[go: up one dir, main page]

JPH05312113A - Evaporative emission control device - Google Patents

Evaporative emission control device

Info

Publication number
JPH05312113A
JPH05312113A JP12079392A JP12079392A JPH05312113A JP H05312113 A JPH05312113 A JP H05312113A JP 12079392 A JP12079392 A JP 12079392A JP 12079392 A JP12079392 A JP 12079392A JP H05312113 A JPH05312113 A JP H05312113A
Authority
JP
Japan
Prior art keywords
pressure
intake pipe
purge
canister
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12079392A
Other languages
Japanese (ja)
Inventor
Toshibumi Hayamizu
俊文 早水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12079392A priority Critical patent/JPH05312113A/en
Priority to US08/053,484 priority patent/US5273020A/en
Publication of JPH05312113A publication Critical patent/JPH05312113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PURPOSE:To provide an evaporative emission control device capable of carrying out the most suitable purge control without damaging air-fuel ratio controllability. CONSTITUTION:A fuel tank 6 is communicated through to a canister 8, and in the canister 8, activated carbon 9 is stored and a purge air introduction port 15 is formed. The canister 8 is communicated through to an air intake pipe 2 by a discharge passage 10. In the middle of the discharge passage 10, a solenoid valve 11 for purge is provided. An ECU 27 duty-controls the solenoid valve 11 for purge in accordance with an intake air amount. On the purge air introduction port 15 of the canister 8, a pressure air pump 17 is provided through a pressure governing chamber 16. A pressure regulator 18 makes pressure differential between pressure of the purge air introduction port 15 and air intake pipe pressure constant by way of regulating pressure of the pressure governing chamber 16 in accordance with the air intake pipe pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料蒸発ガス拡散防
止装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel evaporative gas diffusion prevention device.

【0002】[0002]

【従来の技術】近年、車両から大気中に放出される燃料
蒸気による大気汚染の問題が注目されている。そして、
特開昭62−153553号公報等に示されている燃料
蒸発ガス拡散防止装置は、燃料タンクで発生した燃料蒸
発ガスを一旦キャニスタの活性炭に吸着させる。さら
に、内燃機関の運転時には内燃機関の吸気管圧力が負圧
になっていることを利用して、キャニスタに吸着した燃
料蒸発ガスをキャニスタのパージ空気導入口からの新気
と共にパージ用電磁弁を介して吸気管に放出するように
している。
2. Description of the Related Art In recent years, attention has been paid to the problem of air pollution caused by fuel vapor emitted from a vehicle into the atmosphere. And
The fuel evaporative gas diffusion prevention device disclosed in Japanese Patent Laid-Open No. 62-153553 or the like temporarily adsorbs the fuel evaporative gas generated in the fuel tank to the activated carbon of the canister. Furthermore, by utilizing the fact that the intake pipe pressure of the internal combustion engine is negative when the internal combustion engine is operating, the fuel evaporative gas adsorbed in the canister is connected to the purge solenoid valve together with the fresh air from the purge air inlet of the canister. It is designed to be released through the intake pipe.

【0003】[0003]

【発明が解決しようとする課題】ところが、内燃機関の
運転状態の変化に伴い吸気管圧力も変化するが、この吸
気管圧力が変化した際にキャニスタのパージ空気導入口
の圧力と吸気管圧力との差圧が変化する。そのために、
パージ流量が変化してしまい空燃比制御性が悪化する。
However, although the intake pipe pressure changes with the change of the operating state of the internal combustion engine, when the intake pipe pressure changes, the pressure at the purge air inlet of the canister and the intake pipe pressure change. The differential pressure of changes. for that reason,
The purge flow rate changes and the air-fuel ratio controllability deteriorates.

【0004】そこで、この発明の目的は、空燃比制御性
を損なうことなく最適なパージ制御を行うことができる
燃料蒸発ガス拡散防止装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel evaporative gas diffusion preventive device capable of performing optimum purge control without impairing air-fuel ratio controllability.

【0005】[0005]

【課題を解決するための手段】この発明は、燃料タンク
と連通し、当該燃料タンクの燃料蒸発ガスを吸着する吸
着材を収納するとともにパージ空気導入口を有するキャ
ニスタと、前記キャニスタと内燃機関の吸気管とを連通
する放出通路と、前記放出通路中に設けられ、当該通路
を開閉する開閉手段と、前記キャニスタのパージ空気導
入口に設けられ、パージ空気導入口での空気圧力を大気
圧以上にするための加圧源と、吸気管圧力に応じて前記
キャニスタのパージ空気導入口の圧力を調整してパージ
空気導入口の圧力と吸気管圧力との差圧を一定にする圧
力調整手段と、内燃機関の運転状態に応じて前記キャニ
スタの燃料蒸発ガスを内燃機関の吸気管に放出すべく前
記開閉手段を制御するパージ制御手段とを備えた燃料蒸
発ガス拡散防止装置をその要旨とするものである。
According to the present invention, there is provided a canister, which is in communication with a fuel tank, accommodates an adsorbent for adsorbing fuel evaporative gas in the fuel tank, and has a purge air introduction port, the canister and an internal combustion engine. A discharge passage communicating with the intake pipe, an opening / closing means provided in the discharge passage for opening and closing the passage, and a purge air introduction port of the canister, the air pressure at the purge air introduction port being equal to or higher than atmospheric pressure. And a pressure adjusting means for adjusting the pressure of the purge air introducing port of the canister according to the intake pipe pressure to make the differential pressure between the purge air introducing port pressure and the intake pipe pressure constant. A fuel evaporative gas diffusion prevention device including purge control means for controlling the opening / closing means to release the fuel evaporative gas from the canister to the intake pipe of the internal combustion engine in accordance with the operating state of the internal combustion engine. The is to its gist.

【0006】[0006]

【作用】加圧源によりパージ空気導入口での空気が加圧
されるとともに、圧力調整手段は吸気管圧力に応じてキ
ャニスタのパージ空気導入口の圧力を調整してパージ空
気導入口の圧力と吸気管圧力との差圧を一定にする。そ
して、パージ制御手段は内燃機関の運転状態に応じてキ
ャニスタの燃料蒸発ガスを内燃機関の吸気管に放出すべ
く開閉手段を制御する。その結果、キャニスタのパージ
空気導入口の圧力と吸気管圧力との差圧が一定となった
状態において燃料蒸発ガスの放出が行われ、内燃機関の
運転状態の変化に伴い吸気圧が変化しても燃料蒸発ガス
の放出量が常に一定となる。
The pressure source is used to pressurize the air at the purge air introducing port, and the pressure adjusting means adjusts the pressure at the purge air introducing port of the canister in accordance with the pressure of the intake pipe to adjust the pressure at the purge air introducing port. Keep the pressure difference with the intake pipe pressure constant. Then, the purge control means controls the opening / closing means to release the fuel vaporized gas of the canister to the intake pipe of the internal combustion engine according to the operating state of the internal combustion engine. As a result, fuel evaporative emission is performed in a state where the pressure difference between the purge air inlet of the canister and the intake pipe pressure is constant, and the intake pressure changes as the operating state of the internal combustion engine changes. Also, the amount of fuel evaporative emission is always constant.

【0007】[0007]

【実施例】以下、この発明を具体化した一実施例を図面
に従って説明する。車両には図1に示す内燃機関として
のエンジン1が搭載され、このエンジン1には吸気管2
が接続されている。吸気管2にはスロットル弁3が設け
られ、スロットル弁3の開度に応じた吸気がエアクリー
ナ4を通してエンジン1に吸入される。又、吸気管2に
はエアフロメータ5が設けられ、同エアフロメータ5に
より吸入空気量が検出される。さらに、スロットル弁3
下流の吸気管2の圧力が圧力センサ28により検出され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings. An engine 1 as an internal combustion engine shown in FIG. 1 is mounted on a vehicle, and an intake pipe 2 is installed in the engine 1.
Are connected. A throttle valve 3 is provided in the intake pipe 2, and intake air according to the opening degree of the throttle valve 3 is taken into the engine 1 through an air cleaner 4. An air flow meter 5 is provided in the intake pipe 2, and the intake air amount is detected by the air flow meter 5. In addition, throttle valve 3
The pressure of the intake pipe 2 on the downstream side is detected by the pressure sensor 28.

【0008】又、燃料タンク6の上面はパージ管7にて
スロットル弁3の下流の吸気管2と連通されている。パ
ージ管7の途中にはキャニスタ8が配設され、キャニス
タ8内には吸着材としての活性炭9が収納されている。
そして、燃料タンク6の燃料蒸発ガスがキャニスタ8内
の活性炭9に吸着される。又、パージ管7はキャニスタ
8よりも吸気管2側を放出通路10とし、この放出通路
10の途中には開閉手段としてのパージ用電磁弁11が
設けられている。
The upper surface of the fuel tank 6 is connected to the intake pipe 2 downstream of the throttle valve 3 by a purge pipe 7. A canister 8 is arranged in the middle of the purge pipe 7, and activated carbon 9 as an adsorbent is stored in the canister 8.
Then, the fuel evaporative gas in the fuel tank 6 is adsorbed by the activated carbon 9 in the canister 8. The purge pipe 7 has a discharge passage 10 on the intake pipe 2 side of the canister 8, and a purge solenoid valve 11 as an opening / closing means is provided in the discharge passage 10.

【0009】このパージ用電磁弁11は、スプリング
(図示略)により常に弁体12がシート部13を開く方
向に付勢されているが、コイル14を励磁することによ
り弁体12がシート部13を閉じるようになっている。
従って、パージ用電磁弁11のコイル14の消磁により
放出通路10が開き、コイル14の励磁により放出通路
10が閉じるようになっている。そして、パージ制御手
段としての電子制御ユニット(以下、ECUという)2
7によるパージ用電磁弁11のデューティー制御によ
り、パージ用電磁弁11が所定の開度となり、キャニス
タ8の活性炭9に吸着した燃料蒸発ガスがパージ空気導
入口15からの新気と共に吸気管2に放出される。
In this purging solenoid valve 11, a valve body 12 is constantly urged by a spring (not shown) in a direction to open the seat portion 13. However, by exciting the coil 14, the valve body 12 is seated in the seat portion 13. Is designed to close.
Therefore, the release passage 10 is opened by demagnetizing the coil 14 of the purging solenoid valve 11, and the release passage 10 is closed by exciting the coil 14. Then, an electronic control unit (hereinafter referred to as ECU) 2 as a purge control means
By the duty control of the purging solenoid valve 11 by 7, the purging solenoid valve 11 has a predetermined opening degree, and the fuel evaporative gas adsorbed on the activated carbon 9 of the canister 8 is introduced into the intake pipe 2 together with the fresh air from the purge air inlet 15. Is released.

【0010】キャニスタ8のパージ空気導入口15には
調圧室16が接続されている。調圧室16には加圧源と
しての加圧エアポンプ17が設けられ、加圧エアポンプ
17はエンジン1により常時駆動される。そして、加圧
エアポンプ17の駆動により加圧エアが調圧室16内に
供給され、調圧室16の圧力が大気圧以上となる。調圧
室16内は、圧力調整手段としてのプレッシャレギュレ
ータ18により吸気管2の圧力に対して一定の差圧とな
るように調整される。
A pressure adjusting chamber 16 is connected to the purge air introducing port 15 of the canister 8. A pressure air pump 17 as a pressure source is provided in the pressure regulation chamber 16, and the pressure air pump 17 is constantly driven by the engine 1. The pressurized air pump 17 is driven to supply pressurized air into the pressure regulating chamber 16, so that the pressure in the pressure regulating chamber 16 becomes equal to or higher than the atmospheric pressure. The pressure regulator chamber 16 is adjusted by the pressure regulator 18 serving as a pressure adjusting means so as to have a constant differential pressure with respect to the pressure of the intake pipe 2.

【0011】図2に、調圧部の構成を示す。プレッシャ
レギュレータ18のケーシング19内はダイヤフラム2
0により第1室21と第2室22とに区画されている。
第1室21は調圧室16内と連通し、又、第2室22は
連通管23によりスロットル弁3の下流の吸気管2と連
通している(図1参照)。つまり、第1室21には調圧
室16の圧力が導入されるとともに第2室22には吸気
管圧力が導入される。プレッシャレギュレータ18の第
1室21には大気連通管24の一端側が配置され、大気
連通管24の他端が大気開放となっている。ケーシング
19内のダイヤフラム20はスプリング26により第1
室21側に変形する力が付与されている。ダイヤフラム
20には弁体25が固定され、ダイヤフラム20の変形
に伴い弁体25が大気導入管24の開口部を開閉するよ
うになっている。
FIG. 2 shows the structure of the pressure adjusting section. The inside of the casing 19 of the pressure regulator 18 is the diaphragm 2
It is divided by 0 into a first chamber 21 and a second chamber 22.
The first chamber 21 communicates with the inside of the pressure regulation chamber 16, and the second chamber 22 communicates with the intake pipe 2 downstream of the throttle valve 3 by a communication pipe 23 (see FIG. 1). That is, the pressure of the pressure regulation chamber 16 is introduced into the first chamber 21, and the intake pipe pressure is introduced into the second chamber 22. One end of the atmosphere communication pipe 24 is arranged in the first chamber 21 of the pressure regulator 18, and the other end of the atmosphere communication pipe 24 is open to the atmosphere. The diaphragm 20 in the casing 19 has a first spring 26.
A force that deforms is applied to the chamber 21 side. A valve body 25 is fixed to the diaphragm 20, and the valve body 25 opens and closes the opening of the atmosphere introducing pipe 24 as the diaphragm 20 is deformed.

【0012】そして、弁体25を閉方向に付勢するスプ
リング26のセット荷重に対し、第1室21と第2室2
2との圧力差により生じる弁体25の開方向に付勢する
力が小さいと弁体25は大気連通管24を閉じている。
さらに、第1室21と第2室22との差圧がスプリング
26のセット荷重以上になると、弁体25が大気連通管
24から離れ第1室21の圧力をリリーフするよう動作
する。
Then, with respect to the set load of the spring 26 for urging the valve body 25 in the closing direction, the first chamber 21 and the second chamber 2
When the force that urges the valve element 25 in the opening direction due to the pressure difference from the valve 2 is small, the valve element 25 closes the atmosphere communication pipe 24.
Further, when the pressure difference between the first chamber 21 and the second chamber 22 becomes equal to or more than the set load of the spring 26, the valve body 25 operates to relieve the pressure in the first chamber 21 from the atmosphere communication pipe 24.

【0013】調圧室16(即ち、キャニスタ8のパージ
空気導入口15)の圧力は、図3のように調圧される。
即ち、吸気管圧力(大気圧に対する相対圧力)が−40
0mmHg以下のときはパージ空気導入口15(調圧室
16)の圧力は大気圧となる。又、吸気管圧力が−40
0mmHg以上の運転負荷のときは調圧室16の圧力も
大きくなり、調圧室16と吸気管圧力との差圧が400
mmHg一定となる。つまり、臨界圧力である400m
mHgとしている。
The pressure in the pressure adjusting chamber 16 (that is, the purge air introducing port 15 of the canister 8) is adjusted as shown in FIG.
That is, the intake pipe pressure (relative pressure to atmospheric pressure) is -40
When the pressure is 0 mmHg or less, the pressure of the purge air introduction port 15 (pressure adjusting chamber 16) becomes atmospheric pressure. Also, the intake pipe pressure is -40
When the operating load is 0 mmHg or more, the pressure in the pressure regulation chamber 16 also increases, and the pressure difference between the pressure regulation chamber 16 and the intake pipe pressure is 400
mmHg becomes constant. In other words, 400m which is critical pressure
It is set to mHg.

【0014】次に、このように構成した燃料蒸発ガス拡
散防止装置の作用を説明する。図3に示すように、プレ
ッシャレギュレータ18により吸気管圧力が−400m
mHg以下のときはパージ空気導入口15(調圧室1
6)の圧力は大気圧となる。又、吸気管圧力が−400
mmHg以上の運転負荷のときは調圧室16の圧力も大
きくなり、パージ空気導入口15(調圧室16)と吸気
管圧力との差圧が400mmHg一定となる。このよう
に、プレッシャレギュレータ18によりパージ用電磁弁
11の出入口での圧力差は常に400mmHg(臨界圧
力)以上となっている。
Next, the operation of the fuel evaporative gas diffusion preventing device thus constructed will be described. As shown in FIG. 3, the pressure regulator 18 keeps the intake pipe pressure at -400 m.
When the pressure is less than mHg, the purge air inlet 15 (pressure regulating chamber 1
The pressure of 6) becomes atmospheric pressure. Also, the intake pipe pressure is -400
When the operating load is equal to or higher than mmHg, the pressure in the pressure regulation chamber 16 also increases, and the differential pressure between the purge air introduction port 15 (pressure regulation chamber 16) and the intake pipe pressure becomes 400 mmHg constant. Thus, the pressure regulator 18 keeps the pressure difference between the inlet and outlet of the purging solenoid valve 11 at 400 mmHg (critical pressure) or more.

【0015】このような状態において、ECU27は図
5のフローチャートで示すごとくエアフローメータ5に
より吸入空気量Qを取り込むとともに圧力センサ28に
より吸気管圧力を取り込む(ステップ51)。そして、
ECU27は、図4に示すマップを用いてパージ用電磁
弁11の開度を算出し、このパージ用電磁弁11の開度
に対応するデューティ比にてパージ用電磁弁11を制御
する(ステップ52)。その結果、吸入空気量Qに応じ
たパージガス(燃料蒸発ガス+新気)がキャニスタ8か
ら吸気管2に放出される。つまり、エンジン運転パラメ
ータにより最適なパージ量が得られるようにデューティ
ー制御される。
In such a state, the ECU 27 takes in the intake air amount Q by the air flow meter 5 and takes in the intake pipe pressure by the pressure sensor 28 as shown in the flowchart of FIG. 5 (step 51). And
The ECU 27 calculates the opening degree of the purging solenoid valve 11 using the map shown in FIG. 4, and controls the purging solenoid valve 11 with a duty ratio corresponding to the opening degree of the purging solenoid valve 11 (step 52). ). As a result, the purge gas (fuel evaporative gas + fresh air) according to the intake air amount Q is released from the canister 8 to the intake pipe 2. That is, the duty is controlled so that the optimum purge amount is obtained according to the engine operating parameter.

【0016】このとき、パージ用電磁弁11の出入口で
の圧力差は常に400mmHg(臨界圧力)以上となっ
ているので、エンジン1の全運転領域でパージ用電磁弁
11の開度に対してリニアなパージ流量特性が得られ
る。このことにより、パージ用電磁弁11の駆動デュー
ティーを運転領域毎に適合する必要がなく、吸入空気量
に対するパージ量を演算し精密な制御が可能となる。さ
らに、加圧エアポンプ17及びプレッシャレギュレータ
18が無い場合には、キャニスタ8の放出通路10とパ
ージ空気導入口15との差圧が小さい高負荷領域では十
分なパージ流量を確保できなかったが、加圧エアポンプ
17及びプレッシャレギュレータ18を用いることによ
り高負荷領域についても十分なパージ流量を確保するこ
とができる。
At this time, since the pressure difference at the inlet and outlet of the purging solenoid valve 11 is always 400 mmHg (critical pressure) or more, it is linear with respect to the opening degree of the purging solenoid valve 11 in the entire operating region of the engine 1. A good purge flow rate characteristic can be obtained. As a result, it is not necessary to adapt the drive duty of the purging solenoid valve 11 for each operating region, and it is possible to calculate the purge amount with respect to the intake air amount and perform precise control. Further, when the pressurized air pump 17 and the pressure regulator 18 were not provided, a sufficient purge flow rate could not be secured in the high load region where the differential pressure between the discharge passage 10 of the canister 8 and the purge air introduction port 15 was small. By using the compressed air pump 17 and the pressure regulator 18, a sufficient purge flow rate can be secured even in a high load region.

【0017】そして、ECU27は吸気管圧力(大気圧
に対する相対圧力)Pが−400mmHg以下か判断し
(ステップ53)、以下のときには加圧エアポンプ17
の駆動を停止させ、以下でないときには加圧エアポンプ
17の駆動させる(ステップ54,55)。このように
することにより、加圧エアポンプ17の寿命を長くする
ことができる。
Then, the ECU 27 judges whether the intake pipe pressure (relative pressure with respect to the atmospheric pressure) P is -400 mmHg or less (step 53).
Is stopped, and the pressurized air pump 17 is driven when the following conditions are not satisfied (steps 54 and 55). By doing so, the life of the pressurized air pump 17 can be extended.

【0018】尚、パージ用電磁弁11の開度は、吸入空
気量の他にも、エンジン回転数、スロットル開度等のエ
ンジンパラメータにより決定してもよい。このように本
実施例では、キャニスタ8のパージ空気導入口15に加
圧エアポンプ17(加圧源)を設け、プレッシャレギュ
レータ18(圧力調整手段)にて吸気管圧力に応じてキ
ャニスタ8のパージ空気導入口15の圧力を調整してパ
ージ空気導入口15と吸気管圧力との差圧を一定にする
ようにした。その結果、キャニスタ8のパージ空気導入
口15の圧力と吸気管圧力との差圧が一定となった状態
において燃料蒸発ガスの放出が行われ、エンジン1の運
転状態の変化に伴い吸気圧が変化しても同一のパージ用
電磁弁11の開度ならば燃料蒸発ガスの放出量が常に一
定となる。よって、空燃比制御性を損なうことなく最適
なパージ制御を行うことができることとなる。又、パー
ジ用電磁弁11の出入口での圧力差は常に400mmH
g(臨界圧力)以上となっているので、吸気管負圧が小
さくなるような高負荷運転時にも十分なパージ流量を確
保することができる。
The opening of the purging solenoid valve 11 may be determined by engine parameters such as engine speed and throttle opening, in addition to the intake air amount. As described above, in the present embodiment, the pressurized air pump 17 (pressurizing source) is provided at the purge air introduction port 15 of the canister 8, and the pressure regulator 18 (pressure adjusting means) is used to purge the canister 8 according to the intake pipe pressure. The pressure of the inlet port 15 was adjusted so that the pressure difference between the purge air inlet port 15 and the intake pipe pressure was kept constant. As a result, the fuel evaporative emission is performed in a state where the pressure difference between the purge air introduction port 15 of the canister 8 and the intake pipe pressure is constant, and the intake pressure changes as the operating state of the engine 1 changes. However, if the opening degree of the purging solenoid valve 11 is the same, the amount of fuel evaporative emission is always constant. Therefore, optimal purge control can be performed without impairing the air-fuel ratio controllability. Also, the pressure difference at the inlet and outlet of the purging solenoid valve 11 is always 400 mmH.
Since the pressure is equal to or higher than g (critical pressure), a sufficient purge flow rate can be secured even during high load operation in which the negative pressure in the intake pipe becomes small.

【0019】尚、この発明は上記実施例に限定されるも
のではなく、例えば、上記実施例では、加圧エアポンプ
17はパージエア供給用にのみ用いているが、エンジン
の排気系に空気を導入するための二次エアポンプや空気
混ぜインジェクタ等の他の目的のエアポンプの圧力の一
部を用いてもよい。
The present invention is not limited to the above embodiment. For example, although the pressurized air pump 17 is used only for supplying purge air in the above embodiment, air is introduced into the exhaust system of the engine. A part of the pressure of an air pump for other purposes such as a secondary air pump for this purpose or an air mixing injector may be used.

【0020】又、前記実施例では吸気管圧力センサ28
による吸気管圧力が−400mmHg以下では加圧エア
ポンプ17の駆動を停止させたが、加圧エアポンプ17
はエンジン1により常時駆動させるようにしてもよい。
Further, in the above embodiment, the intake pipe pressure sensor 28
When the intake pipe pressure by -400 mmHg or less, the driving of the pressurized air pump 17 was stopped.
May be always driven by the engine 1.

【0021】[0021]

【発明の効果】以上詳述したようにこの発明によれば、
空燃比制御性を損なうことなく最適なパージ制御を行う
ことができる優れた効果を発揮する。
As described in detail above, according to the present invention,
It has an excellent effect that the optimum purge control can be performed without impairing the air-fuel ratio controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料蒸発ガス拡散防止装置の全体構成を示す図
である。
FIG. 1 is a diagram showing an overall configuration of a fuel evaporative gas diffusion prevention device.

【図2】調圧部を示す図である。FIG. 2 is a diagram showing a pressure adjusting unit.

【図3】調圧特性を示す図である。FIG. 3 is a diagram showing pressure regulation characteristics.

【図4】パージ用電磁弁の開度の決定のためのマップを
示す図である。
FIG. 4 is a diagram showing a map for determining the opening degree of a purging solenoid valve.

【図5】ECUの作動を説明するフローチャートであ
る。
FIG. 5 is a flowchart illustrating the operation of the ECU.

【符号の説明】[Explanation of symbols]

2 吸気管 6 燃料タンク 8 キャニスタ 9 吸着材としての活性炭 10 放出通路 11 開閉手段としてのパージ用電磁弁 15 パージ空気導入口 17 加圧源としての加圧エアポンプ 18 圧力調整手段としてのプレッシャレギュレータ 27 パージ制御手段としてのECU 2 Intake pipe 6 Fuel tank 8 Canister 9 Activated carbon as adsorbent 10 Release passage 11 Purge solenoid valve as opening / closing means 15 Purge air inlet 17 Pressurized air pump as pressurizing source 18 Pressure regulator as pressure adjusting means 27 Purge ECU as control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料タンクと連通し、当該燃料タンクの
燃料蒸発ガスを吸着する吸着材を収納するとともにパー
ジ空気導入口を有するキャニスタと、 前記キャニスタと内燃機関の吸気管とを連通する放出通
路と、 前記放出通路中に設けられ、当該通路を開閉する開閉手
段と、 前記キャニスタのパージ空気導入口に設けられ、パージ
空気導入口での空気圧力を大気圧以上にするための加圧
源と、 吸気管圧力に応じて前記キャニスタのパージ空気導入口
の圧力を調整してパージ空気導入口の圧力と吸気管圧力
との差圧を一定にする圧力調整手段と、 内燃機関の運転状態に応じて前記キャニスタの燃料蒸発
ガスを内燃機関の吸気管に放出すべく前記開閉手段を制
御するパージ制御手段とを備えたことを特徴とする燃料
蒸発ガス拡散防止装置。
1. A canister which communicates with a fuel tank, accommodates an adsorbent for adsorbing fuel evaporative gas in the fuel tank, and has a purge air introduction port, and a discharge passage which communicates the canister with an intake pipe of an internal combustion engine. An opening / closing means provided in the discharge passage for opening and closing the passage, and a pressure source provided at the purge air introduction port of the canister for making the air pressure at the purge air introduction port equal to or higher than atmospheric pressure. A pressure adjusting means for adjusting the pressure of the purge air introducing port of the canister according to the intake pipe pressure to make the differential pressure between the pressure of the purge air introducing port and the intake pipe pressure constant; And a purge control means for controlling the opening / closing means to release the fuel vaporized gas of the canister to the intake pipe of the internal combustion engine.
【請求項2】 前記圧力調整手段は、吸気管圧力が所定
値以下の時はパージ空気導入口を大気圧にするものであ
る請求項1に記載の燃料蒸発ガス拡散防止装置。
2. The fuel evaporative gas diffusion prevention device according to claim 1, wherein the pressure adjusting means sets the purge air introduction port to the atmospheric pressure when the intake pipe pressure is equal to or lower than a predetermined value.
【請求項3】 前記加圧源は内燃機関により駆動される
加圧エアポンプであり、当該ポンプは、吸気管圧力が所
定値以下の時は駆動が停止されるものである請求項1に
記載の燃料蒸発ガス拡散防止装置。
3. The pressurizing source is a pressurized air pump driven by an internal combustion engine, and the pump is stopped when the intake pipe pressure is below a predetermined value. Fuel evaporation gas diffusion prevention device.
JP12079392A 1992-04-30 1992-05-13 Evaporative emission control device Pending JPH05312113A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12079392A JPH05312113A (en) 1992-05-13 1992-05-13 Evaporative emission control device
US08/053,484 US5273020A (en) 1992-04-30 1993-04-29 Fuel vapor purging control system for automotive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12079392A JPH05312113A (en) 1992-05-13 1992-05-13 Evaporative emission control device

Publications (1)

Publication Number Publication Date
JPH05312113A true JPH05312113A (en) 1993-11-22

Family

ID=14795140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12079392A Pending JPH05312113A (en) 1992-04-30 1992-05-13 Evaporative emission control device

Country Status (1)

Country Link
JP (1) JPH05312113A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427076A (en) * 1993-10-22 1995-06-27 Honda Giken Kogyo Kabushiki Kaisha Evaporative fuel-processing system for internal combustion engines for vehicles
WO1997042407A1 (en) * 1996-05-04 1997-11-13 Robert Bosch Gmbh Tank-venting arrangement
WO1997047874A1 (en) * 1996-06-14 1997-12-18 Knecht Filterwerke Gmbh Adsorption filter for the fuel tank venting system of an internal combustion engine and process for operating said system
US6138644A (en) * 1997-09-12 2000-10-31 Unisia Jecs Corporation Apparatus and method for processing fuel vapor in internal combustion engine
US6695895B2 (en) * 2001-05-02 2004-02-24 Toyota Jidosha Kabushiki Kaisha Fuel vapor handling apparatus and diagnostic apparatus thereof
CN110318916A (en) * 2018-03-29 2019-10-11 爱三工业株式会社 Evaporated fuel treating apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427076A (en) * 1993-10-22 1995-06-27 Honda Giken Kogyo Kabushiki Kaisha Evaporative fuel-processing system for internal combustion engines for vehicles
WO1997042407A1 (en) * 1996-05-04 1997-11-13 Robert Bosch Gmbh Tank-venting arrangement
WO1997047874A1 (en) * 1996-06-14 1997-12-18 Knecht Filterwerke Gmbh Adsorption filter for the fuel tank venting system of an internal combustion engine and process for operating said system
US5983870A (en) * 1996-06-14 1999-11-16 Knecht Filterwerke Gmbh Adsorption filter for the fuel tank venting system of an internal combustion engine and process for operating said system
US6138644A (en) * 1997-09-12 2000-10-31 Unisia Jecs Corporation Apparatus and method for processing fuel vapor in internal combustion engine
US6695895B2 (en) * 2001-05-02 2004-02-24 Toyota Jidosha Kabushiki Kaisha Fuel vapor handling apparatus and diagnostic apparatus thereof
CN110318916A (en) * 2018-03-29 2019-10-11 爱三工业株式会社 Evaporated fuel treating apparatus

Similar Documents

Publication Publication Date Title
US5083546A (en) Two-stage high flow purge valve
JP3235236B2 (en) Evaporative fuel control device
JP2615285B2 (en) Evaporative fuel control system for internal combustion engine
JP3252519B2 (en) Evaporative fuel control device
JPH05312113A (en) Evaporative emission control device
JPH06129320A (en) Fuel tank internal pressure adjusting device
JP3444125B2 (en) Evaporative fuel control system for internal combustion engine
JP2936904B2 (en) Fuel tank pressure controller
JP3147410B2 (en) Purge air control device
JP2884925B2 (en) Fuel tank pressure controller
JP3334487B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3074840B2 (en) Evaporative fuel processing equipment
JP3127478B2 (en) Fuel evaporative gas diffusion prevention device
JPS6341632A (en) Air-fuel ratio controller for engine
JPH0539754A (en) Evaporation system
JP2024008634A (en) Evaporated fuel treatment device
JPS6226357A (en) Purge control system
JP2800055B2 (en) Evaporative fuel control system for vehicles
JP3196084B2 (en) Vaporizer fuel booster
JPS6021494Y2 (en) Engine evaporative fuel treatment device
JPH10281021A (en) Evaporated fuel disposal device
JPS5939957A (en) Dispersion preventive device for evaporated fuel gas
JPH04128546A (en) Fuel vapor purge controller
JPH07119558A (en) Evaporative fuel processing device
JP3074959B2 (en) Engine evaporative fuel control system