 , the refractive index of the optical thin film is n 1 , the refractive index of the prism is n 2 , the film thickness of the optical thin film is d, the exit angle to the air layer, or the air layer. Angle of incidence from θ
0 , the refraction angle in the optical thin film is θ 1 , the incident angle from the prism to the optical thin film surface, or the refraction angle from the optical thin film surface into the prism is θ 2 , the main wavelength in air is λ The polarizing device according to claim 1, wherein the following conditions are satisfied. [Equation 1] [Equation 2]
項1記載の偏光装置。3. The polarizing device according to claim 1, wherein the optical thin film has a refractive index of 2.0 or more.
ム、硫化亜鉛のいずれかである請求項1記載の偏光装
置。4. The polarizing device according to claim 1, wherein the optical thin film is one of titanium dioxide, cerium dioxide and zinc sulfide.
入射側プリズムと、隣合った面と両側で互いに空気層と
形成する少なくとも1つの平行平面板と、光が前記空気
層から斜めに入射した後、略垂直に出射する出射側プリ
ズムとで構成され、前記入射側プリズム、前記平行平面
板、前記出射側プリズムが少なくとも2つの前記空気層
を形成するそれぞれの面に前記入射側プリズム、前記平
行平面板、前記出射側プリズムの屈折率より高い屈折率
を有する光学薄膜を着けて偏光選択性ミラー面とし、所
定の光軸に沿って入射するP偏光に対して透過率が略最
大となるように、それぞれの前記偏光選択性ミラー面を
前記光軸に対して傾斜させた偏光装置。5. An incident-side prism that obliquely exits after light is incident substantially vertically, at least one plane-parallel plate that forms an air layer on adjacent surfaces and on both sides, and light is emitted from the air layer. An incident-side prism that obliquely enters and then exits in a substantially vertical direction. The incident-side prism, the parallel plane plate, and the exit-side prism form at least two air layers on the incident side. A polarization selective mirror surface is formed by attaching an optical thin film having a refractive index higher than that of the prism, the parallel plane plate, and the exit side prism, and the transmittance of P polarized light incident along a predetermined optical axis is substantially the same. A polarization device in which the respective polarization-selective mirror surfaces are tilted with respect to the optical axis so as to maximize.
をn1、プリズムまたは平行平面板の屈折率をn2、前記
光学薄膜の膜厚をd、空気層への出射角、または空気層
からの入射角をθ0、前記光学薄膜中の屈折角をθ1、前
記プリズムまたは平行平面板中から前記光学薄膜面への
入射角、または前記光学薄膜面から前記プリズムまたは
平行平面板中への屈折角をθ2、空気中における主波長
をλとして、次の条件を満足する請求項5記載の偏光装
置。 【数3】 【数4】 6. The refractive index in air is n 0 , the refractive index of an optical thin film is n 1 , the refractive index of a prism or a plane-parallel plate is n 2 , the film thickness of the optical thin film is d, and the emission angle to an air layer. , The incident angle from the air layer is θ 0 , the refraction angle in the optical thin film is θ 1 , the incident angle from the prism or the plane-parallel plate to the optical thin film surface, or the optical thin film surface is the prism or the parallel surface. The polarizing device according to claim 5, wherein the following conditions are satisfied, where the angle of refraction into the plane plate is θ 2 , and the dominant wavelength in air is λ. [Equation 3] [Equation 4]
項5記載の偏光装置。7. The polarizing device according to claim 5, wherein the optical thin film has a refractive index of 1.7 or more.
複数の入射側プリズムと、前記入射側プリズムから空気
層へ出射した光が斜めに入射した後、略垂直に出射する
複数の出射側プリズムとで構成され、複数の前記入射側
プリズムと前記出射側プリズムが形成する前記空気層は
断面がジグザグとなるように配置し、前記空気層を形成
するそれぞれの面に前記入射側プリズムと前記出射側プ
リズムの屈折率より高い屈折率を有する光学薄膜を着け
て偏光選択性ミラー面とし、所定の光軸に沿って入射す
るP偏光に対して透過率が略最大となるように、それぞ
れの前記偏光選択性ミラー面を前記光軸に対して傾斜さ
せた偏光装置。8. A plurality of incident-side prisms, which are obliquely emitted after light is incident substantially vertically, and a plurality of light, which are emitted from the incident-side prism to an air layer, are obliquely incident and subsequently emitted substantially vertically. The air layer formed by a plurality of incident side prisms and the output side prism is arranged so that the cross section has a zigzag shape, and the incident side prisms are formed on the respective surfaces forming the air layer. And an optical thin film having a refractive index higher than that of the exit-side prism is attached to form a polarization-selective mirror surface so that the transmittance becomes substantially maximum for P-polarized light incident along a predetermined optical axis. A polarization device in which each of the polarization selective mirror surfaces is inclined with respect to the optical axis.
をn1、プリズムの屈折率をn2、前記光学薄膜の膜厚を
d、空気層への出射角、または空気層からの入射角をθ
0、前記光学薄膜中の屈折角をθ1、前記プリズム中から
前記光学薄膜面への入射角、または前記光学薄膜面から
前記プリズム中への屈折角をθ2、空気中における主波
長をλとして、次の条件を満足する請求項8記載の偏光
装置。 【数5】 【数6】 9. The refractive index in air is n 0 , the refractive index of the optical thin film is n 1 , the refractive index of the prism is n 2 , the film thickness of the optical thin film is d, the exit angle to the air layer, or the air layer. Angle of incidence from θ
0 , the refraction angle in the optical thin film is θ 1 , the incident angle from the prism to the optical thin film surface, or the refraction angle from the optical thin film surface into the prism is θ 2 , the main wavelength in air is λ The polarizing device according to claim 8, wherein the following conditions are satisfied. [Equation 5] [Equation 6]
求項8記載の偏光装置。10. The polarizing device according to claim 8, wherein the optical thin film has a refractive index of 2.0 or more.
ム、硫化亜鉛のいずれかである請求項8記載の偏光装
置。11. The polarizing device according to claim 8, wherein the optical thin film is one of titanium dioxide, cerium dioxide and zinc sulfide.
る複数の入射側プリズムと、隣合った面と互いに空気層
と形成する複数の平行平面板と、光が前記空気層から斜
めに入射した後、略垂直に出射する複数の出射側プリズ
ムとで構成され、複数の前記入射側プリズム、前記平行
平面板、前記出射側プリズムが形成する少なくとも2つ
の前記空気層は断面がジグザグとなるように配置し、前
記空気層を形成するそれぞれの面に前記入射側プリズ
ム、前記平行平面板、前記出射側プリズムの屈折率より
高い屈折率を有する光学薄膜を着けて偏光選択性ミラー
面とし、所定の光軸に沿って入射するP偏光に対して透
過率が略最大となるように、それぞれの前記偏光選択性
ミラー面を前記光軸に対して傾斜させた偏光装置。12. A plurality of incident-side prisms that obliquely exit after light is incident substantially vertically, a plurality of parallel plane plates that form air layers adjacent to each other, and light is oblique from the air layers. And at least two air layers formed by the plurality of incident-side prisms, the parallel flat plate, and the emitting-side prism have a zigzag cross section. And the polarization prism surface is formed by attaching an optical thin film having a refractive index higher than that of the incident-side prism, the parallel plane plate, and the exit-side prism to each surface forming the air layer. A polarizing device in which each of the polarization selective mirror surfaces is inclined with respect to the optical axis so that the transmittance of the P polarized light incident along the predetermined optical axis becomes substantially maximum.
率をn1、プリズムまたは平行平面板の屈折率をn2、前
記光学薄膜の膜厚をd、空気層への出射角、または空気
層からの入射角をθ0、前記光学薄膜中の屈折角をθ1、
前記プリズムまたは平行平面板中から前記光学薄膜面へ
の入射角、または前記光学薄膜面から前記プリズムまた
は平行平面板中への屈折角をθ2、空気中における主波
長をλとして、次の条件を満足する請求項12記載の偏
光装置。 【数7】 【数8】 13. The refractive index in air is n 0 , the refractive index of an optical thin film is n 1 , the refractive index of a prism or a plane-parallel plate is n 2 , the film thickness of the optical thin film is d, and the emission angle to an air layer is set. , Or the incident angle from the air layer is θ 0 , the refraction angle in the optical thin film is θ 1 ,
The incident angle from the prism or the plane parallel plate to the optical thin film surface, or the refraction angle from the optical thin film surface into the prism or the plane parallel plate is θ 2 , the main wavelength in air is λ, the following conditions: The polarizing device according to claim 12, which satisfies: [Equation 7] [Equation 8]
求項12記載の偏光装置。14. The polarizing device according to claim 12, wherein the optical thin film has a refractive index of 1.7 or more.
光を取り出す偏光装置と、少なくとも入射側に偏光板を
有するライトバルブと、前記ライトバルブに形成された
光学像をスクリーン上に拡大投写する投写レンズとを具
備し、前記偏光装置は請求項1から請求項14のいずれ
かに記載の偏光装置であり、前記偏光装置の出射光が前
記入射側偏光板を略最大透過率で透過するようにした投
写型表示装置。15. A light source, a polarizing device for extracting substantially linearly polarized light from the light emitted from the light source, a light valve having a polarizing plate on at least an incident side, and an optical image formed on the light valve is enlarged and projected on a screen. 15. The projection device according to claim 1, wherein the polarization device is the polarization device according to any one of claims 1 to 14, and the light emitted from the polarization device is transmitted through the incident side polarization plate at substantially the maximum transmittance. Projection display device.
項15記載の投写型表示装置。16. The projection display device according to claim 15, wherein the light valve is a liquid crystal display device.
/2波長板が配置され、前記入射側偏光板の偏光軸の方
向は画面垂直方向に対して略45°であり、偏光装置は
出射する略直線偏光の中心的な偏波面が画面垂直方向ま
たは画面水平方向に向くようにし、前記偏光装置の出射
光が前記入射側偏光板を略最大透過率で透過するように
前記1/2波長板を配置した請求項15記載の投写型表
示装置。17. A light emitting device is provided 1 in front of a light-incident side polarizing plate of a light valve.
/ 2 wavelength plate is arranged, the direction of the polarization axis of the incident side polarization plate is approximately 45 ° with respect to the vertical direction of the screen, and the polarization device has the central polarization plane of the substantially linearly polarized light emitted in the vertical direction of the screen or 16. The projection display device according to claim 15, wherein the half-wave plate is arranged so as to be oriented in the horizontal direction of the screen, and the emitted light of the polarizing device is transmitted through the incident-side polarization plate at substantially the maximum transmittance.
光源の出射光から略直線偏光を取り出す偏光装置と、前
記偏光装置からの出力光を3つの原色光に分解する色分
解手段と、前記色分解手段からの出力光が入射し少なく
とも入射側に偏光板を有する3つのライトバルブと、前
記ライトバルブに形成された光学像をスクリーン上に拡
大投写する投写レンズとを具備し、前記偏光装置は請求
項1から請求項14のいずれかに記載の偏光装置であ
り、前記偏光装置の出射光が前記入射側偏光板を略最大
透過率で透過するようにした投写型表示装置。18. A light source that emits color components of three primary colors, a polarizing device that extracts substantially linearly polarized light from light emitted from the light source, and a color separation unit that decomposes output light from the polarizing device into three primary color lights. And three light valves having a polarizing plate on at least an incident side into which the output light from the color separation means is incident, and a projection lens for enlarging and projecting an optical image formed on the light valve onto a screen, The polarizing device is the polarizing device according to any one of claims 1 to 14, wherein the outgoing light of the polarizing device is transmitted through the incident side polarizing plate at substantially the maximum transmittance.
項18記載の投写型表示装置。19. The projection display device according to claim 18, wherein the light valve is a liquid crystal display device.
/2波長板が配置され、前記入射側偏光板の偏光軸の方
向は画面垂直方向に対して略45°であり、偏光装置は
出射する略直線偏光の中心的な偏波面が画面垂直方向ま
たは画面水平方向に向くようにし、前記偏光装置の出射
光が略最大透過率で前記入射側偏光板を透過するように
前記1/2波長板を配置した請求項18記載の投写型表
示装置。20. Immediately before the incident side polarization plate of the light valve, 1
/ 2 wavelength plate is arranged, the direction of the polarization axis of the incident side polarization plate is approximately 45 ° with respect to the vertical direction of the screen, and the polarization device has the central polarization plane of the substantially linearly polarized light emitted in the vertical direction of the screen or 19. The projection display device according to claim 18, wherein the half-wave plate is arranged so as to be oriented in the horizontal direction of the screen, and the light emitted from the polarizing device is transmitted through the incident-side polarization plate at a substantially maximum transmittance.
軸は同一平面上にあり、偏光選択性ミラーから出射する
直線偏光の偏波面が前記平面と垂直である請求項18記
載の投写型表示装置。21. The projection display according to claim 18, wherein the optical axes passing through the screen centers of the three light valves are on the same plane, and the plane of polarization of the linearly polarized light emitted from the polarization selective mirror is perpendicular to the plane. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4127161A JPH05323117A (en) | 1992-05-20 | 1992-05-20 | Polarizing device and projection type display device using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4127161A JPH05323117A (en) | 1992-05-20 | 1992-05-20 | Polarizing device and projection type display device using same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05323117A true JPH05323117A (en) | 1993-12-07 |
Family
ID=14953155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4127161A Pending JPH05323117A (en) | 1992-05-20 | 1992-05-20 | Polarizing device and projection type display device using same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05323117A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08146296A (en) * | 1994-11-17 | 1996-06-07 | Konica Corp | Variable focal distance lens |
JPH11160699A (en) * | 1997-11-21 | 1999-06-18 | Mitsubishi Electric Corp | Liquid crystal panel module |
US7826500B2 (en) | 2005-08-29 | 2010-11-02 | Panasonic Corporation | Fiber laser and optical device |
JP2014098756A (en) * | 2012-11-13 | 2014-05-29 | Sumitomo Electric Hardmetal Corp | Optical component |
WO2015166822A1 (en) * | 2014-05-01 | 2015-11-05 | 住友電気工業株式会社 | Optical component |
CN110658669A (en) * | 2018-06-29 | 2020-01-07 | 深圳市绎立锐光科技开发有限公司 | light source device |
-
1992
- 1992-05-20 JP JP4127161A patent/JPH05323117A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08146296A (en) * | 1994-11-17 | 1996-06-07 | Konica Corp | Variable focal distance lens |
JPH11160699A (en) * | 1997-11-21 | 1999-06-18 | Mitsubishi Electric Corp | Liquid crystal panel module |
US7826500B2 (en) | 2005-08-29 | 2010-11-02 | Panasonic Corporation | Fiber laser and optical device |
JP2014098756A (en) * | 2012-11-13 | 2014-05-29 | Sumitomo Electric Hardmetal Corp | Optical component |
WO2015166822A1 (en) * | 2014-05-01 | 2015-11-05 | 住友電気工業株式会社 | Optical component |
US10267967B2 (en) | 2014-05-01 | 2019-04-23 | Sumitomo Electric Industries, Ltd. | Optical component for the polarization of infrared laser light |
CN110658669A (en) * | 2018-06-29 | 2020-01-07 | 深圳市绎立锐光科技开发有限公司 | light source device |
US11209132B2 (en) | 2018-06-29 | 2021-12-28 | Ylx Incorporated | Light source device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960002308B1 (en) | Polarizer and light valve image projector having the polarizer | |
US6234634B1 (en) | Image projection system with a polarizing beam splitter | |
JP3168770B2 (en) | Polarizing device and projection display device using the polarizing device | |
TWI229201B (en) | Projecting type image display apparatus | |
US7255444B2 (en) | Optical unit and projection-type image display apparatus using the same | |
JPH0915529A (en) | Image projection device | |
JPH06289222A (en) | Polarizing device and projecting type display device using the same | |
JPH08271854A (en) | Device for projection of image of light source | |
JPH06148628A (en) | Liquid crystal display and projection type display using the same | |
TW200402545A (en) | Projection type reflection image display apparatus | |
KR20080079270A (en) | Projection system using reflective polarizer | |
JPH08271855A (en) | Device for display of image on screen | |
JPH06222212A (en) | Polarization surface rotating optical device, polarization transformation optical device, and projection type display device | |
US7306338B2 (en) | Image projection system with a polarizing beam splitter | |
JP2003172819A (en) | Polarization conversion element and projection type liquid crystal display | |
US6476880B2 (en) | Projection type color liquid crystal display apparatus capable of enhancing optical utilization efficiency | |
JPH05323118A (en) | Polarizing device and projection type display device using same | |
JPH05323117A (en) | Polarizing device and projection type display device using same | |
JPH0572417A (en) | Polarized light converting element | |
JP3060720B2 (en) | Polarizing device and projection display device using the polarizing device | |
JPH0580321A (en) | Projection type liquid crystal display | |
JP2004309751A (en) | Color separating and synthesizing optical system and picture display device | |
JP3659637B2 (en) | Projection-type image display device | |
KR100227483B1 (en) | LCD projector optical system | |
JPH05232433A (en) | Polarized light converting element and projection type liquid crystal display device |