[go: up one dir, main page]

JPH05313219A - Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element - Google Patents

Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element

Info

Publication number
JPH05313219A
JPH05313219A JP4117719A JP11771992A JPH05313219A JP H05313219 A JPH05313219 A JP H05313219A JP 4117719 A JP4117719 A JP 4117719A JP 11771992 A JP11771992 A JP 11771992A JP H05313219 A JPH05313219 A JP H05313219A
Authority
JP
Japan
Prior art keywords
light
single crystal
crystal
lithium tantalate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117719A
Other languages
Japanese (ja)
Inventor
Yasunori Furukawa
保典 古川
Satoshi Makio
諭 牧尾
Fumio Nitanda
文雄 二反田
Masazumi Sato
正純 佐藤
Kohei Ito
康平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4117719A priority Critical patent/JPH05313219A/en
Publication of JPH05313219A publication Critical patent/JPH05313219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain the tantalum lithium single crystal having an excellent optical damage resistant characteristic and the optical element constituted by using this crystal. CONSTITUTION:A structure periodically inverted with the polarization direction of the crystal is formed on the tantalum lithium single crystal having <=1kW/cm<2> optical damage resistance strength to the incidence of an Ar laser of 0.488mum wavelength, by which the optical damage resistance strength is improved to >=100kW/cm<2>. The polarization inversion region of such tantalum lithium single crystal substrate 21 formed with the polarization inversion grating is formed larger in its depth than the width in the periodic direction. The tantalum lithium single crystal substrate 21 is used for the nonlinear optical element which generates higher harmonic waves by passing the exit light from a laser beam source as a basic wave to the nonlinear optical crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を使用する情
報処理分野あるいは光応用計測制御および通信分野に利
用するタンタル酸リチウム単結晶基板に関するものであ
り、特には耐光損傷特性に優れたタンタル酸リチウム単
結晶基板およびこれを用いた光素子に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium tantalate single crystal substrate used in the field of information processing using laser light or in the field of optical measurement control and communication, and particularly to tantalum having excellent light damage resistance. The present invention relates to a lithium oxide single crystal substrate and an optical element using the same.

【0002】[0002]

【従来の技術】タンタル酸リチウム単結晶は融点約16
50℃、キュリー温度約600℃の強誘電体結晶で、通
常還元雰囲気中もしくは酸素を含む還元雰囲気中でイリ
ジウム坩堝を用い、融液からチョクラルスキー法により
育成されている。育成された単結晶は多分域状態である
ので、結晶温度をキュリー温度以上に保ち大気中もしく
は酸素雰囲気中で、電界印加徐冷法により単一分域化処
理が行われる。この後、結晶はウエハ状に加工され表面
弾性波素子用の基板として大量に用いられている。タン
タル酸リチウム結晶は、比較的安価で大口径の結晶が育
成可能で、無機酸化物単結晶のなかでは比較的大きな非
線形光学定数を持つ。ニオブ酸リチウム単結晶よりも耐
光損傷特性に優れる特徴を有していることが従来から知
られていたが、定量的なデ−タは報告されていない。ま
た、育成した結晶をキュリー温度近傍で単一分域化する
電界焼鈍法によって結晶の耐光損傷特性が向上するとの
報告がされている(ジャーナル・オブ・アプライド・フ
ィジクス誌38巻3109ページ(1967年))。近
年、小型軽量の青色光源として、波長830nmの半導
体レーザを導波路型のSHG素子で半分の波長415n
mの青色の光に変換することが注目されている。例えば
Electronics Letters,25,11(1989年)の第731
〜732頁で論じられているように、分極反転を用いて
位相整合を行う方法が提案された。すなわち図1に示す
ようにLiNbO3基板上にTi拡散によって周期格子
を作製し、約1100℃に加熱して周期格子層だけの分
極を反転させ、その後プロトン交換法によって光導波路
を作製し、基本波を入射しSHG光を取り出すものであ
る。また、日経ニューマテリアルズ(1991年11月
4日号)の第45〜60頁で論じられているように、近
年、低損失な光導波路がプロトン交換法により形成可能
なことが報告されて以来、タンタル酸リチウム結晶が耐
光損傷強度に優れるという理由で、擬相整合方式により
第二高調波を発生する波長変換素子の基板材料としてタ
ンタル酸リチウム単結晶が注目されてきた。LiTaO
3基板を用いる場合には例えばAppl.Phys.Lett.58(24)
(1991年)第2732〜2734頁で論じられてい
るようにTi拡散の替わりにプロトン交換法によって周
期格子を作製し、約600℃に加熱し周期格子層だけ分
極を反転させ、さらにプロトン交換法によって光導波路
を作製する方法も試みられている。これを図2に示す。
このような光素子では、光導波路幅が約4μm、導波路
深さが約2μm、波長約433nmのSHG光が約15
mW出射されているので、その光パワー密度は約188
KW/cm2の大きさにもなる。
2. Description of the Related Art A single crystal of lithium tantalate has a melting point of about 16
It is a ferroelectric crystal having a Curie temperature of 50 ° C. and a Curie temperature of about 600 ° C., and is usually grown from the melt by the Czochralski method using an iridium crucible in a reducing atmosphere or a reducing atmosphere containing oxygen. Since the grown single crystal is in a multi-domain state, it is subjected to the single domainization treatment by the electric field application slow cooling method in the air or the oxygen atmosphere while keeping the crystal temperature above the Curie temperature. After that, the crystals are processed into wafers and used in large quantities as substrates for surface acoustic wave devices. Lithium tantalate crystals are relatively inexpensive and can grow large diameter crystals, and have relatively large nonlinear optical constants among inorganic oxide single crystals. It has been conventionally known that the lithium niobate single crystal is superior in light damage resistance, but no quantitative data has been reported. Further, it has been reported that the optical damage resistance of the crystal is improved by an electric field annealing method in which the grown crystal is single-domained near the Curie temperature (Journal of Applied Physics, Vol. 38, page 3109 (1967). )). In recent years, as a compact and lightweight blue light source, a semiconductor laser having a wavelength of 830 nm has been used as a waveguide type SHG element to reduce the wavelength to 415 n.
Attention has been paid to conversion into m blue light. For example
731 of Electronics Letters, 25, 11 (1989)
As discussed on page 732, a method for phase matching using polarization reversal has been proposed. That is, as shown in FIG. 1, a periodic grating was prepared on a LiNbO 3 substrate by diffusion of Ti, heated to about 1100 ° C. to invert the polarization of only the periodic grating layer, and then an optical waveguide was prepared by a proton exchange method. Waves are incident and SHG light is extracted. Further, as discussed on pages 45 to 60 of Nikkei New Materials (November 4, 1991), since it was recently reported that a low loss optical waveguide can be formed by the proton exchange method. , Lithium tantalate single crystal has been attracting attention as a substrate material for a wavelength conversion element that generates a second harmonic by a quasi-phase matching method because the lithium tantalate crystal has excellent light damage resistance. LiTaO
When using three substrates, for example, Appl.Phys.Lett.58 (24)
(1991) As discussed on pages 2732 to 2734, a periodic lattice was prepared by a proton exchange method instead of Ti diffusion, heated to about 600 ° C. to invert the polarization of only the periodic lattice layer, and further the proton exchange method. A method of manufacturing an optical waveguide has also been attempted. This is shown in FIG.
In such an optical element, the width of the optical waveguide is about 4 μm, the depth of the waveguide is about 2 μm, and the SHG light with a wavelength of about 433 nm is about 15 μm.
Since mW is emitted, the optical power density is about 188.
It can be as high as KW / cm 2 .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、次に示すような問題点があった。上記従来
技術により製造されたタンタル酸リチウム単結晶の耐光
損傷強度はニオブ酸リチウム単結晶のそれよりも大きい
と言われていたが、むしろニオブ酸リチウム単結晶より
も光損傷に弱く、波長変換素子の光学用途の実用に際し
ては光損傷が発生し、これが実用化を妨げる大きな問題
となることを本発明者らは見いだした。ここで言う光損
傷とは、レーザ光入射により結晶の屈折率が局所的に変
化する現象で光誘起屈折率変化と呼ばれるものである。
この光損傷の発生原因は結晶内に含まれる遷移金属不純
物によるものとされており、特に結晶内のFeイオンの
原子価の変化によりその現象が説明されている。すなわ
ち結晶のZ軸(光学軸)に並行でない方向に光を入射し
た際に、光の照射部内の光強度の強い部分に存在するF
2+イオンが励起されて電子を放出しFe3+に変わる。
このようにして発生した電子は、結晶内の非照射部もし
くは照射の弱い領域内にある他のFe3+によって一般に
捕獲され、このようなイオンはFe2+に変えられてしま
う。このような現象による全体的効果は、Fe2+イオン
の分布の変化として現れ、その結果、結晶自身のもつ電
気光学効果を介しての局所的屈折率分布の不均一性とし
て現れる。結晶を波長変換素子等の光学用途の基板とし
て用いるときには、このような光照射部の屈折率変化に
より素子が安定に動作しないことや、本来結晶が有して
いる特性を十分生かしきれないという非常に大きな問題
が生じる。この光損傷は使用する光波長が短波長である
ほど顕著になるので、短波長の光を用いる素子用途ほど
光損傷の問題が大きくなり、青色SHG光では特に大き
な問題である。この光損傷はニオブ酸リチウム単結晶で
特に顕著に発生し、タンタル酸リチウム単結晶の耐光損
傷強度はニオブ酸リチウム単結晶のそれに比べて強いと
言われていた。これまでタンタル酸リチウム単結晶は表
面波弾性波素子用途に用いられており、これらの用途に
おいては、結晶内に含まれるサブグレインバウンダリー
や遷移金属不純物などが多く含まれているが素子特性に
は大きな問題をもたらしていなかった。しかし、光学用
途においては光損傷の発生により素子特性の不安定動作
やサブグレインバウンダリー部で光が散乱されるなどの
問題がある。タンタル酸リチウム単結晶の光学素子応用
をめざし不純物の低減、サブグレインバウンダリーの低
減などによる高品質化を検討した。その結果、図3に示
す結果が得られ、タンタル酸リチウムの耐光損傷につい
ては、従来から言われていたようなタンタル酸リチウム
が光損傷性に強いという定説とは異なり、ニオブ酸リチ
ウム単結晶の耐光損傷性より小さいという事を見いだし
た。さらに、鉄などの遷移金属不純物量を低減したり、
育成結晶の熱処理による酸化処理によっても耐光損傷性
は改善されるものの波長488nmのArレーザ入射強
度で1KW/cm2程度であり、光学素子応用には不十
分であり、先述した光素子の180KW/cm2の光強
度にははるかに及ばないことを見いだした。上述のごと
く光損傷の発生の主原因は結晶中に含まれる選移金属不
純物、特にFe不純物濃度であると言われているので、
これを例えば1ppm以下に低減すると確かに耐光損傷
特性が向上する効果はあるものの、完全には除去する事
は困難である。その理由は、酸化物単結晶育成において
は、購入可能な原料の純度は4N〜5N程度であり、ま
た坩堝材や炉内の耐火保温材等から育成結晶への不純物
取り込みもあるので半導体並みに高純度化する事は不可
能である為、不純物の低減にも限界があるからである。
また、従来、耐光損傷強度の向上に有効であると言われ
ていた電界焼鈍法によっても、使用する素子のパワー密
度が大きくなると光損傷が発生し、十分ではなかった。
このため短波長光を用いる素子用途においてはこれまで
耐光損傷強度を十分に満足する結晶は得られないという
問題があった。したがって、日経ニューマテリアルズ
(1991年、11月4日号,第52頁)で論じられて
いるような耐光損傷強度に優れた単結晶基板を育成する
ことは非常に困難であり、この様な耐光損傷強度を満た
す結晶基板を製造することはは非常に高価なものとな
る。また、 近年開発されている、小型軽量の青色光源
ではタンタル酸リチウム単結晶基板の可視光領域での光
吸収が大きかったり基礎吸収端が長波長側にあるなどの
理由から発生できるSHG光の波長はせいぜい約400
nm程度と制限されてしまうという問題がある。従っ
て、より短波長の光源の開発のためには短波長域で光透
過性に優れた単結晶基板材料が必要とされるが、従来の
タンタル酸リチウム単結晶に含まれる不純物による光吸
収や酸素欠損による着色による光吸収等の問題がある。
また、SHG素子効率からみると、これまで報告されて
いる分極反転を用いて位相整合を行う方法においては図
1に示すように、分極反転格子の断面形状が、Ti拡散
法で形成されたものは三角形であり、プロトン交換法で
は図2に示すように半円形であるため、理想的な矩型断
面の分極反転格子を持つSHG素子本来の効率でSHG
光を発生できていない。本発明は、上述した如き従来の
タンタル酸リチウム単結晶の光損傷と光透過性の問題を
解決すべくなされたものであって、耐光損傷強度を向上
させ光透過率を向上させたタンタル酸リチウム単結晶基
板を安価に提供し、さらにレーザー光源からの出射光を
基本波として非線形光学結晶への通過により第二高調波
を発生するSHG素子にこの単結晶基板を用い、光素子
を安定に作製、動作させんとするものである。
However, the above-mentioned prior art has the following problems. It has been said that the lithium tantalate single crystal manufactured by the above-mentioned conventional technique has a higher light damage resistance strength than that of the lithium niobate single crystal, but it is rather weaker than the lithium niobate single crystal against light damage and has a wavelength conversion element. The present inventors have found that the optical damage occurs during the practical use of the above-mentioned optical application, which is a big problem that prevents the practical use. The optical damage referred to here is a phenomenon in which the refractive index of the crystal locally changes due to the incidence of laser light, and is called light-induced refractive index change.
The cause of this optical damage is said to be due to the transition metal impurities contained in the crystal, and the phenomenon is explained especially by the change in the valence of Fe ions in the crystal. That is, when light is incident in a direction that is not parallel to the Z axis (optical axis) of the crystal, F existing in a portion where the light intensity is strong in the light irradiation portion.
The e 2+ ion is excited and emits an electron to be converted into Fe 3+ .
The electrons thus generated are generally trapped by other Fe 3+ in the non-irradiated part of the crystal or in the weakly irradiated region, and such ions are converted to Fe 2+ . The overall effect due to such a phenomenon appears as a change in the distribution of Fe 2+ ions, and as a result, it appears as a non-uniformity in the local refractive index distribution due to the electro-optic effect of the crystal itself. When a crystal is used as a substrate for optical applications such as a wavelength conversion element, it is extremely difficult that the element does not operate stably due to such a change in the refractive index of the light irradiation part and that the characteristics originally possessed by the crystal cannot be fully utilized. Causes big problems. This light damage becomes more remarkable as the wavelength of light used is shorter. Therefore, the problem of light damage becomes more serious in device applications using light of short wavelength, and is a particularly large problem in blue SHG light. It is said that this photo-damage occurs remarkably in the lithium niobate single crystal, and the light damage resistance strength of the lithium tantalate single crystal is stronger than that of the lithium niobate single crystal. So far, lithium tantalate single crystals have been used for surface acoustic wave device applications, and in these applications, a lot of subgrain boundaries and transition metal impurities contained in the crystal are included Did not pose a big problem. However, in optical applications, there are problems such as unstable operation of element characteristics due to occurrence of optical damage and light scattering at the subgrain boundary. Aiming at the application of lithium tantalate single crystal as an optical element, we studied the improvement of quality by reducing impurities and subgrain boundaries. As a result, the results shown in FIG. 3 were obtained, and regarding the light damage resistance of lithium tantalate, unlike the conventional theory that lithium tantalate is strong against light damage, it is different from the conventional theory that lithium tantalate single crystal has a high resistance to light damage. We found that it was less than light damage resistance. Furthermore, reducing the amount of transition metal impurities such as iron,
Although the optical damage resistance is also improved by the oxidation treatment of the grown crystal by the heat treatment, it is about 1 KW / cm 2 at the incident intensity of Ar laser having a wavelength of 488 nm, which is insufficient for optical element application. It has been found that the light intensity is far below the cm 2 . As described above, it is said that the main cause of the occurrence of optical damage is the concentration of the selected metal impurities contained in the crystal, especially the Fe impurity concentration.
If this is reduced to, for example, 1 ppm or less, the effect of improving the light damage resistance is certainly improved, but it is difficult to completely remove it. The reason for this is that in the growth of oxide single crystals, the purity of the raw material that can be purchased is about 4N to 5N, and impurities are incorporated into the grown crystals from the crucible material and the refractory heat insulating material in the furnace. This is because it is impossible to highly purify and there is a limit to the reduction of impurities.
Further, even by the electric field annealing method which has been conventionally said to be effective in improving the light damage resistance strength, optical damage occurs when the power density of the element used is increased, which is not sufficient.
Therefore, there has been a problem that a crystal that sufficiently satisfies the light damage resistance strength cannot be obtained in the device application using short-wavelength light. Therefore, it is very difficult to grow a single crystal substrate excellent in light damage resistance as discussed in Nikkei New Materials (November 4, 1991, p. 52). It is very expensive to manufacture a crystal substrate that satisfies the light damage resistance strength. In addition, the wavelength of SHG light that can be generated due to large light absorption in the visible light region of the lithium tantalate single crystal substrate or the basic absorption edge on the long wavelength side in the small and light blue light source that has been recently developed. At most about 400
There is a problem that it is limited to about nm. Therefore, in order to develop a light source with a shorter wavelength, a single crystal substrate material having excellent light transmissivity in a short wavelength region is required. However, light absorption and oxygen by impurities contained in a conventional lithium tantalate single crystal are required. There are problems such as light absorption due to coloring due to defects.
In terms of SHG element efficiency, in the method of performing phase matching using polarization inversion reported so far, as shown in FIG. 1, the cross-sectional shape of the polarization inversion grating is formed by the Ti diffusion method. Is a triangle, and is a semicircle as shown in FIG. 2 in the proton exchange method. Therefore, the SHG device having an ideal polarization reversal grating with a rectangular cross section has the original efficiency of the SHG device.
Not able to generate light. The present invention has been made to solve the problems of light damage and light transmittance of conventional lithium tantalate single crystals as described above, and lithium tantalate having improved light damage resistance strength and light transmittance. Providing a single crystal substrate at low cost, and using this single crystal substrate for the SHG element that generates the second harmonic by passing the light emitted from the laser light source as the fundamental wave to the nonlinear optical crystal, the optical element is stably manufactured. , Is intended to work.

【0004】[0004]

【課題を解決するための手段】上記目的の達成のため
に、本発明者は、タンタル酸リチウム単結晶の耐光損傷
特性を向上させるために、結晶の分極方向を周期的に反
転させ、この分極反転領域はその深さが周期方向の幅よ
りも大きい構造を作成することにより耐光損傷強度を1
00KW/cm2以上に向上させ、この単結晶基板をレ
ーザー光源からの出射光を基本波として非線形光学結晶
への通過により高調波を発生する非線形光学素子に用い
た。さらに、タンタル酸リチウム単結晶において280
〜400nm帯における光透過率を向上させるためにM
gOを1モル%以上含ませた。上記の構成により、結晶
の耐光損傷強度を大幅に改善することができ、さらに得
られた結晶は、光透過特性が向上しているので特に短波
長光を用いる波長変換素子などの光学素子を安定に動作
させることが可能である。本発明のタンタル酸リチウム
単結晶の製造に当たって単結晶育成の手段に限定はな
く、通常はチョクラルスキー法によるのが一般的で、場
合によってはブリッジマン法やフローティングゾーン法
やファイバーペディスタル法により育成することも可能
である。また原料としてのLi2CO3とTa25の配合
比は通常のコングルエント組成が高品質単結晶が得られ
易いために単結晶育成の面からみると望ましいが、素子
用途によっては単結晶基板の屈折率を変えたものが必要
とされることもある。このような場合にはLi2CO3
Ta25の配合比を変えることにより所望の単結晶基板
が得られる。
To achieve the above object, the present inventor periodically reverses the polarization direction of the crystal in order to improve the light damage resistance of the lithium tantalate single crystal. The inversion region has a light damage resistance strength of 1 by creating a structure whose depth is larger than the width in the periodic direction.
00KW / cm 2 or more to improve, using the single crystal substrate in a non-linear optical element for generating harmonic by passage through the nonlinear optical crystal light emitted from the laser light source as the fundamental wave. Furthermore, in the lithium tantalate single crystal, 280
M in order to improve the light transmittance in the 400 nm band
The content of gO was 1 mol% or more. With the above structure, the light damage resistance strength of the crystal can be significantly improved, and further, the obtained crystal has improved light transmission characteristics, so that it is possible to stabilize optical elements such as wavelength conversion elements using short wavelength light. Can be operated. In the production of the lithium tantalate single crystal of the present invention, there is no limitation on the means for growing the single crystal, it is generally by the Czochralski method, and in some cases, by the Bridgman method, the floating zone method or the fiber pedestal method. It is also possible to do so. Further, the compounding ratio of Li 2 CO 3 and Ta 2 O 5 as raw materials is desirable from the viewpoint of single crystal growth because it is easy to obtain a high quality single crystal with an ordinary congruent composition. A different refractive index may be needed. In such a case, a desired single crystal substrate can be obtained by changing the compounding ratio of Li 2 CO 3 and Ta 2 O 5 .

【0005】[0005]

【実施例】以下、実施例に基づいて本発明をより詳細に
説明する。試料を次の作製法により作成した。まずチョ
クラルスキ法により、直径100mm深さ120mmの
イリジウムで作られた坩堝内に約5kgのLiTaO3
原料粉(育成に用いた原料は純度4NのLi2O,Ta2
5の粉末を混合したものである。)をいれ高周波加熱
によりこれを溶かし、融液を作り、その後シード付けを
行い、所定の方位に約3日間で、2インチの単結晶を育
成した。この時の育成速度は1〜3mm/h、回転速度
は10〜30rpmである。つぎに、上記方法により育
成した結晶体を単一分域化処理を行った。結晶を結晶と
非反応性の導電性粉末を介して、結晶のZ軸方向に対向
するように例えばPt電極板を設け、電気炉内に挿入し
て単一分域化処理を行う。その後、それぞれの結晶から
各稜がx軸方位,y軸方位,およびz軸方位に平行な1
0×10×10mm3,の正方形ブロックを切り出し、その
各面を鏡面研磨した。あるいはそれぞれの結晶から2イ
ンチのウエハを作成した。このようにしてタンタル酸リ
チウム単結晶を準備し、耐光損傷強度の強度向上につい
て調べた。耐光損傷強度の測定法は結晶中に波長0.4
88μmの出力が300mW、ビーム径が1.4mmの
強力なアルゴンレーザーを入射し、これにより誘起され
る光損傷すなわち屈折率変化を出力の弱い1mWのヘリ
ウムネオンレーザーで検出した。この結果の例を図3に
示す。鉄等の遷移金属不純物を多く含むSAWグレード
のタンタル酸リチウム単結晶は、パワー密度20W/c
2のアルゴンレーザ入射により、非常に大きな光損傷
が生じ屈折率が大きく変化していく。不純物を1/5に
低減し、結晶中の小傾角粒界を低減したタンタル酸リチ
ウム単結晶(光学グレードと称す)は、鉄の多い結晶に
比べて光損傷は小さくなったが、しかしながら、鉄を3
ppm含むSAWグレードのニオブ酸リチウム単結晶よ
りも2倍以上光損傷が発生し易いという定量的な結果が
得られた。この結果はタンタル酸リチウム単結晶はニオ
ブ酸リチウム単結晶よりも光損傷に強いとする従来報告
とは全く異なるものである。さらに、図4(a)に示し
たように波長488nmのArレーザー光1KWをレン
ズで絞り、タンタル酸リチウム単結晶のX面からY軸方
向に入射し、その出射ビーム形状の変化を調べた。入射
パワー強度が非常に小さく光損傷が発生しない場合には
出射ビーム形状は図4(b)のように円対称形である。
しかし、いづれのタンタル酸リチウム単結晶も入射パワ
ー密度1KW/cm2以下のパワーで光損傷が発生する
ため、出射ビームはスポット状から変化し図4(c)に
示すようにZ軸方向に広がることがみられた。本発明者
らは上記タンタル酸リチウム単結晶を結晶のキュリー温
度以上に加熱し、結晶を多分域状態にした後、再度、上
記方法によりArレーザービームの出射ビーム形状の変
化を調べ光損傷の発生を評価したところ、図4(d)に
示すようにビームは円形状に少し広がるだけで(c)に
見られたようなZ軸方向へのビーム変形はみられないこ
とを見いだした。さらに詳細な評価の結果、ビームの照
射部の多分域状態における+Zと−Z方向の分極がほぼ
対称であり、あたかもビームの進行方向に対して交互に
分極が反転している場合ほどビームの変形はみられず、
光損傷が発生しないことを見いだした。この理由は、明
かではないが以下のように考えられる。ここで言う光損
傷とは、レーザ光入射により結晶の屈折率が局所的に変
化する現象で光誘起屈折率変化と呼ばれるものであり、
すなわち結晶のZ軸(光学軸)に並行でない方向に光を
入射した際に、光の照射部内の光強度の強い部分で発生
した電子が、結晶内の非照射部にドリフトし捕獲され、
電場を形成し結晶自身のもつ電気光学効果を介しての局
所的屈折率分布の不均一性として現れる。多分域状態で
は電気光学効果の向きが+Z方向と−Z方向では異なる
ので屈折率の変化方向も異なるので、入射ビームの進行
方向に対し屈折率変化が交互に打ち消し合うような構成
になっているため光損傷が発生しない様に見えるのでは
ないかと考えられる。この様な考えに基づけば、多分域
状態を制御して光の進行方向に対し精度よく分極が反転
された格子を形成し、この分極反転間隔をμmオーダー
に小さく形成するほど光損傷の問題を解決できる可能性
があると考えた。そこで、波長488nmのArレーザ
ー光入射パワー密度1KW/cm2以下のパワーで光損
傷が発生するタンタル酸リチウム単結晶の耐光損傷強度
が向上することを確認するため、この単結晶を基板とし
て用い図5に示す方法で分極反転格子を形成した。図5
(a)に示すようにLiTaO3基板の−Z(c)面を
研磨した基板11を用意する。(b)11の−Z面上に
Ta膜51を30nmスパッタリングで成膜する。
(c)51膜上にホトレジスト52をスピンコートし、
分極反転12を行う部分が窓あけされたホトマスクを用
い、通常のホトリソグラフィ技術によりホトレジスト5
2のパターニングを行った。ホトマスクのパタ−ン周期
は1〜10μmで発生させるSHG光の周期に合わせて
ある。(d)パターニングしたホトレジスト52をマス
クとして、CF3Clガスを用いたRIEによるドライ
エッチングにより、Ta膜51をパターニングする。
(e)ホトレジスト52をアセトンにより除去し、ピロ
燐酸を用いてプロトン交換を260℃、30〜60分で
行うことで、16のプロトン交換層が形成される。
(f)Ta膜51をNaOHの水溶液でエッチングす
る。(g)上記16のプロトン交換層が形成された基板
を電気炉に挿入し、熱処理を行うことで分極反転層12
を形成させる。分極反転格子の深さは基板表面に形成さ
れる光導波路深さより大きく基板厚さより小さかった。
またその幅はプロトン交換パタ−ンの幅とほぼ等しかっ
た。分極反転格子12を形成後、基板表面のプロトン交
換層を研磨により除去し、通常のプロトン交換法により
基板表面に光導波路を作製した。最後に導波路端面を光
学研磨することによりSHG素子が作製される。熱処理
時間によっては、作製された分極反転格子の断面を観察
すると矩型状になることもある。このような矩型状など
の分極反転領域はその深さが周期方向の幅よりも大きい
場合には、光の入射方向に対する分極反転部と非反転部
の形状比が1対1になることになる。一方、熱処理時間
等の分極反転の作成方法を変えると、作製された分極反
転格子の断面を観察すると半円状になることもある。こ
のような半円状などの分極反転領域はその深さが周期方
向の幅よりも小さい場合には、光の入射方向に対する分
極反転部と非反転部の形状比が完全な1対1からずれて
いることになる。以上示した分極反転格子に光導波路を
作製し、素子長1cmのSHG素子を作製した。基本波
の光源としてチタン−サファイヤレーザを用いて、作製
したSHG素子に波長830nmの基本波を入射したと
ころ、415nmの青色SHG光が得られた。この時、
分極反転格子の断面が矩型状で分極反転領域はその深さ
が周期方向の幅よりも大きい場合には、SHG光出力は
15mWでの高出力のSHG光が得られ、パワー密度1
65KW/cm2で安定した出力が得られ、全く光損傷
の発生はみられなかった。即ち、Arレーザーと青色S
HG光との波長の違いはあるものの耐光損傷強度が1K
W/cm2以下の結晶でも耐光損傷強度が向上し、十分
SHG素子にしようできた。一方、分極反転格子の断面
が半円状で分極反転領域の深さが周期方向の幅よりも小
さい場合には、9mWのSHG光が得られ、パワー密度
105KW/cm2の出力が得られたが光損傷が発生し
てきた。しかしながら、この場合にも耐光損傷強度が1
KW/cm2以下の結晶でも耐光損傷強度が向上してい
るので十分SHG素子に使用できた。このことにより、
タンタル酸リチウム結晶に分極反転格子を形成し、好ま
しくは、その断面が矩型状になり、分極反転領域の深さ
が周期方向の幅よりも大きい場合には、光の入射方向に
対する分極反転部と非反転部の形状比が1対1になり耐
光損傷性を大幅に向上させ高効率のSHG素子に有用で
あることが分かった。
The present invention will be described in more detail based on the following examples. A sample was prepared by the following manufacturing method. First, by the Czochralski method, about 5 kg of LiTaO 3 was placed in a crucible made of iridium having a diameter of 100 mm and a depth of 120 mm.
Raw material powder (The raw material used for growing is Li 2 O, Ta 2 with a purity of 4N.
This is a mixture of O 5 powders. ) Was melted by high frequency heating to form a melt, and then seeding was performed, and a 2-inch single crystal was grown in a predetermined orientation for about 3 days. The growing speed at this time is 1 to 3 mm / h, and the rotation speed is 10 to 30 rpm. Next, the crystal grown by the above method was subjected to a single domainization treatment. For example, a Pt electrode plate is provided so as to face the crystal in the Z-axis direction through a conductive powder that is non-reactive with the crystal, and the crystal is inserted into an electric furnace to perform a single domainization process. After that, each edge from each crystal is parallel to the x-axis direction, the y-axis direction, and the z-axis direction.
A square block of 0 × 10 × 10 mm 3 was cut out and each surface thereof was mirror-polished. Alternatively, a 2-inch wafer was prepared from each crystal. Thus, a lithium tantalate single crystal was prepared and examined for improvement in light damage resistance. The light damage resistance is measured in a crystal with a wavelength of 0.4.
A powerful argon laser with an output of 88 μm of 300 mW and a beam diameter of 1.4 mm was incident, and the optical damage, that is, the refractive index change induced by the laser was detected by a 1 mW helium neon laser with a weak output. An example of this result is shown in FIG. SAW grade lithium tantalate single crystal containing a lot of transition metal impurities such as iron has a power density of 20 W / c.
The incidence of m 2 argon laser causes a great deal of optical damage, and the refractive index changes greatly. The lithium tantalate single crystal (referred to as optical grade), in which the impurities were reduced to 1/5 and the small tilt grain boundaries in the crystal were reduced, caused less optical damage than the iron-rich crystal. 3
Quantitative results were obtained that optical damage was more than twice as likely to occur as compared with SAW grade lithium niobate single crystal containing ppm. This result is completely different from the previous report that the lithium tantalate single crystal is more resistant to optical damage than the lithium niobate single crystal. Further, as shown in FIG. 4 (a), 1 KW of Ar laser light having a wavelength of 488 nm was narrowed down by a lens and was made incident on the Y-axis direction from the X plane of the lithium tantalate single crystal, and the change in the output beam shape was examined. When the incident power intensity is very small and optical damage does not occur, the output beam shape is circularly symmetric as shown in FIG.
However, any of the lithium tantalate single crystals suffers optical damage at a power with an incident power density of 1 KW / cm 2 or less, so the outgoing beam changes from a spot shape and spreads in the Z-axis direction as shown in FIG. 4 (c). It was seen. The present inventors have heated the lithium tantalate single crystal above the Curie temperature of the crystal to bring the crystal into a multi-domain state, and then again examined the change of the output beam shape of the Ar laser beam by the above method, and caused optical damage. As a result of the evaluation, it was found that, as shown in FIG. 4 (d), the beam spreads slightly in a circular shape and the beam deformation in the Z-axis direction as seen in (c) is not observed. As a result of a more detailed evaluation, the polarization in the + Z and −Z directions in the multi-domain state of the beam irradiation part is almost symmetrical, and the beam is deformed as if the polarization is alternately inverted with respect to the beam traveling direction. Not seen,
It was found that no light damage occurred. The reason for this is not clear, but is considered as follows. The optical damage referred to here is a phenomenon in which the refractive index of the crystal locally changes due to the incidence of laser light, and is called light-induced refractive index change.
That is, when light is incident in a direction that is not parallel to the Z axis (optical axis) of the crystal, the electrons generated in the high light intensity portion in the light irradiation portion drift and are captured in the non-irradiation portion in the crystal,
It appears as non-uniformity of the local refractive index distribution through the electro-optic effect of the crystal itself, which forms an electric field. In the multi-domain state, the direction of the electro-optic effect is different between the + Z direction and the −Z direction, and therefore the changing direction of the refractive index is different, so that the refractive index changes are alternately canceled with respect to the traveling direction of the incident beam. Therefore, it seems that optical damage does not occur. Based on such an idea, a multi-domain state is controlled to form a lattice in which polarization is accurately inverted with respect to the traveling direction of light, and the problem of optical damage occurs as the polarization inversion interval is reduced to the μm order. I thought it could be solved. Therefore, in order to confirm that the light damage resistance of a lithium tantalate single crystal in which light damage occurs at a power of an incident power density of Ar laser light having a wavelength of 488 nm of 1 KW / cm 2 or less is improved, a single crystal is used as a substrate. A polarization inversion grating was formed by the method shown in FIG. Figure 5
As shown in (a), a substrate 11 is prepared by polishing the -Z (c) surface of a LiTaO 3 substrate. (B) A Ta film 51 is formed on the −Z plane of 11 by sputtering with a thickness of 30 nm.
(C) A photoresist 52 is spin-coated on the 51 film,
The photoresist 5 is formed by a normal photolithography technique using a photomask in which a portion where the polarization inversion 12 is performed is opened.
2 was patterned. The pattern cycle of the photomask is adjusted to the cycle of SHG light generated at 1 to 10 μm. (D) Using the patterned photoresist 52 as a mask, the Ta film 51 is patterned by dry etching by RIE using CF 3 Cl gas.
(E) The photoresist 52 is removed with acetone, and proton exchange is performed using pyrophosphoric acid at 260 ° C. for 30 to 60 minutes, whereby 16 proton exchange layers are formed.
(F) The Ta film 51 is etched with an aqueous solution of NaOH. (G) The polarization inversion layer 12 is obtained by inserting the substrate on which the proton exchange layer of 16 is formed into an electric furnace and performing heat treatment.
To form. The depth of the polarization inversion grating was larger than the depth of the optical waveguide formed on the substrate surface and smaller than the substrate thickness.
The width was almost equal to the width of the proton exchange pattern. After the polarization inversion grating 12 was formed, the proton exchange layer on the substrate surface was removed by polishing, and an optical waveguide was formed on the substrate surface by the usual proton exchange method. Finally, the SHG element is manufactured by optically polishing the end face of the waveguide. Depending on the heat treatment time, when the cross section of the produced polarization inversion lattice is observed, it may become rectangular. When the depth of the domain-inverted region such as the rectangular shape is larger than the width in the periodic direction, the shape ratio of the domain-inverted portion to the non-inverted portion with respect to the incident direction of light becomes 1: 1. Become. On the other hand, when the method of creating the polarization inversion, such as the heat treatment time, is changed, the cross section of the created polarization inversion lattice may become semicircular when observed. When the depth of the domain-inverted region such as a semi-circular shape is smaller than the width in the periodic direction, the shape ratio of the domain-inverted portion and the non-inverted portion with respect to the incident direction of light deviates from perfect 1: 1. It will be. An optical waveguide was formed on the above-mentioned polarization inversion grating, and an SHG element having an element length of 1 cm was prepared. When a titanium-sapphire laser was used as a light source of the fundamental wave and a fundamental wave having a wavelength of 830 nm was incident on the manufactured SHG element, blue SHG light of 415 nm was obtained. At this time,
When the domain-inverted grating has a rectangular cross section and the domain-inverted region has a depth larger than the width in the periodic direction, the SHG light output is 15 mW, and high-power SHG light is obtained with a power density of 1
A stable output was obtained at 65 KW / cm 2 , and no optical damage was observed. That is, Ar laser and blue S
Despite the difference in wavelength from HG light, the light damage resistance is 1K
Even with a crystal of W / cm 2 or less, the light damage resistance was improved, and the SHG element could be sufficiently used. On the other hand, when the cross section of the domain-inverted grating is semicircular and the depth of the domain-inverted region is smaller than the width in the periodic direction, SHG light of 9 mW was obtained and an output of power density 105 KW / cm 2 was obtained. There is light damage. However, even in this case, the light damage resistance strength is 1
Even with a crystal having a KW / cm 2 or less, the light damage resistance was improved, so that it could be sufficiently used for SHG elements. By this,
A polarization inversion lattice is formed in a lithium tantalate crystal, and preferably, the cross section has a rectangular shape, and when the depth of the polarization inversion region is larger than the width in the periodic direction, the polarization inversion portion with respect to the light incident direction is formed. It was found that the shape ratio of the non-inverted portion became 1: 1 and the light damage resistance was significantly improved, which was useful for a highly efficient SHG element.

【0006】[0006]

【発明の効果】波長0.488μmのArレーザー入射
に対する耐光損傷強度が1kW/cm2以下のタンタル
酸リチウム単結晶に、結晶の分極方向を周期的に反転さ
せた構造を作成することにより100KW/cm2以上
に耐光損傷強度を向上させ、これにより短波長光を用い
る光素子用基板にタンタル酸リチウム単結晶を用いるこ
とができ、タンタル酸リチウム単結晶の持つ大きな非線
形光学定数を生かしたSHG素子の安定性と高出力化の
特性向上ができる。
[Effects of the Invention] A lithium tantalate single crystal having a light damage resistance against an Ar laser of a wavelength of 0.488 μm and having a light damage resistance of 1 kW / cm 2 or less is formed to have a structure in which the polarization direction of the crystal is periodically inverted to obtain 100 kW / Since the light damage resistance is improved to more than 1 cm 2, the lithium tantalate single crystal can be used for the substrate for the optical device using the short wavelength light, and the SHG device utilizing the large nonlinear optical constant of the lithium tantalate single crystal can be used. The stability and high output characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】三角形状の分極反転格子を用いた従来のSHG
素子を示す図である。
FIG. 1 is a conventional SHG using a triangular polarization inversion grating.
It is a figure which shows an element.

【図2】半円状の分極反転格子を用いた従来のSHG素
子を示す図である。
FIG. 2 is a diagram showing a conventional SHG element using a semi-circular polarization inversion grating.

【図3】各種タンタル酸リチウム単結晶およびニオブ酸
リチウム単結晶に対してアルゴンレーザ入射により誘起
された光損傷の入射時間依存性を測定した図である。
FIG. 3 is a diagram showing incident time dependence of optical damage induced by argon laser incidence on various lithium tantalate single crystals and lithium niobate single crystals.

【図4】さらに、波長488nmのArレーザー光をレ
ンズで絞り、タンタル酸リチウム単結晶のX面からY軸
方向に入射し、その出射ビーム形状の変化の様子を示し
た図である。
FIG. 4 is a diagram showing how Ar laser light having a wavelength of 488 nm is narrowed down by a lens, is incident in the Y-axis direction from the X plane of a lithium tantalate single crystal, and the shape of the emitted beam is changed.

【図5】(a)〜(h)はそれぞれ本発明に係るスパイ
ク状分極反転格子の作製方法を示す図である。
5 (a) to 5 (h) are diagrams showing a method for manufacturing a spike-shaped polarization inversion grating according to the present invention.

【符号の説明】[Explanation of symbols]

11 基板(LiTaO3) 12 分極反転領域 13 チャンネル型光導波路 14 基本波入射光 15 SHG出力光 16 プロトン交換層 21 基板(LiNbO3) 31 三角状分極反転領域 41 半円状分極反転領域 51 Ta膜 52 ホトレジスト11 substrate (LiTaO 3 ) 12 polarization inversion region 13 channel type optical waveguide 14 fundamental wave incident light 15 SHG output light 16 proton exchange layer 21 substrate (LiNbO 3 ) 31 triangular polarization inversion region 41 semicircular polarization inversion region 51 Ta film 52 photoresist

フロントページの続き (72)発明者 佐藤 正純 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 伊藤 康平 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内Front page continued (72) Inventor Masazumi Sato 5200 Mikkaji, Kumagaya, Saitama, Hitachi Metals Co., Ltd. Magnetic Materials Research Laboratory (72) Kohei Ito 5200 Mikkaji, Kumagaya, Saitama Hitachi Metals Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長0.488μmのArレーザー入射
に対する耐光損傷強度が1kW/cm2以下のタンタル
酸リチウム単結晶に、結晶の分極方向を周期的に反転さ
せた構造を作成することにより耐光損傷強度を向上させ
100KW/cm2以上の耐光損傷強度を有することを
特徴とする分極反転格子タンタル酸リチウム単結晶基
板。
1. A light-damage-resistant material is prepared by forming a structure in which the polarization direction of the crystal is periodically inverted in a lithium tantalate single crystal having a light-damage strength of 1 kW / cm 2 or less against the incidence of an Ar laser having a wavelength of 0.488 μm. A polarization inversion lattice lithium tantalate single crystal substrate having improved strength and a light damage resistance of 100 kW / cm 2 or more.
【請求項2】 前記分極反転格子タンタル酸リチウム単
結晶基板において分極反転領域はその深さが周期方向の
幅よりも大きいことを特徴とする請求項1記載の分極反
転格子タンタル酸リチウム単結晶基板。
2. The domain-inverted lattice lithium tantalate single crystal substrate according to claim 1, wherein the domain-inverted region of the domain-inverted lattice lithium tantalate single-crystal substrate has a depth larger than a width in the periodic direction. ..
【請求項3】 レーザー光源からの出射光を基本波とし
て非線形光学結晶への通過により高調波を発生する非線
形光学素子において、前記非線形光学結晶として請求項
1ないし2に記載のタンタル酸リチウム単結晶を用いた
ことを特徴とする非線形光学素子。
3. A lithium tantalate single crystal according to claim 1, wherein the nonlinear optical crystal is a nonlinear optical element that generates a harmonic by passing light emitted from a laser light source as a fundamental wave to the nonlinear optical crystal. A non-linear optical element characterized by using.
JP4117719A 1992-05-11 1992-05-11 Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element Pending JPH05313219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117719A JPH05313219A (en) 1992-05-11 1992-05-11 Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117719A JPH05313219A (en) 1992-05-11 1992-05-11 Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element

Publications (1)

Publication Number Publication Date
JPH05313219A true JPH05313219A (en) 1993-11-26

Family

ID=14718604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117719A Pending JPH05313219A (en) 1992-05-11 1992-05-11 Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element

Country Status (1)

Country Link
JP (1) JPH05313219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313916B1 (en) 1997-10-28 2001-11-06 Canon Kabushiki Kaisha Position detecting system and projection exposure apparatus with the same
JP5290958B2 (en) * 2007-03-22 2013-09-18 パナソニック株式会社 Laser wavelength converter
JP2018519554A (en) * 2015-07-01 2018-07-19 ケーエルエー−テンカー コーポレイション Output-scalable nonlinear optical wavelength converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313916B1 (en) 1997-10-28 2001-11-06 Canon Kabushiki Kaisha Position detecting system and projection exposure apparatus with the same
JP5290958B2 (en) * 2007-03-22 2013-09-18 パナソニック株式会社 Laser wavelength converter
JP2018519554A (en) * 2015-07-01 2018-07-19 ケーエルエー−テンカー コーポレイション Output-scalable nonlinear optical wavelength converter

Similar Documents

Publication Publication Date Title
JP3261594B2 (en) Lithium tantalate single crystal, single crystal substrate and optical device
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
JP3511204B2 (en) Optical function element, single crystal substrate for the element, and method of using the same
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
Miyazawa Optical crystals survived in information technology systems
JPH0597591A (en) Production of lithium niobate single crystal and optical element therefrom
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element
JP3424125B2 (en) Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal
JP3518604B2 (en) Dopant-doped KTP exhibiting high birefringence suitable for type II phase matching and similar forms
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
JP3213907B2 (en) Lithium niobate single crystal and optical functional device
JP2003295242A (en) Optical wavelength conversion element
JP2951583B2 (en) Optical waveguide component, second harmonic generation device, and method of manufacturing optical waveguide component
JPH05310500A (en) Lithium tantalate single crystal, its production and optics
JPH05105591A (en) Single crystal of lithium niobate and optical element
JPH09258283A (en) Optical wavelength conversion method and optical wavelength conversion device
JPH05341342A (en) Second higher harmonic generating element and its production
JPH05105594A (en) Method for producing single crystal of lithium tantalate and optical element
JPH05105593A (en) Single crystal of lithium tantalate and optical element
JPH06293597A (en) Production of lithium niobate single crystal and optical element
JPH06130436A (en) Second harmonic generating element and manufacturing method thereof
JP3429502B2 (en) Method for manufacturing domain-inverted region
JPH0585898A (en) Production of lithium tantalate single crystal and optical element
JP2001264554A (en) Optical device