[go: up one dir, main page]

JPH05319994A - Method for recovering oxide single crystal material - Google Patents

Method for recovering oxide single crystal material

Info

Publication number
JPH05319994A
JPH05319994A JP12521692A JP12521692A JPH05319994A JP H05319994 A JPH05319994 A JP H05319994A JP 12521692 A JP12521692 A JP 12521692A JP 12521692 A JP12521692 A JP 12521692A JP H05319994 A JPH05319994 A JP H05319994A
Authority
JP
Japan
Prior art keywords
single crystal
powder
oxide single
mixed powder
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12521692A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kanetani
泰宏 金谷
Hiroki Imoto
裕樹 井本
Koji Sasaki
康治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP12521692A priority Critical patent/JPH05319994A/en
Publication of JPH05319994A publication Critical patent/JPH05319994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve the recovery ratio by heating mixed powder of an oxide single crystal with impurities produced in working the oxide single crystal, passing the mixed powder through an electric field and applying the oxide single crystal powder to positive and negative electrodes. CONSTITUTION:Mixed powder 1 of an oxide single crystal such as LiTa2O3 or LiNb2O3 with impurities is fed to a powder feeding part 2 and dropped from the lower part at a constant velocity while being heated with a heater 3. Only the oxide single crystal powder (1a) in the mixed powder 1 is electrified by piezoelectric effects to attract the oxide single crystal powder (1a) to electrodes 4 in a high electric field at 100-500 V/cm with positive and negative electrodes 4 heated at 80-90 deg.C. The impurity powder (1b) is directly dropped and separated. The positive and negative electrodes 4 are moved in the direction of arrows with thin beltlike rollers 5 made of a metal to apply a high voltage to the respective earths. The attracted high-purity oxide single crystal powder (1a) is separated from the electrodes 4 with separators 6 and collected in containers 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物単結晶材料の回収
方法に関し、特にタンタル酸リチウム,ニオブ酸リチウ
ム単結晶の機械加工の際、出る加工屑を、単結晶育成の
原材料として再利用するために研磨材,オイルなどの夾
雑物から分離精製する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering an oxide single crystal material, and in particular, the processing waste generated during the machining of a lithium tantalate or lithium niobate single crystal is reused as a raw material for growing a single crystal. Therefore, it relates to a method of separating and purifying from contaminants such as abrasives and oil.

【0002】[0002]

【従来の技術】タンタル酸金属は戦略金属とも称せら
れ、コンデンサー,原子力発電,航空機用ガスタービン
等の分野で使用されているが、その産出がブラジル,東
南アジア,アフリカ,カナダ等に偏在しており、価格の
高騰や供給の不安定化が起り易く、タンタル資源の回収
が望まれる。現状ではスズ精製スラグからの副産物,タ
ンタルコンデンサー,超硬切削チップ,タンタル酸リチ
ウム(以下LTと略称する)単結晶等から回収が行われ
る。
2. Description of the Related Art Metal tantalate is also called a strategic metal and is used in the fields of capacitors, nuclear power generation, gas turbines for aircraft, etc., but its production is unevenly distributed in Brazil, Southeast Asia, Africa, Canada, etc. However, price rises and supply instability are likely to occur, and recovery of tantalum resources is desired. At present, recovery is performed from by-products from tin refined slag, tantalum capacitors, cemented carbide cutting chips, lithium tantalate (hereinafter abbreviated as LT) single crystals, and the like.

【0003】LT単結晶の場合、現行の回収対象は、引
上用るつぼ中の残渣,クラック入りのブール,又は破片
等であって、製品重量を超えて排出されるLT加工屑の
回収は行われていない。LT加工屑の排出量について
は、例えば径4″用LTブール(有効長さ12cm)か
ら径4″×厚さ0.5mmのウエハー141枚を作る場
合では、重量で製品ウエハ100部に対して円筒研削に
よるロス82部,ワイヤーソーでの切断によるロス40
部,ラップ・ポリッシュ研磨によるロス30部となり、
ロスになったLT加工屑の総量は152部で、実に製品
ウエハー重量の1.5倍に達する。製品ウエハーの厚み
がもっと小さくなれば(例えば厚さ0.05mmのもの
も使用されている)、LTの相対的ロスは一段と大きく
なる。
In the case of LT single crystals, the current objects to be recovered are residues in crucibles for pulling up, boules with cracks, debris, etc., and LT processed waste discharged exceeding the product weight is not recovered. I haven't been. Regarding the discharge amount of the LT processing waste, for example, in the case of producing 141 wafers of diameter 4 ″ × 0.5 mm in thickness from an LT boule for diameter 4 ″ (effective length 12 cm), 100 parts of the product wafer are weighed. Loss 82 due to cylindrical grinding, loss 40 due to cutting with a wire saw
Part, the loss due to lapping and polishing is 30 parts,
The total amount of lost LT processing waste is 152 parts, which is actually 1.5 times the weight of the product wafer. If the thickness of the product wafer becomes smaller (for example, the one having a thickness of 0.05 mm is also used), the relative loss of LT is further increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、LT又はオニブ酸リチウム(以下LNと略称する)
等の酸化物単結晶材料の機械加工時に発生する材料加工
屑に含まれる単結晶を、その夾雑物から効率よく分離精
製して再利用する方法を提供しようとするものである。
In view of the above points, the present invention is LT or lithium onibate (hereinafter abbreviated as LN).
It is intended to provide a method for efficiently separating and purifying a single crystal contained in a material processing waste generated at the time of machining an oxide single crystal material such as, for example, and reusing it.

【0005】[0005]

【課題を解決するための手段】本発明は以上の問題点を
解決するためのものですなわち、酸化物単結晶の加工時
に生ずる酸化物単結晶と夾雑物との混合粉末を加熱して
電場中を通過させることにより、酸化物単結晶粉末を正
負電極に付着せしめることを特徴とする酸化物単結晶材
料の回収方法である。
The present invention is to solve the above problems, that is, by heating a mixed powder of an oxide single crystal and impurities produced during processing of the oxide single crystal in an electric field. The oxide single crystal powder is allowed to adhere to the positive and negative electrodes by passing the oxide single crystal material.

【0006】異極像晶族の結晶の一部を加熱した時、表
面に電荷が表われる。この現象は焦電効果と呼ばれる。
異極像晶族の結晶は、自然の状態で分極していて(自発
分極)、表面の分極電荷が付着したイオン等で中和され
ており、温度を変えると分極の大きさが変わって、変化
分が観測される。LTもLNも異極像晶族に属するので
焦電性を持ち、結晶のZ軸方向に自発分極を有している
ので、例えば赤外線ヒーターで加熱すると、図2に示す
ように単結晶8のZ軸方向9に大きな分極電荷の発生が
観察される(図2(A)は加熱前,(B)は加熱後の状
態で示す)。この帯電した粉末を、例えば100〜50
0V/cmの高電場中で落下させると、帯電体(焦電
体)粉末は分極電荷の効果で電極に付着し、帯電体でな
いものはそのまま落下して、焦電体と非焦電体が分離さ
れることになる。
When a part of the crystals of the heteropolar image group is heated, an electric charge appears on the surface. This phenomenon is called the pyroelectric effect.
The crystals of the heteropolar image group are naturally polarized (spontaneous polarization), and the surface polarization charge is neutralized by the attached ions, etc., and the magnitude of polarization changes when the temperature is changed, Changes are observed. Since both LT and LN belong to the heteropolar image crystal group, they have pyroelectricity and have spontaneous polarization in the Z-axis direction of the crystal. Generation of large polarized charges is observed in the Z-axis direction 9 (FIG. 2A shows a state before heating, and FIG. 2B shows a state after heating). This charged powder is, for example, 100-50
When dropped in a high electric field of 0 V / cm, the charged body (pyroelectric body) powder adheres to the electrode due to the effect of polarization charge, and the non-charged body falls as it is, and the pyroelectric body and the non-pyroelectric body are separated. Will be separated.

【0007】図1は本発明に使用される分離装置を例示
し、上記のような酸化物単結晶と夾雑物との混合粉末1
を粉末供給部2に供給し、その下部より一定速度で落下
させる。この時、混合粉末1はヒーター3により加熱さ
れて、その中の酸化物単結晶粉末のみが焦電効果により
帯電する。さらに帯電した粉末は正負の電極4による電
場中に落下し、焦電効果により帯電した酸化物単結晶粉
末1aは正負の電極4に吸着され、夾雑物粉末1bと分
離される。正負の電極4は薄いベルト状金属製でローラ
5により矢印方向に移動しており、各々のアースに対し
て高電圧が印加されている。吸着された酸化物単結晶粉
末は分離器6により電極より分離され容器7に集められ
る。ここで電極4は80〜90℃に加熱されていること
が望ましい。
FIG. 1 exemplifies a separation apparatus used in the present invention, which is a mixed powder 1 of the above-mentioned oxide single crystal and impurities.
Is supplied to the powder supply unit 2 and dropped from the lower part at a constant speed. At this time, the mixed powder 1 is heated by the heater 3, and only the oxide single crystal powder therein is charged by the pyroelectric effect. Further, the charged powder falls into the electric field of the positive and negative electrodes 4, and the charged oxide single crystal powder 1a is adsorbed by the positive and negative electrodes 4 by the pyroelectric effect and separated from the contaminant powder 1b. The positive and negative electrodes 4 are made of thin belt-shaped metal and are moved in the direction of the arrow by rollers 5, and a high voltage is applied to each ground. The adsorbed oxide single crystal powder is separated from the electrodes by the separator 6 and collected in the container 7. Here, the electrode 4 is preferably heated to 80 to 90 ° C.

【0008】単結晶材料の機械加工は、円筒研磨盤,ワ
イヤソー,マルチブレードウエハリングマシン,内周刃
切断機,外周刃切断機,ラッピングマシン,ポリッシン
グマシン,ベベリングマシン等の機械を使用して行われ
る。
For the machining of the single crystal material, a machine such as a cylindrical polishing machine, a wire saw, a multi-blade wafer ring machine, an inner peripheral blade cutting machine, an outer peripheral blade cutting machine, a lapping machine, a polishing machine and a beveling machine is used. Done.

【0009】[0009]

【実施例】以下実施例による本発明を説明する。なお例
中組成%はいずれも重量基準である。
EXAMPLES The present invention will be described below with reference to examples. All composition% in the examples are based on weight.

【0010】実施例1 LTの単結晶径4″ウエハを、SiC遊離砥粒を用いて
両面ラッピングした。ラッピング液の当初の組成は、水
8l,遊離砥粒(富士見研磨剤工業(株)製,FO#1
200)4Kg,防錆剤(大智化学産業(株)製,シュ
レック#101)700ccである。研磨後のスラリー
中には、LT単結晶粒子,SiC粒子,防錆剤,鉄分
(定盤より),樹脂,グラスファイバー(FRP製スペ
ーサーより)等が含まれる。このスラリーに、遠心分
離,界面活性剤洗浄,遠心分離乾燥の処理を行い、得ら
れた固形分をボールミルでほぐして粉末状態とする。こ
の場合、温度の上昇をなるべく小さくするよう配慮し
た。ここで、LT単結晶粉末は約15%含まれる。この
混合粉末を図1に示される装置の粉末供給部2に供給
し、その下部より2l/hrの速度で落下させた。この
時、赤外線ヒーター3により約90℃に加熱され、LT
単結晶粉末のみが焦電効果により帯電し(図2参照)、
帯電したLT単結晶粉末は他の夾雑物と共に電極4によ
る電場(1000V/10cm)中を落下し電極4に
(高さ1m)に吸着され、夾雑物粉末はそのまま真直に
落下してしまう。吸着されたLT単結晶粉末は分離器6
により分離され、容器7に集められた。この方法によ
り、純度99.5%のLT単結晶が90%の収率で得ら
れた。
Example 1 An LT single crystal diameter 4 ″ wafer was lapped on both sides with SiC free abrasive grains. The initial composition of the lapping solution was 8 liters of water, free abrasive grains (manufactured by Fujimi Abrasive Industry Co., Ltd.). , FO # 1
200) 4 kg, rust preventive (shrek # 101, manufactured by Daichi Chemical Industry Co., Ltd.) 700 cc. The slurry after polishing contains LT single crystal particles, SiC particles, rust preventive agent, iron (from platen), resin, glass fiber (from FRP spacer) and the like. The slurry is subjected to centrifugal separation, washing with a surfactant, centrifugal separation and drying, and the solid content obtained is loosened with a ball mill to give a powder. In this case, consideration was given to making the temperature rise as small as possible. Here, the LT single crystal powder is contained in about 15%. This mixed powder was supplied to the powder supply unit 2 of the apparatus shown in FIG. 1 and dropped from the lower part at a speed of 2 l / hr. At this time, it is heated to about 90 ° C by the infrared heater 3 and LT
Only the single crystal powder is charged by the pyroelectric effect (see Fig. 2),
The charged LT single crystal powder falls along with other contaminants in the electric field (1000 V / 10 cm) by the electrode 4 and is adsorbed by the electrode 4 (height 1 m), and the contaminant powder falls straight as it is. The adsorbed LT single crystal powder is separated by a separator 6
Were separated by and collected in a container 7. By this method, LT single crystals with a purity of 99.5% were obtained in a yield of 90%.

【0011】実施例2 育成した径4″のLN単結晶ブールを内周刃切断機で切
断した。内周刃切断機で切断を行うと、LN単結晶粉
体,固体砥粒,カーボン,ガラス,接着剤,鉄粉,防錆
剤等の混合スラリーが得られる。このスラリーに遠心分
離,界面活性剤洗浄,遠心分離乾燥の処理を行い得られ
た固形分をボールミルで粉末状にしたものを実施例1と
同様の方法でLN単結晶粉末を分離すると、乾燥混合粉
末中の80%のLN単結晶から、純度99.7%のLN
単結晶が85%の収率で得られた。
Example 2 A grown LN single crystal boule having a diameter of 4 "was cut by an inner peripheral blade cutting machine. When the inner peripheral blade cutting machine was used for cutting, LN single crystal powder, solid abrasive grains, carbon and glass were cut. , A mixed slurry of adhesive, iron powder, rust preventive, etc. This slurry is subjected to centrifugal separation, surfactant washing, centrifugal separation drying, and the resulting solid content is pulverized with a ball mill. When the LN single crystal powder was separated in the same manner as in Example 1, 80% of the LN single crystal in the dry mixed powder was converted to LN of 99.7% purity.
Single crystals were obtained with a yield of 85%.

【0012】[0012]

【発明の効果】本発明によれば酸化物単結晶の機械加工
の際に生じる酸化物単結晶と夾雑物との混合粉末より焦
電効果を利用して酸化物単結晶材料を効率よく回収する
ことができ、特にタンタル酸リチウム,ニオブ酸リチウ
ム単結晶材料のリサイクル使用による省資源効果が図ら
れるので工業的に有用である。
EFFECTS OF THE INVENTION According to the present invention, the oxide single crystal material is efficiently recovered from the mixed powder of the oxide single crystal and the impurities produced during the machining of the oxide single crystal by utilizing the pyroelectric effect. In particular, it is industrially useful because the resource-saving effect can be achieved by the recycle use of the lithium tantalate and lithium niobate single crystal materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に使用される装置の一例を示す概略
構成図。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used in the method of the present invention.

【図2】本発明法に使用される単結晶の帯電状態を示す
説明図。(A)は加熱前,(B)は加熱後の状態を示
す。
FIG. 2 is an explanatory view showing a charged state of a single crystal used in the method of the present invention. (A) shows the state before heating and (B) shows the state after heating.

【符号の説明】[Explanation of symbols]

1 混合粉末 1a 酸化物単結晶粉末 1b 夾雑物粉末 2 粉末供給部 3 ヒーター 4 電極 5 ローラ 6 分離器 7 容器 8 単結晶 9 Z軸 1 Mixed powder 1a Oxide single crystal powder 1b Contaminant powder 2 Powder supply part 3 Heater 4 Electrode 5 Roller 6 Separator 7 Container 8 Single crystal 9 Z axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物単結晶の加工時に生ずる酸化物単
結晶と夾雑物との混合粉末を加熱して電場中を通過させ
ることにより酸化物単結晶粉末を正負電極に付着せしめ
ることを特徴とする酸化物単結晶材料の回収方法。
1. The oxide single crystal powder is adhered to the positive and negative electrodes by heating a mixed powder of the oxide single crystal and impurities generated during processing of the oxide single crystal and allowing the mixed powder to pass through an electric field. Method for recovering oxide single crystal material.
【請求項2】 酸化物単結晶がタンタル酸リチウム又は
ニオブ酸リチウムの単結晶である請求項1に記載の回収
方法。
2. The recovery method according to claim 1, wherein the oxide single crystal is a lithium tantalate or lithium niobate single crystal.
JP12521692A 1992-05-19 1992-05-19 Method for recovering oxide single crystal material Pending JPH05319994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12521692A JPH05319994A (en) 1992-05-19 1992-05-19 Method for recovering oxide single crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12521692A JPH05319994A (en) 1992-05-19 1992-05-19 Method for recovering oxide single crystal material

Publications (1)

Publication Number Publication Date
JPH05319994A true JPH05319994A (en) 1993-12-03

Family

ID=14904745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12521692A Pending JPH05319994A (en) 1992-05-19 1992-05-19 Method for recovering oxide single crystal material

Country Status (1)

Country Link
JP (1) JPH05319994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021318A1 (en) * 1999-09-20 2001-03-29 Hitachi Zosen Corporation Plastic sorter
JP2016508443A (en) * 2013-04-15 2016-03-22 ポスコ Raw material sorting apparatus and sorting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021318A1 (en) * 1999-09-20 2001-03-29 Hitachi Zosen Corporation Plastic sorter
JP2016508443A (en) * 2013-04-15 2016-03-22 ポスコ Raw material sorting apparatus and sorting method
US9700899B2 (en) 2013-04-15 2017-07-11 Posco Raw material sorting apparatus and method therefor

Similar Documents

Publication Publication Date Title
CN101528597B (en) Silicon reclamation apparatus and method of reclaiming silicon
US20110280785A1 (en) Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
JP5722601B2 (en) Silicon cutting waste treatment method
CA1240483A (en) Process for the purification of silicon by the action of an acid
JP2009196849A (en) Silicon recovery method and silicon recovery apparatus
JP4966938B2 (en) Silicon regeneration method
CN106006629B (en) A kind of sapphire method and product that diamond is reclaimed in grinding slug
CN103395788B (en) Ingot-casting silicon powder with controllable grain size as well as preparation method and application thereof
JP2003225700A (en) System for recycling waste sludge
US6010010A (en) Process for reclaiming a grinding suspension
CN102275926B (en) Recovery method of silicon powder
JPH05319994A (en) Method for recovering oxide single crystal material
EP2094441A1 (en) Process and apparatus for treating exhausted abrasive slurries from the lapping process for the recovery of their reusable abrasive component
KR100625283B1 (en) Waste Sludge Regeneration Apparatus and Method Generated in Semiconductor Wafer Fabrication
JP4686824B2 (en) Method and apparatus for removing quartz adhering to silicon
CN102229113A (en) Method for recovering sapphire powder
WO2009081725A1 (en) Silicon reclamation method
JP2009084069A (en) Apparatus and method for regenerating silicon
CN106241794B (en) It is a kind of that the method and product that diamond is reclaimed in slug are ground from sapphire
JP5286095B2 (en) Silicon sludge recovery method and silicon processing apparatus
JP2002293528A (en) Production method of silicon for solar cell
CN106583031A (en) Process for purifying ganister sand from silicon carbide reclamation sand
WO2015059522A1 (en) Non-chemical method and system for recovering silicon carbide particles
JP2009292656A (en) Method for manufacturing silicon ingot
JP2507571B2 (en) Abrasive manufacturing method