JPH05322770A - Multi-marker electrophoresis - Google Patents
Multi-marker electrophoresisInfo
- Publication number
- JPH05322770A JPH05322770A JP4123533A JP12353392A JPH05322770A JP H05322770 A JPH05322770 A JP H05322770A JP 4123533 A JP4123533 A JP 4123533A JP 12353392 A JP12353392 A JP 12353392A JP H05322770 A JPH05322770 A JP H05322770A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electrophoresis
- test sample
- reference sample
- wavelengths
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蛋白質、核酸、DNA
などの比較同定を、迅速かつ正確に行なう電気泳動法に
関するものである。The present invention relates to proteins, nucleic acids, DNA
The present invention relates to an electrophoretic method for performing rapid and accurate comparative identification such as.
【0002】[0002]
【従来の技術】蛋白質の様に、その表面に正又は負の荷
電を有する物質を電界下におくと、その物質の電荷の大
きさ、分子量等の差に基づく移動度の差等により分離さ
れる。特にゲル等の支持体の中で分離がおこなわれるゲ
ル電気泳動法は、1959年にポリアクリルアミドゲル電気
泳動法が行われて以来、ゲルディスク電気泳動法、SDS
ゲルディスク電気泳動法、さらに、等電点電気泳動法な
ど数多くの電気泳動法が開発され、遺伝子工学において
蛋白質、核酸等を分離、分析する目的に広く用いられて
いる。2. Description of the Related Art When a substance, such as a protein, having a positive or negative charge on its surface is placed under an electric field, it is separated due to a difference in mobility or the like due to a difference in charge magnitude or molecular weight of the substance. It In particular, gel electrophoresis, in which separation is performed in a support such as gel, has been performed since 1959 when polyacrylamide gel electrophoresis was performed, and gel disc electrophoresis, SDS
Many electrophoretic methods such as gel disc electrophoresis and isoelectric focusing have been developed and widely used for the purpose of separating and analyzing proteins and nucleic acids in genetic engineering.
【0003】検出方法としては、試料が蛋白質の場合、
泳動により分離したゲルをク−マッシ−ブリリアントブ
ル−、銀染色などによる染色法がとられている。DNAを
対象とした場合には、エチジウムブロマイドによる染
色、または、放射性同位元素(RI)標識による検出法が
行われている。一般に、染色法を用いた場合、染色工
程、脱色工程に一昼夜費やし時間がかかる、感度が低い
(ク−マッシ−ブリリアントブル−の場合)、発癌性物
質である(エチジウムブロマイドの場合)などの問題点
がある。感度が高い点で、RIで標識した物質を電気泳動
している場合が多くあるが、RIは安全性の点で大きな問
題があるばかりでなく、煩雑で時間と費用がかかる。ま
たRIを用いた場合、フィルムに感光させるのにも時間が
かかる。そのため、標識として蛍光物質を使用したもの
が、報告されてきている。 DNA塩基配列決定装置には、
予めサンガ−法で処理したDNA断片にその末端塩基の種
類(アデニン(A)、グアニン(G)、チミン(T)、シトシン
(C))に対応して別々の蛍光物質をつけたものを単一の
泳動レ−ンで泳動させ、レ−ザ光で励起することにより
それぞれの蛍光波長の光を受光することによりDNA断片
の泳動パタ−ンを検出するものがある。As a detection method, when the sample is a protein,
The gel separated by electrophoresis is stained with Coomassie-Brilliant Bull and silver. When using DNA as a target, staining with ethidium bromide or detection with a radioisotope (RI) label is performed. In general, when the dyeing method is used, it takes a day and night for the dyeing step and the decolorizing step, the sensitivity is low (in the case of Coomassie-Brilliant Bull), and the problem is that it is a carcinogen (in the case of ethidium bromide). There is a point. In many cases, RI-labeled substances are electrophoresed because of their high sensitivity, but RI is not only a major safety issue, it is also cumbersome and time-consuming. When RI is used, it takes time to expose the film. Therefore, the use of a fluorescent substance as a label has been reported. DNA sequencer
The type of terminal base (adenine (A), guanine (G), thymine (T), cytosine is added to the DNA fragment that has been previously treated by the Sanger method.
(C)) with different fluorescent substances attached, run in a single migration lane, and are excited by laser light to receive light of each fluorescence wavelength Some electrophoretic patterns are detected.
【0004】[0004]
【発明が解決しようとしている課題】上記に示したよう
に電気泳動の応用により、(1) DNAに変異が起こってい
るのかどうかの判定、(2) マウスなどの種類あるいは病
態マウスの DNAの比較、(3)遺伝子を組入れたマウスの
DNAの比較、などが可能である。これらの実験は、標準
試料との電気泳動像(バンド)との比較同定により行わ
れるものである。電気泳動法では、ゲル上を一方向に電
気泳動させるのであるが、従来は標準試料と検体試料を
別々に電気泳動し、それぞれ標準試料と検体試料から得
られるバンドの位置により、比較同定をおこなってい
た。しかし、それぞれのゲル調整が全く同一にはなら
ず、又、同一ゲルにおいても各レ−ン間で泳動中の熱の
分布のバラツキにより、得られる泳動バンドの位置が歪
を生じる事が多々あり、測定誤差の原因となっている。
そのため、泳動槽の冷却、画像処理による歪補正などの
対策が行なわれているが、同種の試料を泳動しても完全
な泳動像の一致は不可能である。また、上記画像処理に
よる歪補正装置は、非常に高価で、また補正に多大な時
間を要し、得られた結果も、完全に歪がとれた画像が得
られないという欠点を有する。このため、正確な比較同
定、解析が不可能となっている。[Problems to be Solved by the Invention] By applying electrophoresis as described above, (1) determination of whether or not a mutation has occurred in DNA, (2) comparison of DNA of mouse or other type or pathological mouse , (3) of the gene-incorporated mouse
DNA comparisons are possible. These experiments are performed by comparative identification with an electrophoretic image (band) with a standard sample. In the electrophoresis method, the gel is electrophoresed in one direction, but conventionally, the standard sample and the sample sample were separately electrophoresed, and comparative identification was performed by the positions of the bands obtained from the standard sample and the sample sample, respectively. Was there. However, the gel preparations are not exactly the same, and even in the same gel, the position of the obtained migration band is often distorted due to the variation in the heat distribution during migration between each lane. , Causes measurement error.
Therefore, although measures such as cooling of the migration tank and distortion correction by image processing have been taken, even if samples of the same type are migrated, it is impossible to completely match the migration images. Further, the distortion correction apparatus by the image processing described above is very expensive and requires a lot of time for correction, and the obtained results also have the drawback that an image with completely distorted images cannot be obtained. Therefore, accurate comparative identification and analysis are impossible.
【0005】[0005]
【課題を解決するための手段】上記の問題点を鑑み、本
発明の目的は、画像処理による歪補正を必要としない、
電気泳動法を提供することにある。すなわち、本発明
は、標準試料(例えば正常細胞DNA)、及び検体試料
(例えば癌細胞DNA)をそれぞれ異なる励起波長、もし
くは、蛍光波長を持つ蛍光物質、又は、異なる発光波長
を持つ発光物質により標識を施し(以下、標準試料への
標識物質をA、検体物質への標識物質をBという)、両
試料を混合した後、同一ゲル上で、同時に標準試料と検
体試料を電気泳動を行ない、得られるバンドから、A、
Bそれぞれの信号を検出することにより、標準試料と検
体試料の比較同定することを特徴とする電気泳動法であ
る。本発明において、標準、検体の試料は各1個の場合
において記すが、各々が2ヶ以上の複数であってもよ
い。本発明に係る電気泳動法では、同じ位置に標準物質
と、検体物質が展開されても、標準物質の励起波長、も
しくは、蛍光波長、又は、発光波長が標準試料と検体試
料によって異なるため、それぞれに施された標準物質の
検出が可能であり、あるひとつのバンドから、Aだけの
信号が得られれば、検体試料には、その分子量物質が含
まれない事が判明し、またAと、B、両方の信号が得ら
れれば、検体試料と標準試料のその分子量物質の同定が
可能となり、Bだけの信号が得られれば、検体試料に
は、標準物質に存在しない分子量物質があることが判明
する。本発明に係る電気泳動法に於いては、両試料(標
準試料と検体試料)を、同一ゲル、同一レ−ンにより同
時に電気泳動を行なうため、ゲル調整に伴うスポットの
歪などの影響を受けない理想的な電気泳動法を構成でき
る。本発明を利用すれば、遺伝子異常の解析が容易に、
かつ高い精度で実施できるため、遺伝子異常の研究を飛
躍的に発展させることができる。In view of the above problems, an object of the present invention is to eliminate distortion correction by image processing,
It is to provide an electrophoresis method. That is, according to the present invention, a standard sample (for example, normal cell DNA) and a specimen sample (for example, cancer cell DNA) are labeled with fluorescent substances having different excitation wavelengths or fluorescence wavelengths, or luminescent substances having different emission wavelengths. (Hereinafter, the labeling substance for the standard sample is referred to as A and the labeling substance for the analyte substance as B), and after mixing both samples, the standard sample and the analyte sample are simultaneously subjected to electrophoresis on the same gel to obtain From the band
This is an electrophoretic method characterized by comparing and identifying a standard sample and an analyte sample by detecting respective signals of B. In the present invention, the standard sample and the sample sample are described in the case of one sample, but each sample may be a plurality of samples. In the electrophoresis method according to the present invention, even if the standard substance and the sample substance are developed at the same position, the excitation wavelength of the standard substance, or the fluorescence wavelength, or the emission wavelength is different depending on the standard sample and the sample sample. It is possible to detect the standard substance applied to the sample, and if a signal of only A is obtained from a certain band, it was found that the sample sample does not contain the molecular weight substance. , If both signals are obtained, it is possible to identify the molecular weight substance of the specimen sample and the standard sample, and if only the signal of B is obtained, it is found that the specimen sample has a molecular weight substance which does not exist in the standard substance. To do. In the electrophoretic method according to the present invention, both samples (standard sample and specimen sample) are simultaneously electrophoresed on the same gel and the same lane, so that they are affected by the distortion of the spot due to the gel adjustment. Not ideal electrophoresis can be constructed. Use of the present invention facilitates analysis of genetic abnormalities,
Moreover, since it can be carried out with high accuracy, research on genetic abnormalities can be dramatically advanced.
【0006】標識物質としては、蛍光物質、発光物質な
どを用いる。蛍光物質を用いた場合、標識物質AとB
は、励起波長もしくは蛍光波長の異なる物質を用いなけ
ればならない。例として、表1に蛍光物質の組合せを、
いくつか示す。(表1中、λexは励起波長、λemは蛍光
波長を表す。)表1中、 (1)、(2) においては励起光側
を同一とし((1)においては励起波長495nm付近、(2) に
おいては励起波長325nm の、光源もしくは(光源+干渉
フィルタ)を使用、蛍光受光側にA、Bそれぞれの蛍光
波長の干渉フィルタを設ける。(3) 、(4) においては逆
に蛍光受光側を同一とし((3) においては、520nm あた
りの干渉フィルタ、(4)においては、578nm あたりの干渉
フィルタを受光素子の前に設置)、励起光側にA、Bそ
れぞれの励起波長の干渉フィルタを設ける。そして、そ
れぞれの干渉フィルタを交互に入替え、それに同期させ
て信号を取っていく。S/Nを向上させるためには、干
渉フィルタの半値幅の狭いものを選択するか、A、B
の、励起波長もしくは、蛍光波長又は、発光波長の差の
大きな組合せを選べば良い。本発明の方法において、標
準物質AおよびBは、それぞれ1種類に限られるもので
はなく、干渉フィルタ−の半値幅の小さいものを選択す
ることにより、すなわち、それぞれの波長を分離して測
定することにより、2種類以上の標準試料及び検体試料
についてそれぞれ2種類以上の標識物質A及びBを選ぶ
ことにより、同一ゲル上で同時に電気泳動を行ない、各
試料を比較同定をすることができる。以下に実施例によ
りさらに詳しく本発明の方法を説明するが本発明はこれ
らの開示に限定されるものではない。As the labeling substance, a fluorescent substance, a luminescent substance or the like is used. When fluorescent substances are used, labeling substances A and B
Must use substances with different excitation or fluorescence wavelengths. As an example, Table 1 shows combinations of fluorescent substances,
Here are some: (In Table 1, λex represents the excitation wavelength and λem represents the fluorescence wavelength.) In Table 1, the excitation light side is the same in (1) and (2) (excitation wavelength near 495 nm in (1), (2 In (), a light source or (light source + interference filter) with an excitation wavelength of 325 nm is used, and interference filters for the fluorescence wavelengths of A and B are provided on the fluorescence receiving side, and conversely in (3) and (4). Are the same (in (3), an interference filter around 520 nm, and in (4) an interference filter around 578 nm is installed in front of the light receiving element) Then, each interference filter is alternately replaced and the signal is taken in synchronism with it.In order to improve the S / N, one having a narrow half width of the interference filter is selected, or A, B is selected.
A combination having a large difference in excitation wavelength, fluorescence wavelength, or emission wavelength may be selected. In the method of the present invention, each of the standard substances A and B is not limited to one type, but by selecting an interference filter having a small full width at half maximum, that is, measuring each wavelength separately. Thus, by selecting two or more types of labeling substances A and B for two or more types of standard samples and specimen samples, respectively, electrophoresis can be performed simultaneously on the same gel and each sample can be compared and identified. Hereinafter, the method of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these disclosures.
【表1】 [Table 1]
【0007】[0007]
【実施例1】図.1において、アルゴンレ−ザ−1から出
た光は、ミラ−2で曲げられて泳動板上を照射する。ミ
ラ−は、モ−タ−によりレ−ザ−光が電気泳動板上を走
査するように動く。なお、電気泳動板とは、電気泳動が
既におこなわれ、板上に泳動により分離された標準試料
及び検体試料のバンドが存在するものである。[Embodiment 1] In FIG. 1, the light emitted from the argon laser-1 is bent by the mirror-2 and illuminates the migration plate. The mirror is moved by the motor so that laser light scans the electrophoresis plate. The electrophoresis plate is a plate on which electrophoresis has already been performed and bands of the standard sample and the analyte sample separated by electrophoresis are present on the plate.
【0008】標準試料として正常ラット(以下Xとい
う)および、検体試料としてロ−ダミン肉腫を移植後2
週間目のラット(以下Yという)から得た血清を用い
た。Xからの血清中の蛋白質には、メロシアニン540を、Yか
らの血清中の蛋白質には、FITCをそれぞれ公知の手法に
より標識化した。電気泳動は、ポリアクリルアミドゲル
により行った。ゲル濃度は、10%〜20%の直線アクリル
アミド濃度勾配ゲルで、20mA(17時間)の通電を行なっ
た。泳動用緩衝液としては、0.025 モル Tris-0.192 モ
ルグリシンを使用した。それぞれの蛍光物質から発生し
た蛍光はレンズ4で集光され干渉フィルタ−ユニット5
へ入れられる。干渉フィルタ−ユニット5は、570nm と
520nm の干渉フィルタ−ホルダ−がモ−タ−により回転
する機構を備えたものであり、標識蛍光物質であるメロシア
ニン540 、FITCを交互に検出できるようになっている。干
渉フィルタ−ユニットを通った蛍光は検出器である光電
子増倍管6に入射し、検出される。この信号は、干渉フ
ィルタ−ユニットのフィルタ−の切換えに同期して処理
され、Xからの血清からのものか、Yからの血清からの
ものかが判定される。同一ゲルから同時にえられたそれ
ぞれの標識物質についての2つの信号を比較しゲル上で
の標準試料についての検体試料の泳動位置を確認し、両
者の比較同定をおこなうことができた。Normal rat (hereinafter referred to as X) as a standard sample and Rhodamin sarcoma as a specimen sample were transplanted 2
Serum obtained from a week-old rat (hereinafter referred to as Y) was used. The protein in the serum from X was labeled with merocyanine 540, and the protein in the serum from Y was labeled with FITC by known methods. The electrophoresis was performed by polyacrylamide gel. The gel concentration was 10% to 20% linear acrylamide gradient gel, and 20 mA (17 hours) was applied. As the migration buffer, 0.025 mol Tris-0.192 mol glycine was used. The fluorescence generated from each fluorescent substance is condensed by the lens 4 and the interference filter-unit 5
Can be entered. Interference filter-unit 5 is 570nm
The 520 nm interference filter holder is equipped with a mechanism that rotates by a motor, so that the labeled fluorescent substance merocyanine 540 and FITC can be alternately detected. The fluorescence passing through the interference filter unit enters the photomultiplier tube 6 which is a detector and is detected. This signal is processed in synchronism with the switching of the interference filter--the filter of the unit--to determine whether it is from serum from X or serum from Y. It was possible to compare two signals of the respective labeled substances obtained at the same time from the same gel, confirm the migration position of the specimen sample of the standard sample on the gel, and compare and identify the two.
【0009】[0009]
【実施例2】6塩基認識制限酵素で、標準および検体試
料を処理する。標準試料に、メロシアニン540標識ヌクレオチ
ドを、検体試料に、FITC標識ヌクレオチドをそれぞれ反
応させた後、両試料を混合し、電気泳動をおこなった。
3は、縦型のスラブゲル電気泳動板で7モルの尿素を含
む8%ポリアクリルアミドゲルを使用している。緩衝液
としては、TBE緩衝液を使用した。Example 2 Standard and specimen samples are treated with a 6-base recognition restriction enzyme. After reacting the standard sample with merocyanine 540-labeled nucleotide and the sample sample with FITC-labeled nucleotide, both samples were mixed and electrophoresed.
3 is a vertical slab gel electrophoresis plate using 8% polyacrylamide gel containing 7 mol of urea. TBE buffer was used as the buffer.
【0010】それぞれの蛍光物質から発生した蛍光はレ
ンズ4で集光され干渉フィルタ−ユニット5へ入れられ
る。干渉フィルタ−ユニット5は、570nmと520nmの干渉
フィルタ−ホルダ−がモ−タ−により回転する機構を備
えたものであり、標識蛍光物質であるメロシアニン540、FITC
を交互に検出できるようになっている。干渉フィルタ−
ユニットを通った蛍光は検出器である光電子増倍管6に
入射し、検出される。この信号は、干渉フィルタ−ユニ
ットのフィルタ−の切換えに同期して処理され、標準試
料DNA断片からのものか、検体試料 DNA断片からのもの
かが判定される。この様にして同一ゲルから得られたそ
れぞれの標識物質についての2つの信号を比較し、ゲル
上での標準試料についての検体試料の泳動位置を確認
し、両者の比較同定をおこなうことができた。標準試料
と検体試料の泳動位置の違いは、遺伝子のDNA塩基配列
の相違により生じるものであるため、この違いを検出す
ることにより、遺伝子異常が解析できた。Fluorescence generated from each fluorescent substance is condensed by the lens 4 and is input to the interference filter unit 5. The interference filter unit 5 is provided with a mechanism in which an interference filter holder of 570 nm and 520 nm is rotated by a motor, and is a labeling fluorescent substance, merocyanine 540, FITC.
Can be detected alternately. Interference filter
The fluorescence passing through the unit enters the photomultiplier tube 6 which is a detector and is detected. This signal is processed in synchronism with the switching of the interference filter--the filter of the unit--to determine whether it is from the standard sample DNA fragment or the sample DNA fragment. In this way, the two signals for the respective labeled substances obtained from the same gel were compared, the migration position of the specimen sample for the standard sample on the gel was confirmed, and the comparative identification of both was possible. .. Since the difference in the migration position between the standard sample and the specimen sample is caused by the difference in the DNA base sequence of the gene, the gene abnormality could be analyzed by detecting this difference.
【0011】[0011]
【発明の効果】本発明の電気泳動法においては、標準試
料と検体試料を、同一ゲル上を同時に電気泳動させるの
で、電気泳動のスポットの位置の歪の影響を受けること
なく、高い精度で比較同定が可能である。In the electrophoretic method of the present invention, the standard sample and the specimen sample are electrophoresed on the same gel at the same time, so that they can be compared with high accuracy without being affected by the distortion of the electrophoretic spot position. Identification is possible.
【図1】図.1は、実施例1、2で示した本発明の方法
により得られた電気泳動ゲル(電気泳動板)から、標識
物質を検出する方法を示す概略図である。FIG. 1 is a schematic diagram showing a method for detecting a labeling substance from the electrophoretic gel (electrophoresis plate) obtained by the method of the present invention shown in Examples 1 and 2. FIG.
1.レ−ザ−発振器 2.反射ミラ− 3.電気泳動板 4.レンズ 5.干渉フィルタ−ユニット 6.光電子増倍管 1. Laser oscillator 2. Reflection mirror-3. Electrophoresis plate 4. Lens 5. Interference filter-unit 6. Photomultiplier tube
Claims (1)
体試料を、それぞれ異なる固有の励起波長若しくは蛍光
波長をもつ蛍光物質又はそれぞれ異なる発光波長をもつ
発光物質により標識を施し、両試料を混合した後、同一
ゲル上で標準試料と検体試料を同時に電気泳動し、得ら
れるバンドから標準試料及び検体試料に標識された蛍光
物質又は発光物質を検出することにより、標準試料と検
体試料の比較同定をおこなうことを特徴とする多標識系
電気泳動法。1. When performing electrophoresis, a standard sample and an analyte sample are labeled with fluorescent substances having different unique excitation wavelengths or fluorescent wavelengths or luminescent substances having different emission wavelengths, and both samples are mixed. After that, the standard sample and the sample sample are simultaneously electrophoresed on the same gel, and the fluorescent substances or luminescent substances labeled on the standard sample and the sample sample are detected from the obtained band to compare and identify the standard sample and the sample sample. A multi-label electrophoresis method characterized by being performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4123533A JPH05322770A (en) | 1992-05-15 | 1992-05-15 | Multi-marker electrophoresis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4123533A JPH05322770A (en) | 1992-05-15 | 1992-05-15 | Multi-marker electrophoresis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05322770A true JPH05322770A (en) | 1993-12-07 |
Family
ID=14862969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4123533A Pending JPH05322770A (en) | 1992-05-15 | 1992-05-15 | Multi-marker electrophoresis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05322770A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003506718A (en) * | 1999-08-09 | 2003-02-18 | カーネギー−メロン ユニバーシティ | A method for detecting differences using multiple adapted dyes. |
JP2003513292A (en) * | 1999-11-03 | 2003-04-08 | アメルシャム・バイオサイエンシーズ・アクチボラグ | Method for analyzing a cell sample by creating and analyzing a composite image |
EP1494026A1 (en) * | 1995-04-20 | 2005-01-05 | Carnegie Mellon University | Difference gel electrophoresis using matched multiple dyes |
JP2008096437A (en) * | 1995-05-19 | 2008-04-24 | Molecular Probes Inc | Merocyanine dye protein stain |
-
1992
- 1992-05-15 JP JP4123533A patent/JPH05322770A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1494026A1 (en) * | 1995-04-20 | 2005-01-05 | Carnegie Mellon University | Difference gel electrophoresis using matched multiple dyes |
US7566544B2 (en) | 1995-04-20 | 2009-07-28 | Carnegie Mellon University | Difference detection methods using matched multiple dyes |
US7598047B2 (en) | 1995-04-20 | 2009-10-06 | Carnegie Mellon University | Difference detection methods using matched multiple dyes |
JP2008096437A (en) * | 1995-05-19 | 2008-04-24 | Molecular Probes Inc | Merocyanine dye protein stain |
JP2003506718A (en) * | 1999-08-09 | 2003-02-18 | カーネギー−メロン ユニバーシティ | A method for detecting differences using multiple adapted dyes. |
JP2003513292A (en) * | 1999-11-03 | 2003-04-08 | アメルシャム・バイオサイエンシーズ・アクチボラグ | Method for analyzing a cell sample by creating and analyzing a composite image |
JP2013033052A (en) * | 1999-11-03 | 2013-02-14 | Ge Healthcare Biosciences Ab | Method of analyzing cell samples, by creating and analyzing composite image |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6613210B1 (en) | Molecular imaging | |
JP2815506B2 (en) | Light detection type electrophoresis device | |
EP1835281B1 (en) | Multiplexed capillary electrophoresis system | |
JPH11505015A (en) | Multi-capillary fluorescence detection system | |
JPH01116441A (en) | Light dispersion detection electrophoresis device | |
JPH02269935A (en) | Photodetection electrophoresis device | |
JP2804038B2 (en) | Base sequence determination method | |
US6459994B1 (en) | Methods for computer-assisted isolation of proteins | |
US6290831B1 (en) | Electrophoretic system for real time detection of multiple electrophoresed biopolymers | |
US6982029B2 (en) | Electrophoretic method and system having internal lane standards for color calibration | |
JPH05322771A (en) | Multi-marker electrophoretic system | |
US20050259256A1 (en) | Device and method for measurement | |
JPH05322770A (en) | Multi-marker electrophoresis | |
Urwin et al. | A multiple high-resolution mini two-dimensional polyacrylamide gel electrophoresis system: imaging two-dimensional gels using a cooled charge-coupled device after staining with silver or labeling with fluorophore | |
JP3695631B2 (en) | Electrophoresis device | |
JPH01148946A (en) | Photodetection electrophoresis device | |
JPH05281191A (en) | Multi-labeling system two-dimensional cataphoresis method | |
Guttman et al. | Rapid two‐dimensional analysis of proteins by ultra‐thin layer gel electrophoresis | |
WO2001007920A2 (en) | Automated landmarking for two-dimensional electrophoresis | |
JP2840586B2 (en) | Light detection electrophoresis device | |
JPH0572179A (en) | Two-dimensional fluorescence image detector for nucleic acids and proteins | |
JP2624655B2 (en) | Electrophoresis device | |
KR100777363B1 (en) | Electrophoretic plate having an integral isolation wall and nucleic acid base sequence analysis device using the same | |
EP1568785A2 (en) | Method for detecting oligonucleotides and determining base sequence of nucleic acids | |
JPH02269937A (en) | Multicolor fluorescence detection type electrophoretic device |