JPH05314981A - Alkaline storage battery and manufacture thereof - Google Patents
Alkaline storage battery and manufacture thereofInfo
- Publication number
- JPH05314981A JPH05314981A JP4113425A JP11342592A JPH05314981A JP H05314981 A JPH05314981 A JP H05314981A JP 4113425 A JP4113425 A JP 4113425A JP 11342592 A JP11342592 A JP 11342592A JP H05314981 A JPH05314981 A JP H05314981A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- battery
- paste
- binder
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【目的】 アルカリ蓄電池のコストを低減し、高率放電
特性を改良する。
【構成】 正極活物質である水酸化ニッケルに導電剤と
してカーボンを、結着剤として水ガラスを用いて正極板
を作製する。
【効果】 この構成により、高価な水酸化コバルト量を
大幅に低減して低コスト化が可能となり、また従来のカ
ーボン添加正極を用いた電池に較べ大幅に高率放電特性
を改良することが可能となる。
(57) [Abstract] [Purpose] To reduce the cost of alkaline storage batteries and improve high rate discharge characteristics. [Constitution] A positive electrode plate is prepared by using carbon hydroxide as a conductive agent and water glass as a binder in nickel hydroxide which is a positive electrode active material. [Effect] With this configuration, it is possible to significantly reduce the amount of expensive cobalt hydroxide and reduce the cost, and it is possible to significantly improve the high-rate discharge characteristics as compared with the battery using the conventional carbon-added positive electrode. Becomes
Description
【0001】[0001]
【産業上の利用分野】本発明は負極に水素吸蔵合金やカ
ドミウム、正極活物質に水酸化ニッケルを用い、安価で
高率放電特性に優れたアルカリ蓄電池およびその製造法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery which uses hydrogen storage alloy or cadmium for the negative electrode and nickel hydroxide for the positive electrode active material and is inexpensive and excellent in high rate discharge characteristics, and a method for producing the same.
【0002】[0002]
【従来の技術】負極に水素吸蔵合金やカドミウム、正極
活物質に水酸化ニッケルを用いるアルカリ蓄電池は、高
率放電に優れた電池として良く知られている。負極の水
素吸蔵合金やカドミウムは、放電時の導電性が良好な物
質である。一方、正極では、充電により生成するオキシ
水酸化ニッケルの導電性は良好であるが、放電生成物で
ある水酸化ニッケルは導電性が悪い。そこで正極中の水
酸化ニッケル粒子から集電体であるニッケル基板、特に
良く使用されている発泡ニッケルまでの導電性を良くす
るために、正極合剤中に水酸化コバルトが添加される。
水酸化コバルトは充電時に導電性の良好なオキシ水酸化
コバルトになり、水酸化ニッケル粒子とニッケル集電体
の間の導電性を改善し、高率放電が可能となっていた。
しかしコバルト化合物を用いることによる高コスト化
と、一層の高率放電特性の改良が課題となっていた。そ
こで、正極合剤中に黒鉛などのカーボンを添加し、カル
ボキシメチルセルロースを結着剤として水性ペーストに
して、これより正極板を作ることが試みられたが、高率
放電特性の改良にはいたらなかった。2. Description of the Related Art An alkaline storage battery using a hydrogen storage alloy or cadmium for a negative electrode and nickel hydroxide for a positive electrode active material is well known as a battery excellent in high rate discharge. The hydrogen storage alloy and cadmium of the negative electrode are substances having good conductivity during discharge. On the other hand, in the positive electrode, the conductivity of nickel oxyhydroxide generated by charging is good, but the conductivity of nickel hydroxide, which is a discharge product, is poor. Therefore, cobalt hydroxide is added to the positive electrode mixture in order to improve the conductivity from the nickel hydroxide particles in the positive electrode to the nickel substrate, which is a current collector, and especially the frequently used foamed nickel.
Cobalt hydroxide turned into cobalt oxyhydroxide having good conductivity during charging, which improved conductivity between the nickel hydroxide particles and the nickel current collector, enabling high rate discharge.
However, it has been a problem to increase the cost and further improve the high rate discharge characteristics by using the cobalt compound. Therefore, it has been attempted to add carbon such as graphite to the positive electrode mixture and make an aqueous paste using carboxymethyl cellulose as a binder to make a positive electrode plate from this, but it has not been possible to improve the high-rate discharge characteristics. It was
【0003】[0003]
【発明が解決しようとする課題】しかし、このような従
来のカルボキシメチルセルロースを結着剤として水性ペ
ーストでは、カーボンの分散が良く、活物質である水酸
化ニッケルの回りにうまく配置されている。しかしなが
ら、カルボキシメチルセルロースがアルカリ電解液に徐
々に溶解し、分解するため、折角うまく分散配置された
カーボンが活物質の回りから遊離し、脱落するので、活
物質に導電性を付与できなくなるという問題があった。However, in such an aqueous paste using such a conventional carboxymethyl cellulose as a binder, carbon is dispersed well and it is well arranged around nickel hydroxide which is an active material. However, since carboxymethyl cellulose gradually dissolves in an alkaline electrolyte and decomposes, carbon that is dispersed and arranged well is liberated from around the active material and falls off, so that there is a problem that conductivity cannot be imparted to the active material. there were.
【0004】本発明はこのような課題を解決するもの
で、正極活物質の水性ペーストを改良し、アルカリ蓄電
池の低コスト化とともに、高率放電特性の改良を図るこ
とを目的とするものである。The present invention is intended to solve such problems, and an object thereof is to improve an aqueous paste of a positive electrode active material, to reduce the cost of an alkaline storage battery, and to improve high rate discharge characteristics. ..
【0005】[0005]
【課題を解決するための手段】この課題を解決するため
に本発明は、水素吸蔵合金やカドミウムなど可逆性を有
する負極、水酸化ニッケルよりなる正極、電解質にアル
カリ水溶液を用いたアルカリ蓄電池において、正極に導
電剤としてのカーボン、結着剤としての水ガラスを用い
たことを特徴とする。To solve this problem, the present invention provides a reversible negative electrode such as a hydrogen storage alloy or cadmium, a positive electrode made of nickel hydroxide, and an alkaline storage battery using an alkaline aqueous solution as an electrolyte, It is characterized in that carbon as a conductive agent and water glass as a binder are used for the positive electrode.
【0006】また正極の作り方として、予め導電剤とし
てのカーボンと結着剤としての水ガラスを水を用いてペ
ーストにし、これに水酸化ニッケルを加え混合した水性
ペーストを充填乾燥して正極を作製するようにしたもの
である。Further, as a method for producing a positive electrode, carbon as a conductive agent and water glass as a binder are previously made into a paste by using water, and nickel hydroxide is added to and mixed with an aqueous paste, which is then dried to produce a positive electrode. It was done.
【0007】[0007]
【作用】従来のアルカリ蓄電池用正極合剤は、例えば水
酸化ニッケル100g,金属コバルト8g,水酸化コバ
ルト6g,酸化亜鉛3gからなっており、28.9Ah
/117gつまり0.247Ah/gの理論電気容量と
なる。金属コバルトは負極を正極に較べて余分に充電さ
れた状態すなわち正極容量規制の電池とするために添加
されている。水酸化コバルトは、電池の高率放電特性を
良くするために、酸化亜鉛は水酸化ニッケルのガンマー
水酸化ニッケルへの構造変化を抑制して長寿命化を図る
ために添加されている。A conventional positive electrode mixture for an alkaline storage battery is composed of, for example, 100 g of nickel hydroxide, 8 g of metallic cobalt, 6 g of cobalt hydroxide and 3 g of zinc oxide.
/ 117 g, that is, a theoretical electric capacity of 0.247 Ah / g. Metallic cobalt is added in order to make the negative electrode extra charged as compared with the positive electrode, that is, to make a battery with positive electrode capacity regulation. Cobalt hydroxide is added to improve the high-rate discharge characteristics of the battery, and zinc oxide is added to suppress the structural change of nickel hydroxide into gamma-nickel hydroxide to prolong the service life.
【0008】本発明では、水酸化コバルトの量を減少し
つつ、高率放電特性を改良するために、正極に導電剤と
してカーボン、結着剤として水ガラスを用いている。In the present invention, carbon is used as the conductive agent and water glass is used as the binder in the positive electrode in order to improve the high rate discharge characteristics while reducing the amount of cobalt hydroxide.
【0009】水ガラスを結着剤とし、水を使用したペー
ストでもカーボンは良く分散し、これに水酸化ニッケル
を加えたペーストをニッケル集電体に充填し乾燥するこ
とにより、活物質の周囲にカーボンは強固に固着され
る。しかも一旦乾燥した結着剤は、アルカリ電解液に対
しても安定であるためカーボンは遊離することはなく、
十分な導電性を活物質に付与するため、正極中の水酸化
コバルト量を削減でき、低コスト化とともに高率放電特
性を改良できる。Even in a paste using water glass as a binder and water, carbon is well dispersed, and a paste obtained by adding nickel hydroxide to this is filled in a nickel current collector and dried, so that the active material is surrounded by the paste. Carbon is firmly fixed. Moreover, once dried, the binder is stable even in alkaline electrolyte, so carbon is not released,
Since the active material is provided with sufficient conductivity, the amount of cobalt hydroxide in the positive electrode can be reduced, the cost can be reduced, and the high rate discharge characteristics can be improved.
【0010】また本発明では上記物質を用いて正極を作
る際には、予め導電剤としてのカーボンと結着剤として
の水ガラスを水を用いてペーストにし、これに水酸化ニ
ッケルを加え混合した水性ペーストを充填乾燥して正極
を作る。In the present invention, when a positive electrode is produced using the above substances, carbon as a conductive agent and water glass as a binder are previously made into a paste by using water, and nickel hydroxide is added to and mixed with the paste. An aqueous paste is filled and dried to form a positive electrode.
【0011】水酸化ニッケル,導電剤としてのカーボン
に結着剤としての水ガラスを添加した後、水を使用して
一度に水性ペーストとし、これを充填乾燥して正極を作
るのは好ましくない。この方法で作った正極を用いた電
池では、高率放電特性の改善の程度が小さくなるからで
ある。活物質である水酸化ニッケル表面の一部が水ガラ
スの成分である珪酸ナトリウムにより覆われるためと考
えられる。It is not preferable to add water glass as a binder to nickel hydroxide and carbon as a conductive agent, and then to make an aqueous paste at once by using water, and to fill and dry this to make a positive electrode. This is because the degree of improvement in high rate discharge characteristics is reduced in the battery using the positive electrode manufactured by this method. It is considered that a part of the surface of nickel hydroxide which is an active material is covered with sodium silicate which is a component of water glass.
【0012】一方、本発明の予め導電剤としてのカーボ
ンと結着剤としての水ガラスを水を用いてペーストに
し、これに水酸化ニッケルを加え混合する方法では、結
着剤と活物質との作用がある程度小さくなり良好な高率
放電特性が得られると考えられる。On the other hand, in the method of the present invention in which carbon as a conductive agent and water glass as a binder are made into a paste by using water, and nickel hydroxide is added to and mixed with the paste, the binder and the active material are mixed. It is considered that the action is reduced to some extent and good high rate discharge characteristics can be obtained.
【0013】[0013]
【実施例】以下に本発明の一実施例のニッケル−水素電
池を図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A nickel-hydrogen battery according to an embodiment of the present invention will be described below with reference to the drawings.
【0014】正極の作成は、導電剤としての人造黒鉛
0.4gに結着剤としての水ガラスをその固形分である
珪酸ナトリウムが0.4gになるように加え、さらに水
を加えペーストを作った。これとは別に水酸化ニッケル
と金属コバルト,水酸化コバルト,酸化亜鉛を重量比で
100:8:2:3に秤量した粉末を良く混合した。混
合粉末20gを先のペーストに加えて混練したのち、横
60mm縦81mm重量3.1gの発泡ニッケル中に、
このペーストを充填し45℃で乾燥後、厚み1.74m
mに圧縮し正極板とした。正極板の角にリードとしての
ニッケル板をスポット溶接した。このときの正極板1枚
の水酸化ニッケル量は17.7gで理論容量は5.11
Ahである。試験用電池にはこの正極板を5枚用いた。The positive electrode was prepared by adding 0.4 g of artificial graphite as a conductive agent to water glass as a binder so that the solid content of sodium silicate was 0.4 g, and further adding water to form a paste. It was Separately, powders of nickel hydroxide, metallic cobalt, cobalt hydroxide, and zinc oxide, which were weighed at a weight ratio of 100: 8: 2: 3, were mixed well. After adding 20 g of the mixed powder to the above paste and kneading the mixture, 60 mm in width, 81 mm in length, and 3.1 g of foamed nickel having a weight of 3.1 g,
After filling this paste and drying at 45 ° C, the thickness is 1.74 m.
It was compressed to m to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to the corner of the positive electrode plate. At this time, the amount of nickel hydroxide on one positive electrode plate was 17.7 g and the theoretical capacity was 5.11.
It is Ah. Five positive electrode plates were used for the test battery.
【0015】負極の水素吸蔵合金としてAB5合金であ
るランタン含量10%のミッシュメタル(Mm)を含む
合金MmNi3.55Mn0.4Al0.3Co0.75を使用した。
この合金19.4gに水を加えてペーストとした。横6
0mm縦81mm重量3.1gの発泡ニッケル中に、こ
のペーストを充填し乾燥後、厚み1.20mmに圧縮し
負極板とした。負極板の角にリードとしてのニッケル板
をスポット溶接した。この負極板1枚の理論放電容量は
5.63Ahである。試験用電池にはこの負極板を6枚
用いた。As the hydrogen storage alloy for the negative electrode, an alloy MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 containing a misch metal (Mm) with a lanthanum content of 10%, which is an AB 5 alloy, was used.
Water was added to 19.4 g of this alloy to form a paste. Width 6
This paste was filled in nickel foam having a length of 0 mm, a length of 81 mm, and a weight of 3.1 g, dried, and then compressed to a thickness of 1.20 mm to obtain a negative electrode plate. A nickel plate as a lead was spot-welded to the corner of the negative electrode plate. The theoretical discharge capacity of one negative plate is 5.63 Ah. Six negative plates were used for the test battery.
【0016】本実施例の電池はスルフォン化処理を行っ
たポリプロピレン不織布セパレータを介して、負極,正
極の順に外側に負極がくるように配置した。負極リード
をニッケル製負極端子に、正極リードをニッケル製正極
端子にスポット溶接した。これらの極板郡を厚み3mm
のアクリロニトリルースチレン樹脂からなる内寸で縦1
08mm,横69mm,幅18mmのケースに入れた。
比重1.3の水酸化カリウム水溶液を電解質として54
cc加えた。The battery of this example was arranged such that the negative electrode and the positive electrode were arranged in this order with the negative electrode on the outside through the sulfonation-treated polypropylene nonwoven fabric separator. The negative electrode lead was spot-welded to the nickel negative electrode terminal, and the positive electrode lead was spot-welded to the nickel positive electrode terminal. The thickness of these plates is 3 mm
Made of acrylonitrile-styrene resin and has a vertical dimension of 1
It was put in a case of 08 mm, width 69 mm, and width 18 mm.
An aqueous solution of potassium hydroxide having a specific gravity of 1.3 was used as an electrolyte.
cc was added.
【0017】2気圧で作動する安全弁を取り付けたアク
リロニトリルースチレン樹脂からなる封口板をケースに
エポキシ樹脂で接着した。その後正極端子,負極端子を
封口板にオーリングを介して圧接固定し、密閉電池とし
た。この本実施例の電池を電池Aとする。A sealing plate made of acrylonitrile-styrene resin attached with a safety valve operating at 2 atm was adhered to the case with epoxy resin. After that, the positive electrode terminal and the negative electrode terminal were pressed and fixed to the sealing plate via an O-ring to form a sealed battery. The battery of this example is referred to as battery A.
【0018】別に、従来例の電池として、水酸化ニッケ
ルと金属コバルト,水酸化コバルト,酸化亜鉛,金属コ
バルトを重量比100:8:6:3に秤量した粉末を良
く混合した後、混合粉末20gに水を添加しペースト状
にした。本実施例の電池Aと同様に横60mm縦81m
m重量3.1gの発泡ニッケル中に、このペーストを充
填し乾燥後、厚み1.74mmに圧縮し正極板とした。
正極板の角にリードとしてのニッケル板をスポット溶接
した。このとき正極板1枚の理論容量は4.94Ahで
ある。同様に電池にはこの正極板を5枚用いた。また負
極には上記の本実施例の電池5と同じ極板を用いた。以
後本実施例の電池Aと同様に活物質保持体に充填し、同
じように電池を構成した。この従来例の電池を電池Bと
する。Separately, as a battery of a conventional example, powders of nickel hydroxide, metallic cobalt, cobalt hydroxide, zinc oxide, and metallic cobalt weighed at a weight ratio of 100: 8: 6: 3 were thoroughly mixed, and then 20 g of mixed powder. Was added to form a paste. 60 mm wide and 81 m long, similar to the battery A of this embodiment.
This paste was filled in 3.1 g of nickel foam having a weight of 3.1 g, dried, and then compressed to a thickness of 1.74 mm to obtain a positive electrode plate.
A nickel plate as a lead was spot-welded to the corner of the positive electrode plate. At this time, the theoretical capacity of one positive electrode plate is 4.94 Ah. Similarly, five positive electrode plates were used for the battery. As the negative electrode, the same electrode plate as the battery 5 of the above-mentioned embodiment was used. Thereafter, an active material holder was filled in the same manner as the battery A of this example, and a battery was similarly constructed. This conventional battery is referred to as battery B.
【0019】また従来例の電池として正極の水酸化ニッ
ケルと金属コバルト,水酸化コバルト,酸化亜鉛の重量
比は本実施例の電池Aと同じで、この混合粉20gを、
予め同量の0.4gの人造黒鉛と0.4gの結着剤とし
てのカルボキシメチルセルロースに水を加えて作製した
ペースト中に加え、本実施例の電池Aと同様に正極板を
作り、また同じ負極板を用いて作った電池を電池Cとす
る。正極板1枚当りの理論容量は5.11Ahである。In the battery of the conventional example, the weight ratio of nickel hydroxide of the positive electrode to metallic cobalt, cobalt hydroxide, and zinc oxide is the same as that of the battery A of this embodiment.
The same amount of 0.4 g of artificial graphite and 0.4 g of carboxymethyl cellulose as a binder were added to a paste prepared by adding water, and a positive electrode plate was prepared in the same manner as the battery A of this example, and the same. A battery made using the negative electrode plate is referred to as a battery C. The theoretical capacity per positive electrode plate is 5.11 Ah.
【0020】さらに比較例として正極の水酸化ニッケル
と金属コバルト,水酸化コバルト,酸化亜鉛の重量比は
本実施例の電池Aと同じでこの混合粉20gに、0.4
gの人造黒鉛,結着剤としての水ガラスをその固形分で
ある珪酸ナトリウムが0.4gになるように加え、水を
加えて一度にペーストにした。このペーストを用い、電
池Aと同様にして正極と電池を構成した。この比較例の
電池をDとする。正極板1枚当りの理論容量は5.11
Ahである。Further, as a comparative example, the weight ratio of nickel hydroxide of the positive electrode to metallic cobalt, cobalt hydroxide and zinc oxide is the same as that of the battery A of this example, and 20 g of this mixed powder is 0.4
g of artificial graphite and water glass as a binder were added so that the solid content of sodium silicate was 0.4 g, and water was added to form a paste at one time. Using this paste, a positive electrode and a battery were formed in the same manner as battery A. The battery of this comparative example is designated as D. The theoretical capacity per positive electrode plate is 5.11
It is Ah.
【0021】これらの電池を封口後、10時間率で15
時間充電し、2時間率で電圧が1.0Vになるまで放電
する初期充放電を5サイクル行った。その後20℃で2
時間率で3時間充電し、同じ率で端子間電圧が1Vにな
るまで放電する充放電サイクルを繰り返した。After sealing these batteries, the rate was 15 at a rate of 10 hours.
Five cycles of initial charging and discharging were performed, in which the battery was charged for an hour and discharged at a rate of 2 hours until the voltage became 1.0V. Then 2 at 20 ℃
A charging / discharging cycle was repeated, in which the battery was charged at a time rate of 3 hours and discharged at the same rate until the terminal voltage became 1V.
【0022】電池はA,C,Dの電池で12.8A,B
で12.4Aであった。(表1)に上記の各電池の正極
利用率を、図1に放電曲線を示す。The batteries are A, C, D batteries and 12.8A, B.
Was 12.4 A. Table 1 shows the positive electrode utilization rate of each of the above batteries, and FIG. 1 shows the discharge curve.
【0023】[0023]
【表1】 [Table 1]
【0024】この結果より、本実施例の電池Aは従来例
の電池Bに較べ、高価な水酸化コバルトの使用量を大き
く減らしても同様な高率放電特性が得られることがわか
る。図1に示すように電池Aの方が電池Bに較べ放電容
量が大きくなるのは、電池Aの方が同じ重量の正極合剤
でも活物質の重量比率を大きくできるからである。From these results, it can be seen that the battery A of the present embodiment can obtain similar high rate discharge characteristics as compared with the battery B of the conventional example even if the amount of expensive cobalt hydroxide used is greatly reduced. As shown in FIG. 1, the discharge capacity of the battery A is larger than that of the battery B because the battery A can increase the weight ratio of the active material even if the positive electrode mixture has the same weight.
【0025】また、従来のカーボンとカルボキシメチル
セルロースを使ったペーストにより構成した正極を用い
た電池Cでは、高率放電で放電特性は悪いことがわか
る。Further, it can be seen that in the battery C using the positive electrode composed of the conventional paste containing carbon and carboxymethyl cellulose, the discharge characteristics are poor at a high rate discharge.
【0026】さらに比較例Dとの比較より、本発明の製
造法つまり予めペーストを作成しこれに活物質を加える
方法の方が、作用の項で述べた理由により良好な高率放
電特性を得られることがわかる。Further, as compared with Comparative Example D, the production method of the present invention, that is, the method of forming a paste in advance and adding the active material thereto, obtains a good high rate discharge characteristic for the reason described in the section of the action. You can see that.
【0027】なお、本実施例では正極中に添加する導電
剤カーボンとしては、人造黒鉛以外にアセチレンブラッ
クが有効であった。添加量としては、水酸化ニッケル1
00重量部に対して1.5から10重量部が適切であ
り、これ以下であると高率放電特性が低下し、以上であ
ると高率放電には何等支障はないが重量当りの正極活物
質の充填容量の低下が大になる。また、このときに加え
る結着剤の重量としてはカーボンの量に比例し1.5か
ら10重量部が適切であった。In this example, acetylene black was effective as the conductive agent carbon added to the positive electrode in addition to artificial graphite. The amount of nickel hydroxide added is 1
1.5 to 10 parts by weight is suitable for 100 parts by weight, and if it is less than this, the high rate discharge characteristics are deteriorated, and if it is more than 100 parts by weight, there is no hindrance to high rate discharge, but the positive electrode activity per weight is high. The decrease in the filling capacity of the substance becomes large. Further, the weight of the binder added at this time was 1.5 to 10 parts by weight in proportion to the amount of carbon.
【0028】結着剤としての水ガラスの種類は、水ガラ
ス1号も2号も良好であった。なお、本実施例では負極
として水素吸蔵合金を用いた例について説明したが、ガ
ミウムや亜鉛を用いても同様の効果が得られる。The types of water glass as a binder were good for both water glass Nos. 1 and 2. In addition, although the example in which the hydrogen storage alloy is used as the negative electrode has been described in the present embodiment, the same effect can be obtained by using gallium or zinc.
【0029】[0029]
【発明の効果】以上の実施例の説明から明らかなように
本発明によれば、水酸化ニッケルを活物質とした正極に
導電剤としてのカーボン,結着剤として水ガラスを使用
して構成したアルカリ蓄電池では、水酸化コバルト量を
大幅に減量でき低コスト化を図れるとともに高率放電特
性が良好になる。As is apparent from the above description of the embodiments, according to the present invention, a positive electrode containing nickel hydroxide as an active material is used with carbon as a conductive agent and water glass as a binder. In an alkaline storage battery, the amount of cobalt hydroxide can be significantly reduced, cost can be reduced, and high rate discharge characteristics can be improved.
【図1】本実施例の電池A、従来の電池B,Cおよび比
較例の電池Dの放電特性を示す図FIG. 1 is a diagram showing discharge characteristics of a battery A of this example, conventional batteries B and C, and a battery D of a comparative example.
A 本発明の電池 B 従来例の電池 C 従来例の電池 D 比較例の電池 A Battery of the Present Invention B Battery of Conventional Example C Battery of Conventional Example D Battery of Comparative Example
フロントページの続き (72)発明者 児守 克典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continued (72) Inventor Katsunori Komori 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (2)
を主体とする正極と、アルカリ水溶液を主体とする電解
質を備え、前記正極に導電剤としてのカーボンと結着剤
として水ガラスを用いてなるアルカリ蓄電池。1. A reversible negative electrode, a positive electrode containing nickel hydroxide as a main component, and an electrolyte containing an alkaline aqueous solution as a main component, wherein carbon as a conductive agent and water glass as a binder are used for the positive electrode. Alkaline storage battery.
しての水ガラスを水を用いてペーストを作製し、前記ペ
ーストに水酸化ニッケルを加え混合した水性ペーストを
活物質保持体に充填乾燥して正極を作製する請求項1記
載のアルカリ蓄電池の製造法。2. A carbon paste as a conductive agent and water glass as a binder are prepared in advance using water to form a paste, and an aqueous paste prepared by adding nickel hydroxide to the paste is mixed into an active material holder and dried. The method for manufacturing an alkaline storage battery according to claim 1, wherein the positive electrode is manufactured by using the above method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4113425A JPH05314981A (en) | 1992-05-06 | 1992-05-06 | Alkaline storage battery and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4113425A JPH05314981A (en) | 1992-05-06 | 1992-05-06 | Alkaline storage battery and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05314981A true JPH05314981A (en) | 1993-11-26 |
Family
ID=14611914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4113425A Pending JPH05314981A (en) | 1992-05-06 | 1992-05-06 | Alkaline storage battery and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05314981A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007000840A1 (en) * | 2005-06-29 | 2007-01-04 | Matsushita Electric Industrial Co., Ltd. | Method for producing electrode paste mixture for alkaline storage battery |
-
1992
- 1992-05-06 JP JP4113425A patent/JPH05314981A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007000840A1 (en) * | 2005-06-29 | 2007-01-04 | Matsushita Electric Industrial Co., Ltd. | Method for producing electrode paste mixture for alkaline storage battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3246345B2 (en) | Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same | |
JPH04137368A (en) | Nickel-hydrogen storage battery and its manufacture | |
JP2003051334A (en) | Sealed lead-acid battery | |
JPH05314981A (en) | Alkaline storage battery and manufacture thereof | |
JPS5983347A (en) | Sealed nickel-cadmium storage battery | |
JPH11297352A (en) | Alkaline storage battery | |
JP3183073B2 (en) | Active material for nickel electrode and method for producing the same | |
JPH05314980A (en) | Alkaline storage battery and manufacture thereof | |
JPH08321302A (en) | Hydrogen storage electrode | |
JPH05314982A (en) | Alkaline storage battery and manufacture thereof | |
JPH06150925A (en) | Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode | |
JP3135239B2 (en) | Nickel positive electrode for batteries | |
JPH0429189B2 (en) | ||
JP3221040B2 (en) | Alkaline storage battery | |
JPH1021904A (en) | Alkaline storage battery | |
JP2568967B2 (en) | Manufacturing method of sealed nickel-hydrogen secondary battery | |
JP2530281B2 (en) | Alkaline storage battery | |
JP3412162B2 (en) | Alkaline storage battery | |
JPH06333568A (en) | Sealed metal oxide-hydrogen battery and method for manufacturing the same | |
JPS5933758A (en) | Sealed nickel cadmium battery | |
JPS61124060A (en) | Paste type positive pole plate for alkaline storage battery | |
JP2623413B2 (en) | Paste nickel electrode for alkaline storage batteries | |
JP3547980B2 (en) | Nickel-hydrogen storage battery | |
JPH1040950A (en) | Alkaline secondary battery | |
JPS61233966A (en) | Manufacture of sealed nickel-hydrogen storage battery |