[go: up one dir, main page]

JPH05322829A - Nondestructive measurement method of lateral cracking fatigue crack in rail - Google Patents

Nondestructive measurement method of lateral cracking fatigue crack in rail

Info

Publication number
JPH05322829A
JPH05322829A JP3117192A JP11719291A JPH05322829A JP H05322829 A JPH05322829 A JP H05322829A JP 3117192 A JP3117192 A JP 3117192A JP 11719291 A JP11719291 A JP 11719291A JP H05322829 A JPH05322829 A JP H05322829A
Authority
JP
Japan
Prior art keywords
crack
rail
potential difference
lateral
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3117192A
Other languages
Japanese (ja)
Inventor
Kazuo Sugino
和男 杉野
Masumi Saka
真澄 坂
Daijiro Yuasa
大二郎 湯浅
Hiroyuki Abe
博之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3117192A priority Critical patent/JPH05322829A/en
Publication of JPH05322829A publication Critical patent/JPH05322829A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】 【目的】 本発明は、電位差法を用いて使用中のレール
頭部踏面ないしは内部に発生し、疲労により進展する水
平き裂において、それが分岐あるいは屈曲して生ずる横
裂性き裂の存在の有無、それを伴う際の水平き裂の位
置、大きさおよび横裂性き裂の成長深さを定量評価する
ための非破壊測定方法。 【構成】 レール頭部内部において、疲労き裂を有する
部分とき裂のない正常部との電位変化量を、レール踏面
上で測定することにより、あらかじめ求めた電位変化
量、測定間隔と横裂性き裂の成長深さとの関係を用いて
解析する。 【効果】 使用中レールの信頼性向上。
(57) [Abstract] [Purpose] The present invention is directed to a horizontal crack that is generated by branching or bending in a horizontal crack that occurs on the tread surface or inside the rail head that is in use using the potentiometric method and propagates by fatigue. A non-destructive measurement method for quantitatively evaluating the presence or absence of a crack, the position and size of a horizontal crack accompanying it, and the growth depth of a transverse crack. [Structure] Inside the rail head, the amount of potential change between a fatigue cracked part and a normal part with no cracks was measured on the rail tread, and the potential change amount, measurement interval and lateral cracking property were calculated in advance. Analysis is performed using the relationship with the crack growth depth. [Effect] Improved reliability of rails in use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用中のレール頭部の
表面または内部に発生した疲労き裂が成長する際、レー
ル頭部表面下を頭表面にほぼ平行に進展する水平き裂か
ら分岐ないしは屈曲してレールの横断方向に成長し、レ
ールを横裂破断に至らしめる横裂性き裂の非破壊検査法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal crack that propagates under the surface of a rail head substantially parallel to the head surface when a fatigue crack is generated on or inside the rail head during use. The present invention relates to a non-destructive inspection method for lateral cracks that branch or bend to grow in the transverse direction of the rail and lead to lateral fracture of the rail.

【0002】[0002]

【従来の技術】近年、旅客鉄道の高速化あるいは鉱山・
資源輸送鉄道の高荷重化が進められている中で、耐損傷
性の優れたレールが要求され、特開昭55−12523
1号公報の「溶接性低合金熱処理レール」や特開昭57
−198216号公報の「高強度レール」など、強度、
耐摩耗性、耐損傷性さらには溶接性に優れたレールが開
発されている。しかしながら、レールにはその車輪が接
触する頭表面(踏面)には、ときとしてダークスポット
(頭頂面シェリング)あるいはTD(Transeverse Defe
cts )と呼ばれる疲労き裂を生ずる。これらは、列車の
繰り返し走行による車輪との転がり接触疲労により、レ
ール表面直下にレール踏面にほぼ平行な疲労き裂となっ
て成長し、さらにそれが分岐または屈曲してレール横断
面下方へと進展し、ときとしてそのき裂がレール折損を
誘発する原因となっている。
2. Description of the Related Art In recent years, the speed of passenger railways and mines
While the heavy load of resource transportation railways is being promoted, rails with excellent damage resistance are required.
No. 1, “Welding Low Alloy Heat Treatment Rail” and Japanese Patent Laid-Open No. 57-57
-1982216 gazette "high-strength rail", strength,
Rails with excellent wear resistance, damage resistance, and weldability have been developed. However, on the head surface (tread) where the wheels come into contact with the rails, sometimes dark spots (crown surface shelling) or TD (Transeverse Defe) are performed.
Fatigue cracks called cts) occur. Due to rolling contact fatigue with the wheels due to repeated running of the train, they grow into fatigue cracks just below the rail surface, almost parallel to the rail tread surface, and then they branch or bend and propagate downward to the rail cross section. However, the crack sometimes causes rail breakage.

【0003】この横裂性き裂の発生問題は、新幹線や在
来線の高速運転区間で、近年特に重大視されており、目
視検査や超音波検査法、音響検査法など各種の非破壊検
査法によって探傷が試みられているが、種々の技術課題
があり未だ実用に至っていない。例えば最も汎用的な超
音波検査法においてすら、特にレール表面下の水平き裂
の下に発生した分岐状き裂は、レールの頭部踏面からは
水平き裂に遮蔽されてしまい検出が不可能なこと、また
頭部側面からは錆やグリースなどがレール表面性状を悪
化させ、またこの位置からは連続的な測定はできず、事
実上この方法を実用として用いることは困難という問題
があった。
The problem of lateral cracking has been particularly emphasized in recent years in high-speed operation sections of Shinkansen and conventional lines, and various nondestructive inspections such as visual inspection, ultrasonic inspection method, acoustic inspection method, etc. Although flaw detection has been attempted by the method, it has not been put into practical use due to various technical problems. For example, even in the most general-purpose ultrasonic inspection method, especially a branched crack that occurs under a horizontal crack below the rail surface cannot be detected because it is shielded by the horizontal crack from the tread surface of the rail head. In addition, there was a problem that rust and grease from the side of the head deteriorated the rail surface properties, and continuous measurement was not possible from this position, making it difficult to practically use this method. ..

【0004】このような背景から本発明の関係者は、金
属円管などのような構造物の非破壊検査法として、特開
昭61−296253号公報によって詳細に説明するよ
うに、電位差法を用いて原子力、火力発電設備、化学プ
ラントなどにおける圧力容器や配管などの構造物材料中
に存在する各種欠陥の位置、外表面からの深さ、欠陥の
寸法や傾き角など欠陥の状態を定量化する検査方法を開
発した。すなわちこの方法は、構造物材料に定電流発生
装置に接続された電流入出力端子から電流を流し、複数
の位置で2点間の電位差を測定し、表面電位分布を求
め、その時の異常極大値の位置αmから埋没欠陥の存在
を仮定し、該位置αmを中心にして収集された各位置間
の電位差△Φmiを、位置情報yiと対応づけて記憶し
た後、理論探索計算に基づいて解析処理し、正確な埋没
欠陥の位置、深さ、傾き角、寸法などを定量的に評価す
る電位差法による非破壊検査法である。またこのような
検査方法によれば、実際に応力が負荷されている稼働状
態の構造物に対しても、オンライン方式で、簡単に埋没
欠陥の有無あるいは欠陥の位置、深さなどを定量的に評
価できる有用性を持っている。
From such a background, the person concerned with the present invention uses the potential difference method as a nondestructive inspection method for a structure such as a metal circular tube, as described in detail in JP-A-61-296253. Use to quantify the position of various defects existing in structural materials such as pressure vessels and piping in nuclear power, thermal power generation facilities, chemical plants, etc., the depth from the outer surface, the size of defects and the inclination angle of defects, etc. Developed an inspection method that does. That is, this method applies a current to the structural material from the current input / output terminal connected to the constant current generator, measures the potential difference between two points at a plurality of positions, obtains the surface potential distribution, and obtains an abnormal maximum value at that time. Assuming the presence of the buried defect from the position αm, the potential difference ΔΦmi between the respective positions centered on the position αm is stored in association with the position information yi, and then analyzed based on theoretical search calculation. However, it is a non-destructive inspection method by a potential difference method that quantitatively evaluates the accurate position, depth, inclination angle, size, etc. of the buried defect. Further, according to such an inspection method, the presence or absence of the buried defect, the position and the depth of the defect, etc. can be easily quantitatively determined by the online method even for the structure in the operating state where the stress is actually applied. It has usefulness that can be evaluated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな非破壊検査法は、容器や配管などのような構造物材
料に対しての一般的で単純なき裂形状で何ら問題視すべ
き点はないが、列車の走行による高荷重が繰返し負荷さ
れるレールには、次のような問題があった。すなわちレ
ールの場合、路面直下に踏面にほぼ水平にき裂が形成さ
れ、それが途中から分岐ないしは屈曲してレールの横断
方向に進展するき裂が2次的に形成され、それがレール
を折損させる問題である。この横裂性き裂は、従来の磁
気探傷法、電磁誘導探傷法、浸透探傷法、超音波探傷法
などでは検出出来ない問題があった。
However, such a nondestructive inspection method has no problem as it is a general and simple crack shape for structural materials such as containers and pipes. However, there are the following problems with rails that are repeatedly subjected to high loads due to running trains. That is, in the case of a rail, a crack is formed almost horizontally on the tread surface just below the road surface, and a crack that splits or bends midway and propagates in the transverse direction of the rail is secondarily formed, which breaks the rail. It is a problem that causes it. This lateral crack has a problem that it cannot be detected by the conventional magnetic flaw detection method, electromagnetic induction flaw detection method, penetration flaw detection method, ultrasonic flaw detection method, or the like.

【0006】すなわち磁気探傷法、電磁誘導探傷法で
は、表面もしくは極く表面直下に存在する欠陥しか検出
できない。また水平き裂と横裂性き裂の区別が困難であ
り、形状が大きな水平き裂を検出してしまう。浸透探傷
法では表面に開口している欠陥の部分しか検出できな
い。超音波探傷法では、横裂性き裂は水平き裂で音波が
遮られ、それからの音波の反射が得られず、レール頭部
側面から非連続的に測定せねばならないなど、時間、労
力を要し、また信頼性に欠け実用的でない。また上記し
た特開昭61−296253号公報で説明された非破壊
検査法によっても、分岐あるいは屈曲していない単純き
裂ないしは欠陥の検出に限られている。
That is, the magnetic flaw detection method and the electromagnetic induction flaw detection method can detect only defects existing on the surface or just under the surface. Further, it is difficult to distinguish between a horizontal crack and a lateral crack, and a horizontal crack with a large shape is detected. The penetrant inspection method can detect only the defect portion open on the surface. In the ultrasonic flaw detection method, horizontal cracks cause sound waves to be blocked by horizontal cracks, and the sound waves cannot be reflected from the cracks, which requires discontinuous measurement from the side of the rail head. It is necessary, and lacks reliability and is not practical. Further, the nondestructive inspection method described in Japanese Patent Laid-Open No. 61-296253 described above is also limited to the detection of simple cracks or defects that are not branched or bent.

【0007】こうした問題から、本発明者らは、鉄道の
高速化・高軸重化が指向される中で、敷設されたレール
頭部内部に生ずる水平き裂からレールの横断面下方に分
岐あるいは屈曲して進行する横裂性き裂の存在を正確に
検出し、列車の安全走行に貢献する非破壊測定法を提供
するものである。
Due to these problems, the present inventors have aimed to increase the speed of railways and increase the axial load of railways, so that the horizontal cracks generated inside the laid rail head may branch or fall below the cross section of the rail. The present invention provides a nondestructive measurement method that accurately detects the presence of a lateral crack that progresses while bending and contributes to safe running of a train.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、定電流
源に接続された電流入出力端子を、レールのき裂検索位
置を介してレール頭部踏面上に離隔配置し、その間を電
位差計測装置に接続された電位差測定端子を任意の一定
間隔でレール長手方向に定置または移動して、横裂性き
裂近傍の電位差あるいは電位差分布を測定し、あらかじ
め得られた異常電位変化量の値、その検出間隔に対し、
横裂性き裂の垂直長さ成分を関係づけた次なる式、 △V・t/ρ・I−△X/h=α(b・sinθ/h)2 (1) △V:電位差 t:レール頭部幅 ρ:抵抗率
I:電流値 △X:測定間隔 h:レール有効高さ α:形状因子
b:横裂性き裂長さ θ:横裂性き裂の傾き角 に基づいて、具体的に△V・t/ρ・I−△X/hの値
を求め、比較することにより、レール頭部内に発生した
横裂性き裂の進展深さ、すなわちき裂長さの垂直成分
を、また異常電位変化位置より横裂性き裂を持つ水平き
裂の位置、大きさを非破壊的に測定するものである。
SUMMARY OF THE INVENTION The gist of the present invention is to dispose current input / output terminals connected to a constant current source on a tread surface of a rail head via a crack search position of the rail and to provide a potential difference between them. The potential difference measurement terminal connected to the measuring device is placed or moved in the rail longitudinal direction at any fixed interval to measure the potential difference or potential difference distribution near the transverse crack, and the value of the abnormal potential change obtained in advance , For its detection interval,
The following equation relating the vertical length component of the lateral crack, ΔV · t / ρ · I−ΔX / h = α (b · sin θ / h) 2 (1) ΔV: potential difference t: Rail head width ρ: Resistivity
I: current value ΔX: measurement interval h: rail effective height α: shape factor
b: Transverse crack length θ: Based on the inclination angle of the transverse crack, the value of ΔV · t / ρ · I-ΔX / h is specifically determined and compared to determine the rail head. The propagation depth of a lateral crack that occurs in a crack, that is, the vertical component of the crack length, and the position and size of a horizontal crack that has a lateral crack from the abnormal potential change position are determined nondestructively. It is something to measure.

【0009】以下、本発明について図面を参照しながら
詳細に説明する。図1は、本発明方法の一実施例を示し
たものである。図において1は、非破壊測定物のレール
である。2は、電流入出力端子で、レール1の頭部踏面
上を該レール長手方向にき裂位置を充分含んだ離隔位置
に下端を接触させて配置され、一方は定電流源3に接続
されている。すなわち、定電流源3から供給された電流
は、入力側の電流端子2からレール1のき裂検索位置の
間を経て、出力側の電流端子2から定電流源3に戻る経
路に接続されている。4は電位差測定端子で、その一端
はレール頭表面上に離隔して配置された電流入出力端子
2−2の間に電位差測定が可能なように離隔配置され、
他端は電位差計測装置5に接続されている。すなわちレ
ール1の内部にある横裂性き裂からの異常電位変化を電
位差検出端子4−4で検出し、その検出値を電位差計測
装置5で記録するように構成されている。6はデータ解
析装置で、電位差計測装置5に接続されている。
The present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of the method of the present invention. In the figure, 1 is a rail of the non-destructive measurement object. Reference numeral 2 denotes a current input / output terminal, which is arranged with its lower end in contact with the head tread surface of the rail 1 at a spaced position sufficiently including a crack position in the rail longitudinal direction, and one of which is connected to the constant current source 3. There is. That is, the current supplied from the constant current source 3 is connected to the path from the current terminal 2 on the input side to the constant current source 3 through the crack search position on the rail 1. There is. Reference numeral 4 denotes a potential difference measuring terminal, one end of which is spacedly arranged between the current input / output terminals 2-2 which are separately arranged on the rail head surface, so that the potential difference can be measured.
The other end is connected to the potential difference measuring device 5. That is, the potential difference detection terminal 4-4 detects an abnormal potential change due to a lateral crack inside the rail 1, and the detected value is recorded by the potential difference measuring device 5. Reference numeral 6 denotes a data analysis device, which is connected to the potential difference measuring device 5.

【0010】データ解析装置6は、電位差計測装置5で
記録した電位差あるいは電位差分布曲線から求めた異常
電位変化量およびその位置から上記計算式(1)に基づ
いて、図2に示すようなレール1の頭部に発生した水平
き裂7から分岐または屈曲した横裂性き裂8の深さを測
定するとともに、8を生じた水平き裂7の位置、長手方
向長さを測定する構造に構成されている。
The data analysis device 6 uses the potential difference recorded by the potential difference measurement device 5 or the abnormal potential change amount obtained from the potential difference distribution curve and its position based on the above calculation formula (1) to determine the rail 1 as shown in FIG. Is configured to measure the depth of a horizontal crack 7 that is branched or bent from the horizontal crack 7 that has occurred in the head of the human head, and the position and the length in the longitudinal direction of the horizontal crack 7 that has generated 8 Has been done.

【0011】上記のような本発明法によると、非破壊測
定物のレール1のレール頭部踏面上に定電流源3に接続
された電流入出力端子2から少なくとも数A以上の一定
電流を流しながらしかも電位差検出端子4をレール踏面
上長手方向に定置または移動させ、電位差検出端子4で
その間の電位差を測定し、その測定結果を電位差計測装
置5で記録し、さらにデータ解析装置6に送信される。
データ解析装置6では新しく見出された以下の解析原理
に基づいて解析が行われる。
According to the method of the present invention as described above, a constant current of at least several amperes is applied from the current input / output terminal 2 connected to the constant current source 3 on the tread surface of the rail head of the rail 1 of the non-destructive object. Meanwhile, the potential difference detection terminal 4 is fixed or moved in the longitudinal direction on the rail tread surface, the potential difference between the potential difference detection terminals 4 is measured, the measurement result is recorded by the potential difference measurement device 5, and further transmitted to the data analysis device 6. It
The data analysis device 6 performs the analysis based on the following newly found analysis principle.

【0012】一定電流の流れている導体の電位変化は、
レールのように事実上断面、電気抵抗率が一定と考えら
れる場合、オームの法則からその測定間隔と比例関係に
ある。従ってレールの長手方向に一定の電流を流した場
合、電位変化は水平き裂のみが存在する場合にはほとん
ど影響を受けず、逆に横裂性き裂が存在する場合にのみ
異常な電位変化が認められることを、理論的に見出し、
かつ実験的に確認できたことによる。
The change in electric potential of a conductor in which a constant current flows is
When it is considered that the cross section and the electric resistivity are practically constant like a rail, there is a proportional relationship with the measurement interval from Ohm's law. Therefore, when a constant current is applied in the longitudinal direction of the rail, the potential change is hardly affected when only a horizontal crack is present, and conversely, an abnormal potential change occurs only when a lateral crack is present. Is found theoretically,
And because it was confirmed experimentally.

【0013】以下にその理論解析の基本を示す。図3
は、V・t/ρ・I〜X/h関係図における横裂性き裂
の存在する場合としない場合の電位変化を示している。
すなわち一定間隔af間で測定される電位曲線は、健全
部ではac、横裂性き裂を持つ水平き裂部ではabde
となり、しかもbd間に水平き裂が存在する。具体的な
測定において、△Xは測定端子間隔、△Vはき裂を有す
るレールでの電位差、△Vo はき裂がないレールでの電
位差とすると、オームの法則により、 △V・t/ρ・I−△X/h=(△V/△Vo −1)・△X/h (2) がce間の電位差変化量となる。
The basics of the theoretical analysis will be shown below. Figure 3
Shows a potential change in the V · t / ρ · I to X / h relationship diagram with and without lateral cracking.
That is, the potential curve measured at a constant interval af is ac in the sound part and abde in the horizontal crack part having a lateral crack.
And there is a horizontal crack between bd. In a specific measurement, ΔX is the distance between the measuring terminals, ΔV is the potential difference on a rail with a crack, and ΔV o is the potential difference on a rail without a crack, according to Ohm's law, ΔV · t / ρ · I−ΔX / h = (ΔV / ΔV o −1) · ΔX / h (2) is the amount of change in potential difference between ce.

【0014】一方、長さ、傾斜角などを変化させた多く
の横裂性き裂を含む水平き裂について検討を行った結
果、△V・t/ρ・I−△X/hの値は、水平き裂には
影響されず、横裂性き裂の垂直成分とレール有効高さの
比b・sinθ/hと図4に示す如く良好な関係のある
ことを見出した。従って、この曲線は式(1)で表さ
れ、電位差変化量を測定することにより横裂性き裂の垂
直成分を水平き裂と分離して測定することができる。こ
こでαは形状因子であり、水平き裂の存在深さによって
多少変化するが、その変化量は少なく実用的には一定値
と見なすことも可能である。
On the other hand, as a result of studying horizontal cracks including many lateral cracks with varying length, inclination angle, etc., the value of ΔV · t / ρ · I-ΔX / h is It has been found that there is a good relationship as shown in FIG. 4 with the ratio of the vertical component of the lateral crack and the effective rail height b · sin θ / h without being affected by the horizontal crack. Therefore, this curve is represented by the formula (1), and the vertical component of the lateral crack can be separated from the horizontal crack by measuring the potential difference change amount. Here, α is a shape factor, and changes a little depending on the depth of existence of the horizontal crack, but the amount of change is small and can be regarded as a constant value for practical use.

【0015】上に述べた測定原理に従って、次のような
手順でレール頭部に生じた水平き裂について、そのき裂
が分岐あるいは屈曲して生じた横裂性き裂をもつかどう
か、また横裂性き裂をもつ場合、その水平き裂の位置、
大きさおよび横裂性き裂の垂直成分長さを検出する。
According to the above-described measurement principle, regarding a horizontal crack generated on the rail head by the following procedure, whether the crack has a lateral crack which is branched or bent, and If there is a lateral crack, the position of the horizontal crack,
Detect size and vertical component length of transverse cracks.

【0016】(1)測定すべきき裂を有するレールの部
分、およびその前後でき裂の無い部分に、一定電流を流
す。 (2)等しい測定端子間隔△Xで、き裂を有する部分お
よび有しない部分の電位差△V,△Vo を測定する。そ
の際、△Vはき裂による電位の変化を充分含む変化量を
測定する。 (3)レール有効高さhを求める。hは、レール断面積
o 、レール頭部幅tとからh=So /tとして計算で
きる。 (4)パラメータ△X,△V,△Vo ,hを式(2)に
代入し、△V・t/ρ・I−△X/hを求める。 (5)あらかじめ求めておいた△V・t/ρ・I−△X
/hとb・sinθ/hとの関係図または表からb・s
inθ/hを求める。 (6)また電位勾配の変化の開始ならびに終了する点を
とることにより、横裂性き裂の有無、ならびにその水平
き裂の大きさを知る。
(1) A constant current is applied to the rail portion having a crack to be measured and the portion before and after the rail, which has no crack. (2) The potential difference ΔV, ΔV o between the portion having a crack and the portion having no crack is measured at the same measurement terminal interval ΔX. At that time, ΔV measures the amount of change sufficiently including the change in potential due to cracking. (3) Obtain the rail effective height h. h can be calculated as h = So / t from the rail cross-sectional area So and the rail head width t. (4) Substitute the parameters ΔX, ΔV, ΔV o , and h into the equation (2) to obtain ΔV · t / ρ · I−ΔX / h. (5) ΔV · t / ρ · I-ΔX that was obtained in advance
/ H and b · s in θ / h
Calculate inθ / h. (6) Also, the presence or absence of a transverse crack and the size of the horizontal crack are known by taking the points at which the change in the potential gradient starts and ends.

【0017】[0017]

【発明の効果】上記のような本発明法によれば、レール
頭部に発生した水平き裂から分岐あるいは屈曲する横裂
性き裂の位置および深さを容易にしかも高い信頼度で測
定できる特徴がある。
According to the method of the present invention as described above, it is possible to easily and highly reliably measure the position and depth of a laterally crackable crack that branches or bends from a horizontal crack generated in the rail head. There are features.

【0018】[0018]

【実施例】次に本発明法の実施例を説明する。測定は、
本発明法以外では測定が不可能な水平き裂から分岐した
横裂性き裂の検出を評価するため、実用レール頭部にあ
らかじめ人工的にき裂を内在させたレール試験片を作成
した。レールはJIS−50Nレールを用い、図5に示
すような手順で水平き裂と横裂性き裂を作成した。すな
わちレール頭部の一部を開先加工とスリット加工により
水平き裂と横裂性き裂を模した0.3mm厚程度のスリッ
トを作成した後レールと同じ高炭素成分の溶接棒によ
り、残部を肉盛溶接、仕上げ加工、焼ならしにより組
織、硬度を母材レールと同じとした。その際、実際のき
裂の大きさを参照し、下記表に示すき裂をもつレール試
験片A,B,Cを用いた。測定間隔△Xは、160mm、
電流は12Aとした。
EXAMPLES Next, examples of the method of the present invention will be described. The measurement is
In order to evaluate the detection of a lateral crack that is branched from a horizontal crack that cannot be measured by the method other than the method of the present invention, a rail test piece was prepared in which a crack was artificially included in advance in a practical rail head. A JIS-50N rail was used as the rail, and a horizontal crack and a lateral crack were prepared by the procedure as shown in FIG. That is, a part of the rail head is grooved and slitted to create a slit of about 0.3 mm thickness that simulates a horizontal crack and a lateral crack, and then the remaining part is made by the same high carbon component welding rod as the rail. Was made to have the same structure and hardness as the base metal rail by overlay welding, finishing, and normalizing. At that time, referring to the actual crack size, rail test pieces A, B and C having cracks shown in the following table were used. The measurement interval ΔX is 160 mm,
The current was 12A.

【0019】[0019]

【表1】 [Table 1]

【0020】図4は、△V・t/ρ・I−△X/hとb
・sinθ/hの理論解析による曲線(実線)の上に、
実際の測定結果A,B,Cをプロットしたもので、従来
非破壊的には測定できなかったき裂の下に存在する横裂
性き裂を充分な信頼性のもとに検出できることを証明し
た。
FIG. 4 shows ΔV · t / ρ · I−ΔX / h and b
・ On the curve (solid line) obtained by theoretical analysis of sin θ / h,
By plotting actual measurement results A, B and C, it was proved that transverse cracks existing under cracks that could not be measured nondestructively in the past can be detected with sufficient reliability. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の装置の構成を示す。FIG. 1 shows the structure of an apparatus of the method of the present invention.

【図2】レール頭部内部の水平き裂および横裂性き裂の
モデル図を示す。
FIG. 2 shows model diagrams of horizontal and lateral cracks inside the rail head.

【図3】き裂の有無による電位差変化の様子を示す。FIG. 3 shows how the potential difference changes depending on the presence or absence of a crack.

【図4】△V・t/ρ・I−△X/hとb・sinθ/
hとの間の理論解析曲線および実施例を示す。
4] ΔV · t / ρ · I−ΔX / h and b · sin θ /
The theoretical analysis curve with h and an example are shown.

【図5】横裂性き裂を有するレール標準試験片の作成手
順ならびに試験片例を示す。
FIG. 5 shows a procedure for preparing a rail standard test piece having a lateral crack and a test piece example.

【符号の説明】[Explanation of symbols]

1 レール 2 電流入出力端子 3 定電流源 4 電位差測定端子 5 電位差計測装置 6 データ解析装置 7 水平き裂 8 横裂性き裂 1 Rail 2 Current input / output terminal 3 Constant current source 4 Potential difference measuring terminal 5 Potential difference measuring device 6 Data analysis device 7 Horizontal crack 8 Horizontal crack

フロントページの続き (72)発明者 杉野 和男 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 坂 真澄 宮城県仙台市青葉区芋沢字吉成山27−2南 吉成15−9 (72)発明者 湯浅 大二郎 宮城県仙台市太白区八木山本町2−2−7 八木山アベニュー208 (72)発明者 阿部 博之 宮城県仙台市太白区八木山南一丁目5−6Front page continuation (72) Inventor Kazuo Sugino 1-1 Hibahata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture (72) Inside the Yawata Works, Nippon Steel Co., Ltd. (72) Masumi Saka, Yoshinariyama, Yoshizawa, Aoba-ku, Sendai-shi, Miyagi 27-2 Minami Yoshinari 15-9 (72) Inventor Daijiro Yuasa 2-2-7 Yagiyama Honcho, Taihaku-ku, Sendai City, Miyagi Prefecture 208 Yagiyama Avenue 208 (72) Hiroyuki Abe 1-chome, Yagiyama Minami, Taihaku-ku, Sendai City, Miyagi Prefecture 5-6

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 定電流源に接続された電流入出力端子
を、レール頭部踏面上のき裂検索位置を介して離隔配置
し、その間を電位差計測装置に接続された電位差測定端
子をレール長手方向に定置または移動して、水平き裂か
ら分岐ないしは屈曲した横裂性き裂近傍の電位差あるい
は電位差分布を測定し、その結果得られた異常電位変化
量およびその検出間隔から次なる式、 △V・t/ρ・I−△X/h=α(b・sinθ/h)2 △V:電位差 t:レール頭部幅 ρ:抵抗率
I:電流値 △X:測定間隔 h:レール有効高さ α:形状因子
b:横裂性き裂長さ θ:横裂性き裂の傾き角 に基づいて横裂性き裂深さを、また異常電位変化位置よ
り、レール頭部内に発生した横裂性き裂を持つ水平き裂
の位置、大きさを測定することを特徴とするレール内横
裂性疲労き裂の非破壊検査法。
1. A current difference input / output terminal connected to a constant current source is spaced apart via a crack search position on a tread surface of a rail head, and a potential difference measuring terminal connected to a potential difference measuring device is provided between the terminals. Aligned or moved in the direction, measuring the potential difference or potential difference distribution in the vicinity of a lateral crack that is branched or bent from a horizontal crack, and the following formula from the abnormal potential change amount and its detection interval obtained as a result, △ V · t / ρ · I-ΔX / h = α (b · sin θ / h) 2 ΔV: potential difference t: rail head width ρ: resistivity
I: current value ΔX: measurement interval h: rail effective height α: shape factor
b: Transverse crack length θ: Transverse crack depth based on the inclination angle of the transverse crack, and lateral crack that occurred in the rail head from the abnormal potential change position. A non-destructive inspection method for lateral cracks in a rail that is characterized by measuring the position and size of a horizontal crack.
JP3117192A 1991-05-22 1991-05-22 Nondestructive measurement method of lateral cracking fatigue crack in rail Withdrawn JPH05322829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3117192A JPH05322829A (en) 1991-05-22 1991-05-22 Nondestructive measurement method of lateral cracking fatigue crack in rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117192A JPH05322829A (en) 1991-05-22 1991-05-22 Nondestructive measurement method of lateral cracking fatigue crack in rail

Publications (1)

Publication Number Publication Date
JPH05322829A true JPH05322829A (en) 1993-12-07

Family

ID=14705683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117192A Withdrawn JPH05322829A (en) 1991-05-22 1991-05-22 Nondestructive measurement method of lateral cracking fatigue crack in rail

Country Status (1)

Country Link
JP (1) JPH05322829A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308324A (en) * 2005-04-26 2006-11-09 Tokyo Electric Power Co Inc:The Crack depth measurement technique and apparatus for deep cracks using potentiometric method
JP2008534980A (en) * 2005-04-05 2008-08-28 ホルン、ハラルド Method and apparatus for measuring the state of a steel structure
CN103235100A (en) * 2013-04-16 2013-08-07 内蒙古包钢钢联股份有限公司 Longitudinal-transverse type core wound rail sampling and fracture analysis method
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device
WO2016140579A1 (en) * 2015-03-03 2016-09-09 Ferrx As Method for detection of cracks and metal loss in metal structures
CN109765271A (en) * 2018-12-30 2019-05-17 河海大学 Apparatus and method for judging hammer closure of metal fatigue cracks
CN112378761A (en) * 2020-09-30 2021-02-19 华东交通大学 Railway steel rail data detection test bed and use method thereof
CN113739685A (en) * 2021-09-07 2021-12-03 北京建筑大学 Train component crack length detection method and device
CN115144470A (en) * 2022-03-08 2022-10-04 国能新朔铁路有限责任公司 Calibration rail test block

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534980A (en) * 2005-04-05 2008-08-28 ホルン、ハラルド Method and apparatus for measuring the state of a steel structure
JP2006308324A (en) * 2005-04-26 2006-11-09 Tokyo Electric Power Co Inc:The Crack depth measurement technique and apparatus for deep cracks using potentiometric method
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device
CN103235100A (en) * 2013-04-16 2013-08-07 内蒙古包钢钢联股份有限公司 Longitudinal-transverse type core wound rail sampling and fracture analysis method
WO2016140579A1 (en) * 2015-03-03 2016-09-09 Ferrx As Method for detection of cracks and metal loss in metal structures
CN109765271A (en) * 2018-12-30 2019-05-17 河海大学 Apparatus and method for judging hammer closure of metal fatigue cracks
CN109765271B (en) * 2018-12-30 2021-09-07 河海大学 Apparatus and method for judging hammer closure of metal fatigue cracks
CN112378761A (en) * 2020-09-30 2021-02-19 华东交通大学 Railway steel rail data detection test bed and use method thereof
CN112378761B (en) * 2020-09-30 2023-10-24 华东交通大学 Data detection test bed for railway steel rail and use method thereof
CN113739685A (en) * 2021-09-07 2021-12-03 北京建筑大学 Train component crack length detection method and device
CN115144470A (en) * 2022-03-08 2022-10-04 国能新朔铁路有限责任公司 Calibration rail test block

Similar Documents

Publication Publication Date Title
Pohl et al. NDT techniques for railroad wheel and gauge corner inspection
Papaelias et al. High-speed inspection of rails using ACFM techniques
US10883965B2 (en) Methods of using nondestructive material inspection systems
Carboni et al. Advanced ultrasonic “Probability of Detection” curves for designing in-service inspection intervals
CN110230976B (en) A method for non-destructive testing of vertical depth of rail rolling contact fatigue crack propagation
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
Underhill et al. Eddy current analysis of mid-bore and corner cracks in bolt holes
Topp et al. Application of the ACFM inspection method to rail and rail vehicles
JPH05322829A (en) Nondestructive measurement method of lateral cracking fatigue crack in rail
Kappes et al. Potential improvements of the presently applied in-service inspection of wheelset axles
LeTessier et al. Sizing of cracks using the alternating current field measurement technique
Lesiak et al. Laser scatterometry for detection of squat defects in railway rails
Murav’ev et al. On the question of monitoring residual stresses in selectively heat-strengthened rails
Rudlin et al. New methods of rail axle inspection and assessment
Papaelias et al. Detection and quantification of rail contact fatigue cracks in rails using ACFM technology
Shen Responses of alternating current field measurement (ACFM) to rolling contact fatigue (RCF) cracks in railway rails
Kwon et al. Detection of sub-surface crack in railway wheel using a new sensing system
CN114543656B (en) Rail asymmetric crack growth shape reconstruction method based on alternating current electromagnetic field
Kalyanam et al. Mode mixity in the fracture toughness characterization of HAZ material using SEN (T) testing
Han et al. Development of novel rail non-destructive inspection technologies
CN1109170A (en) Method of testing weld seams using an eddy-current technique
Camerini et al. Eddy Current system for clad pipe inspection
Mogilnikov et al. Investigation of the change in the magnetic field around the rails when defects appear in them
Himawan et al. Ultrasonic non-destructive prediction of spot welding shear strength
Grover Initial flaw size estimating procedures for fatigue crack growth calculations

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806