JPH053120B2 - - Google Patents
Info
- Publication number
- JPH053120B2 JPH053120B2 JP2286933A JP28693390A JPH053120B2 JP H053120 B2 JPH053120 B2 JP H053120B2 JP 2286933 A JP2286933 A JP 2286933A JP 28693390 A JP28693390 A JP 28693390A JP H053120 B2 JPH053120 B2 JP H053120B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive polymer
- polymer composition
- electrode
- temperature
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/146—Conductive polymers, e.g. polyethylene, thermoplastics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/027—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Resistance Heating (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Thermistors And Varistors (AREA)
- Control Of Resistance Heating (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はPTC導電性重合体組成物を含み、改
善された抵抗安定性を有する自己制御性ヒーター
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of making a self-regulating heater comprising a PTC conductive polymer composition and having improved resistance stability.
導電性重合体組成物は周知である。このものは
微細分割された導電性充填剤、例えばカーボンブ
ラツクあるいは粒状金属を分散して含む有機重合
体からなる。このような組成物のあるものはいわ
ゆるPTC(Positive Temperature Coefficient;
正温度計数)挙動を示す。PTC挙動を記述する
のに従来用いられている用語は種々あり、しかも
正確でない。本明細書においては、「PTC挙動を
示す組成物」および「PTC組成物」なる用語は、
−100℃から約250℃の範囲内にある少くとも一つ
の温度範囲(以下「臨界範囲」(“critical
range”)と称する)の始端において約105オー
ム・センチ以下の抵抗率を有し;またこの少なく
とも1つの温度範囲内で少くとも2.5のR14値ある
いは少くとも10のR100値を(望ましくは共に)有
し、また望ましくは少くとも6のR30値を有する
組成物を指す。ここでR14とは上記−100℃〜250
℃の間の少なくとも1つの14℃の幅の温度範囲の
末端と始端とにおける抵抗率の比であり、同様
に、R100は100℃幅の温度範囲の末端と始端とに
おける抵抗率の比を、そしてR30は30℃の幅の温
度範囲の末端と始端とにおける抵抗率の比であ
る。「PTC要素」なる用語は上記したPTC組成物
からなる要素を意味する。要素に接触する二つの
電極間で測定したPTC組成物の抵抗値の対数値
を温度に対してプロツトするとき、しばしば、た
だし必ずしも常にではなく、臨界温度範囲の一部
分にわたつて勾配の急激な変化が認められ、この
ような場合、勾配の急激な変化を示す部分の両側
にある実質的に直線的な部分を外挿したものの交
叉する点における温度を指すのに「スイツチング
温度」(“switching temperature”)(通常Tsと略
す)なる用語を用いる。
Conductive polymer compositions are well known. They consist of organic polymers containing dispersed finely divided conductive fillers, such as carbon black or particulate metals. Some of these compositions are so-called PTC (Positive Temperature Coefficient;
positive temperature coefficient) behavior. The terminology traditionally used to describe PTC behavior is varied and inaccurate. As used herein, the terms "composition exhibiting PTC behavior" and "PTC composition" refer to
At least one temperature range within the range -100°C to approximately 250°C (the "critical range")
have a resistivity of at least about 105 ohm -cm or less at the beginning of the temperature range (referred to as "range"); ) and desirably has an R 30 value of at least 6, where R 14 refers to a composition having an R 30 value of at least 6.
Similarly, R 100 is the ratio of resistivities at the end and beginning of at least one 14°C wide temperature range between , and R 30 is the ratio of resistivity at the end and beginning of a 30°C wide temperature range. The term "PTC element" refers to an element consisting of the PTC composition described above. When the logarithm of the resistance of a PTC composition measured between two electrodes in contact with the element is plotted against temperature, there is often, but not always, a sharp change in the slope over a portion of the critical temperature range. In such cases, the term “switching temperature” is used to refer to the temperature at the intersection of the extrapolated substantially linear sections on either side of the section exhibiting a sudden change in slope. ”) (usually abbreviated as Ts).
第1図に典型的なPTC組成物の抵抗率を対数
値を温度に対してプロツトしたグラフを模式的に
示す。図示するように、抵抗率の対数値は実質的
な直線部分ABおよびCDを有する。この場合、
スイツチング温度Tsは、それぞれの直線部分を
外挿し(即ち、ABを右方向に延長し、CDを下
方向に延長し)、その交点に対応する温度Tsを読
み取ることにより決定される。 FIG. 1 schematically shows a graph in which the logarithm of the resistivity of a typical PTC composition is plotted against temperature. As shown, the logarithm of resistivity has substantially linear sections AB and CD. in this case,
The switching temperature Ts is determined by extrapolating each straight line section (ie, extending AB to the right and extending CD downward) and reading the temperature Ts corresponding to their intersection.
本明細書においては、PTC要素におけるこの
ようなPTC組成物は、「有用なTs」を有すると言
う。即ち、少なくとも2.5のR14値、少なくとも10
のR100値および/または少なくとも6のR30値を
有する組成物のスイツチング温度が有用なTsで
ある。Tsは0℃から175℃の間、例えば50℃から
120℃の間にあるのが好ましい。 Such a PTC composition in a PTC element is referred to herein as having a "useful Ts." i.e. R14 value of at least 2.5, at least 10
A switching temperature of a composition having an R 100 value of and/or an R 30 value of at least 6 is a useful Ts. Ts is between 0℃ and 175℃, for example from 50℃
Preferably it is between 120°C.
導電性重合体組成物、特にPTC組成物は、電
極、通常、金属の電極に組成物が接触する電気的
手段において有用である。この種の手段は一つも
しくはそれより多い電極のまわりにあるいはこれ
に対して融解重合体組成物を押出成形あるいは鋳
込み成形することからなる方法により通常製造す
る。既知の方法においては、電極は重合体組成物
との接触に先立つて加熱されず、あるいは限られ
た程度まで、例えば組成物の融点より十分低い温
度まで、例えば65℃以下の温度までしか加熱され
ない。(本明細書においては全体を通じて温度は
摂氏表示である。)このような手段の周知の例は、
導電性重合体組成物の概ねリボン状の心核部、心
核部の端部近辺に埋込まれた長手方向に延びる一
対の電極、一般には撚り電線、および保護ならび
絶縁組成物の外層からなる可撓性のストリツプヒ
ーターである。特に有用なヒーターは組成物が
PTC挙動を示すものであり、従つて自己制御性
のあるものである。組成物が15%より少いカーボ
ンブラツクを含有するこのようなヒーターの製造
においては、十分に低い抵抗率を得るために、
2L+5log10R≦45
(ただし、Lはカーボンブラツクの重量%であ
り、Rは室温におけるオーム・センチ表示の抵抗
率である)
となるように長期間にわたつてヒーターをアニー
リングする必要のあることが従来技術によつて教
示されている。 Conductive polymer compositions, particularly PTC compositions, are useful in electrical means where the composition contacts an electrode, usually a metal electrode. Devices of this type are usually manufactured by a process consisting of extruding or casting a molten polymer composition around or onto one or more electrodes. In known methods, the electrode is not heated prior to contact with the polymer composition, or is heated only to a limited extent, e.g. to a temperature well below the melting point of the composition, e.g. to a temperature below 65°C. . (Throughout this specification, temperatures are expressed in degrees Celsius.) Well-known examples of such means include:
consisting of a generally ribbon-shaped core of a conductive polymeric composition, a pair of longitudinally extending electrodes embedded near the ends of the core, generally stranded wire, and an outer layer of a protective and insulating composition. It is a flexible strip heater. Particularly useful heaters are those whose composition is
It exhibits PTC behavior and is therefore self-regulating. In the manufacture of such heaters, where the composition contains less than 15% carbon black, in order to obtain a sufficiently low resistivity, 2L + 5log 10 R≦45, where L is the weight percent of carbon black, The prior art teaches that it is necessary to anneal the heater for an extended period of time so that R is the resistivity in ohms and centimeters at room temperature.
既知のストリツプヒーターにつきまとう不利な
点は、これを使用する期間が長くなるにつれて、
その抵抗値が高くなり、かつ電力出力がより低く
なることがあり、これが熱的サイクル下におかれ
る時特にそうなることである。 A disadvantage with known strip heaters is that the longer they are used,
Its resistance may be higher and its power output lower, especially when it is subjected to thermal cycling.
本発明者らは、電極と導電性重合体組成物との
間の初期の接触抵抗が低いほど、全抵抗値の時間
的増大が低いことを見出した。特に、本発明者ら
は、作動時に良好な抵抗安定性を有する自己制御
性ストリツプヒーターについては、電極間の平均
直線性比率(linearity ratio)は一般的に1.2を越
えないことを見出した。ストリツプヒーターの直
線性比率は、これまでは重要であると認識されて
いなかつた量であつて、
30mVおける抵抗値/100Vにおける抵抗値
として定義され、抵抗値は2つの電極の間で21℃
において測定される。接触抵抗は100Vにて無視
でき、直線性比率が1に近いほど、接触抵抗は小
さくなる。
The inventors have found that the lower the initial contact resistance between the electrode and the conductive polymer composition, the lower the increase in total resistance over time. In particular, we found that for self-regulating strip heaters with good resistance stability during operation, the average linearity ratio between electrodes generally does not exceed 1.2. . The linearity ratio of a strip heater, a previously unrecognized quantity, is defined as resistance at 30 mV/resistance at 100 V, where the resistance is 21 mV between the two electrodes. ℃
Measured at The contact resistance can be ignored at 100V, and the closer the linearity ratio is to 1, the smaller the contact resistance.
本発明者らは、また、電極と導電性重合体組成
物とを共に、組成物の融点以上の温度において互
いに接触するように置きあるいは保つことによ
り、これらの間の接触抵抗が低下することも見出
した。「組成物の融点」なる用語は本明細書にお
いては導電性重合体組成物が融解しはじめる温度
(Tm)を指すのに用いる。所望の成果を得るた
めに、それぞれが組成物の融点以上の温度にある
電極と組成物とが互いに接触している必要のある
時間は、極めて短い。5分を越える時間は、接触
抵抗をさらに顕著に低下することにならず、また
しばしば1分より短い時間で十分であり、従つて
これが推奨される。このように処理時間は、例え
ば米国特許第3823217号および第3914363号中に記
載のごとき、組成物の抵抗率を低下するための既
知のアニーリング処理の必要とする時間と比べ
て、オーダーが全く異なる。 The inventors also discovered that by placing or maintaining the electrode and the conductive polymer composition together in contact with each other at a temperature above the melting point of the composition, the contact resistance between them is reduced. I found it. The term "melting point of the composition" is used herein to refer to the temperature (Tm) at which the conductive polymer composition begins to melt. The amount of time that the electrode and the composition, each at a temperature above the melting point of the composition, need to be in contact with each other to achieve the desired outcome is very short. A time of more than 5 minutes does not further significantly reduce the contact resistance, and times of less than 1 minute are often sufficient and are therefore recommended. The processing times are thus orders of magnitude different compared to the times required by known annealing treatments for reducing the resistivity of compositions, such as those described in U.S. Pat. Nos. 3,823,217 and 3,914,363. .
従つて、一つの要旨によれば本発明は、融解し
たPCT挙動を示す熱可塑性導電性重合体組成物
を2つの電極上に溶解押出することを含んで成
る、導電性重合体組成物のストリツプに埋設され
た電極を有して成る自己制御性ストリツプヒータ
ーを製造する方法であつて、各電極が初めて導電
性重合体組成物と接触する時に各電極は65℃より
低い温度にあり、電極およびこれと接触した導電
性重合体組成物を、Tm(Tmは、導電性重合体組
成物が融解し始める温度)を越える温度まで加熱
し、該温度で、(a)電極間の平均直線性比率を1.2
を越えない値まで減らす時間であつて(b)5分より
短い時間保持することを特徴とする製造方法を提
供する。好ましくは、電極を少なくとも(Tm+
20)℃、特に少なくとも(Tm+55)℃である温
度(Te)まで加熱する。 Accordingly, in one aspect, the present invention provides a method for forming a strip of a conductive polymer composition comprising melt extruding a thermoplastic conductive polymer composition exhibiting molten PCT behavior onto two electrodes. A method of manufacturing a self-regulating strip heater comprising electrodes embedded in the conductive polymer composition, wherein each electrode is at a temperature below 65° C. when each electrode first contacts the conductive polymer composition; The electrode and the conductive polymer composition in contact with it are heated to a temperature above Tm (Tm is the temperature at which the conductive polymer composition begins to melt), and at that temperature, (a) the average straight line between the electrodes is Sex ratio 1.2
Provided is a manufacturing method characterized in that (b) the temperature is maintained for a period of time shorter than 5 minutes. Preferably, the electrode is at least (Tm+
20) °C, in particular to a temperature (Te) that is at least (Tm + 55) °C.
本発明はいかなる型の電極についても有用であ
るが、ストリツプヒーター内に通常用いられるよ
うな撚り電線電極について特にそうである。望ま
しい撚り電線は銀−被覆ならびにニツケル−被覆
銅電線であり、これらは錫−被覆もしくは非被覆
銅電線に比べて融解あるいは酸化といつた難点が
より少い。もつとも後者の銅電線も使用温度が高
すぎないかぎり困難なく使用することができる。 Although the invention is useful with any type of electrode, it is particularly useful with stranded wire electrodes such as those commonly used in strip heaters. Preferred stranded wires are silver-coated and nickel-coated copper wires, which are less susceptible to problems such as melting or oxidation than tin-coated or uncoated copper wires. Of course, the latter type of copper wire can also be used without difficulty as long as the operating temperature is not too high.
本発明で用いるPTC導電性重合体組成物は一
般に、充填剤としてカーボンブラツクを、15重量
%内外、例えば17重量%より多くあるいは20重量
%の量にて含有する。組成物の抵抗率は一般に21
℃で50000オーム・センチより低く、例えば100な
いし50000オーム・センチである。115ボルトある
いはそれ以上の交流にて電力供給されるよう設計
されたストリツプヒーターの場合、組成物は一般
に2000ないし50000オーム・センチ、例えば2000
ないし40000オーム・センチの抵抗率を有する。
組成物は熱可塑性であるのが好ましい。しかし、
このものは、電極と緊密に一体化するように接触
条件下で十分に流動的であるかぎり、軽く架橋し
ていてよく、あるいは架橋結合する過程にあつて
よい。重合体は結晶性重合体であるのが好まし
い。 The PTC conductive polymer compositions used in the present invention generally contain carbon black as a filler in an amount of up to 15% by weight, such as greater than 17% or 20% by weight. The resistivity of the composition is generally 21
lower than 50,000 ohm-cm in °C, for example 100 to 50,000 ohm-cm. For strip heaters designed to be powered by 115 volts or more alternating current, the composition is typically between 2000 and 50000 ohm cm, e.g.
It has a resistivity of 40,000 to 40,000 ohm cm.
Preferably, the composition is thermoplastic. but,
It may be lightly crosslinked or in the process of crosslinking, as long as it is sufficiently fluid under the contact conditions to integrate tightly with the electrode. Preferably, the polymer is a crystalline polymer.
本発明の関係するストリツプヒーターは、一般
に、0.15ないし1センチの距離、離れている二つ
の電極を有するが、より大きなへだたり例えば
2.5センチあるいはそれ以上をも採用することが
できる。導電性重合体の心核は従来形状のもので
あつてもよいが、このものが最小寸法、例えば円
形断面の3倍より大きくない、特に1.5倍より大
きくない、例えば1.1倍より大きくない断面を有
するのが好ましい場合がある。 The strip heaters to which the present invention relates generally have two electrodes separated by a distance of 0.15 to 1 cm, although larger separations, e.g.
2.5 cm or more can also be used. The core of the conductive polymer may be of conventional shape, provided that it has a minimum dimension, such as a cross-section not greater than three times, in particular not greater than 1.5 times, such as not greater than 1.1 times the circular cross-section. It may be preferable to have
本発明の方法においては、導電性重合体組成物
は、例えばクロス−ヘツドダイス(cross head
die)を用いて一対の互いに隔てられた電線電極
のまわりに押出成形することにより、電極上に融
解押出成形される。電極は、予熱されないか、あ
るいは65℃を越えない温度まで予熱される。次に
電極および導電性重合体組成物を、たがいが接触
しているままで、Tmより高い温度まで加熱す
る。電極を加熱する一つの方法は抵抗加熱によ
る。 In the method of the present invention, the electrically conductive polymer composition is, for example, a cross-head die.
melt extrusion onto the electrodes by extrusion around a pair of spaced apart wire electrodes using a die). The electrodes are not preheated or are preheated to a temperature not exceeding 65°C. The electrode and conductive polymer composition are then heated to a temperature above Tm while they remain in contact. One method of heating the electrodes is by resistive heating.
最終製品において導電性重合体組成物が架橋し
ているのがしばしば好ましい。架橋は接触抵抗を
低下するための処理の後で別個な工程として実施
することができ、この場合照射による架橋が好ま
しい。あるいはまた、上記の処理と同時に架橋を
行うことができ、その場合、過酸化物のような架
橋結合開始剤の助けをかりる化学的架橋結合が好
適である。 It is often preferred that the conductive polymer composition be crosslinked in the final product. Crosslinking can be carried out as a separate step after the treatment to reduce the contact resistance, in which case crosslinking by radiation is preferred. Alternatively, crosslinking can be carried out simultaneously with the above treatment, in which case chemical crosslinking with the aid of crosslinking initiators such as peroxides is preferred.
第1図はPTC組成物の抵抗率の対数値を温度
に対してプロツトしたグラフであり、スイツチン
グ温度の決定方法を示す。
FIG. 1 is a graph plotting the logarithmic value of the resistivity of a PTC composition against temperature, and shows the method for determining the switching temperature.
Claims (1)
合体組成物を2つの電極上に溶融押出することを
含んで成る、導電性重合体組成物のストリツプに
埋設された電極を有して成る自己制御性ストリツ
プヒーターを製造する方法であつて、各電極が初
めて導電性重合体組成物と接触する時に各電極は
65℃より低い温度にあり、電極およびこれと接触
した導電性重合体組成物を、Tm(Tmは、導電性
重合体組成物が融解し始める温度)を越える温度
まで加熱し、該温度で、(a)電極間の平均直線性比
率を1.2を越えない値まで減らす時間であつて(b)
5分より短い時間保持することを特徴とする製造
方法。 2 該時間が1分より短い上記第1項記載の製造
方法。 3 導電性重合体組成物が電極周囲に融解押出し
された後、電極を抵抗加熱により加熱する上記第
1項または第2項記載の製造方法。 4 電極およびそれに接触した導電性重合体組成
物は、少なくとも(Tm+20)℃の温度で保持さ
れる上記第1〜3項のいずれかに記載の製造方
法。 5 該温度が少なくとも(Tm+55)℃である上
記第4項記載の製造方法。[Claims] 1. An electrode embedded in a strip of a conductive polymer composition comprising melt extruding a thermoplastic conductive polymer composition exhibiting molten PCT behavior onto two electrodes. A method of manufacturing a self-regulating strip heater comprising: a conductive polymer composition;
heating the electrode and the conductive polymer composition in contact therewith to a temperature below 65° C., above Tm (Tm is the temperature at which the conductive polymer composition begins to melt); (a) the time to reduce the average linearity ratio between the electrodes to a value not exceeding 1.2, and (b)
A manufacturing method characterized by holding for a time shorter than 5 minutes. 2. The manufacturing method according to item 1 above, wherein the time is shorter than 1 minute. 3. The manufacturing method according to item 1 or 2 above, wherein the conductive polymer composition is melted and extruded around the electrode, and then the electrode is heated by resistance heating. 4. The manufacturing method according to any one of items 1 to 3 above, wherein the electrode and the conductive polymer composition in contact with the electrode are maintained at a temperature of at least (Tm+20)°C. 5. The manufacturing method according to item 4 above, wherein the temperature is at least (Tm+55)°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75014976A | 1976-12-13 | 1976-12-13 | |
US750149 | 1976-12-13 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52149792A Division JPS6057192B2 (en) | 1976-12-13 | 1977-12-13 | Means comprising an electrode and conductive polymer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03257783A JPH03257783A (en) | 1991-11-18 |
JPH053120B2 true JPH053120B2 (en) | 1993-01-14 |
Family
ID=25016715
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52149792A Expired JPS6057192B2 (en) | 1976-12-13 | 1977-12-13 | Means comprising an electrode and conductive polymer and method for producing the same |
JP1128617A Granted JPH0256887A (en) | 1976-12-13 | 1989-05-22 | Self-controlling strip heater |
JP1128616A Granted JPH0256886A (en) | 1976-12-13 | 1989-05-22 | Self-controlling strip heater |
JP2286933A Granted JPH03257783A (en) | 1976-12-13 | 1990-10-23 | Manufacture of means consisting of electrode and conductive polymer |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52149792A Expired JPS6057192B2 (en) | 1976-12-13 | 1977-12-13 | Means comprising an electrode and conductive polymer and method for producing the same |
JP1128617A Granted JPH0256887A (en) | 1976-12-13 | 1989-05-22 | Self-controlling strip heater |
JP1128616A Granted JPH0256886A (en) | 1976-12-13 | 1989-05-22 | Self-controlling strip heater |
Country Status (10)
Country | Link |
---|---|
JP (4) | JPS6057192B2 (en) |
AU (1) | AU515034B2 (en) |
BE (1) | BE861776A (en) |
CA (2) | CA1106890A (en) |
DE (1) | DE2755077A1 (en) |
FR (1) | FR2392572A1 (en) |
GB (2) | GB1600257A (en) |
NL (1) | NL185545C (en) |
NO (1) | NO147735C (en) |
SE (3) | SE434587B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4238812A (en) * | 1978-12-01 | 1980-12-09 | Raychem Corporation | Circuit protection devices comprising PTC elements |
NZ193661A (en) * | 1979-05-10 | 1983-06-17 | Sunbeam Corp | Heating element conductive and ptc material |
CA1156300A (en) * | 1980-04-01 | 1983-11-01 | Gordon S. Carlson | Electric blanket safety circuit |
US4591700A (en) * | 1980-05-19 | 1986-05-27 | Raychem Corporation | PTC compositions |
CA1168433A (en) * | 1980-05-19 | 1984-06-05 | Umesh K. Sopory | Ptc conductive polymers and devices comprising them |
US4309596A (en) * | 1980-06-24 | 1982-01-05 | Sunbeam Corporation | Flexible self-limiting heating cable |
EP0250776B1 (en) | 1983-06-30 | 1992-06-10 | RAYCHEM CORPORATION (a Delaware corporation) | Method for detecting and obtaining information about changes in variables |
GB8623082D0 (en) * | 1986-09-25 | 1986-10-29 | Raychem Gmbh | Heated conduit |
DE4024268A1 (en) * | 1990-07-31 | 1992-02-06 | Lehmann & Voss & Co | Electroconductive plastics element for heater or electronic device - contains synergistic mixt. of carbon or graphite powder and fibres and opt. metal fibres |
DE4307371A1 (en) * | 1993-03-09 | 1994-09-15 | Hit Hillesheim Innovations Und | Heatable line for a flow medium |
DE4426188A1 (en) * | 1994-07-23 | 1996-01-25 | Mekra Rangau Plastics | Outside mirrors for motor vehicles |
CN113635534A (en) * | 2021-08-10 | 2021-11-12 | 芜湖佳宏新材料股份有限公司 | Process method for reducing contact resistance of conductive polymer and metal conductor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB828334A (en) * | 1956-10-30 | 1960-02-17 | British Insulated Callenders | Improvements in or relating to electrically conductive non-metallic materials |
US3861029A (en) * | 1972-09-08 | 1975-01-21 | Raychem Corp | Method of making heater cable |
JPS5530669B2 (en) * | 1974-03-29 | 1980-08-12 | ||
JPS5432173B2 (en) * | 1974-03-29 | 1979-10-12 | ||
US4177376A (en) * | 1974-09-27 | 1979-12-04 | Raychem Corporation | Layered self-regulating heating article |
CA1100561A (en) * | 1975-12-08 | 1981-05-05 | Stephen H. Diaz | Apertured deformable laminar heating elements |
-
1977
- 1977-12-07 GB GB26479/80A patent/GB1600257A/en not_active Expired
- 1977-12-07 GB GB50916/77A patent/GB1600256A/en not_active Expired
- 1977-12-09 AU AU31394/77A patent/AU515034B2/en not_active Expired
- 1977-12-09 FR FR7737164A patent/FR2392572A1/en active Granted
- 1977-12-10 DE DE19772755077 patent/DE2755077A1/en active Granted
- 1977-12-12 BE BE183389A patent/BE861776A/en not_active IP Right Cessation
- 1977-12-12 CA CA292,832A patent/CA1106890A/en not_active Expired
- 1977-12-12 NO NO774258A patent/NO147735C/en unknown
- 1977-12-13 NL NL7713800A patent/NL185545C/en not_active IP Right Cessation
- 1977-12-13 JP JP52149792A patent/JPS6057192B2/en not_active Expired
- 1977-12-13 SE SE7714126A patent/SE434587B/en not_active IP Right Cessation
-
1983
- 1983-07-19 SE SE8304042A patent/SE447781B/en not_active IP Right Cessation
-
1985
- 1985-08-09 CA CA000488467A patent/CA1206507B/en not_active Expired
- 1985-10-28 SE SE8505088A patent/SE8505088D0/en not_active Application Discontinuation
-
1989
- 1989-05-22 JP JP1128617A patent/JPH0256887A/en active Granted
- 1989-05-22 JP JP1128616A patent/JPH0256886A/en active Granted
-
1990
- 1990-10-23 JP JP2286933A patent/JPH03257783A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
CA1106890A (en) | 1981-08-11 |
AU515034B2 (en) | 1981-03-12 |
DE2755077C2 (en) | 1987-06-11 |
NL7713800A (en) | 1978-06-15 |
JPH0559557B2 (en) | 1993-08-31 |
JPH0256886A (en) | 1990-02-26 |
JPH0256887A (en) | 1990-02-26 |
NL185545C (en) | 1995-01-16 |
NL185545B (en) | 1989-12-01 |
FR2392572B1 (en) | 1984-03-30 |
DE2755077A1 (en) | 1978-06-29 |
JPH0562439B2 (en) | 1993-09-08 |
JPH03257783A (en) | 1991-11-18 |
FR2392572A1 (en) | 1978-12-22 |
NO147735C (en) | 1983-06-01 |
NO147735B (en) | 1983-02-21 |
SE7714126L (en) | 1978-06-14 |
BE861776A (en) | 1978-06-12 |
SE447781B (en) | 1986-12-08 |
SE8304042L (en) | 1983-07-19 |
AU3139477A (en) | 1979-06-14 |
NO774258L (en) | 1978-06-14 |
SE8505088L (en) | 1985-10-28 |
GB1600257A (en) | 1981-10-14 |
SE434587B (en) | 1984-07-30 |
SE8505088D0 (en) | 1985-10-28 |
GB1600256A (en) | 1981-10-14 |
SE8304042D0 (en) | 1983-07-19 |
JPS6057192B2 (en) | 1985-12-13 |
CA1206507B (en) | 1986-06-24 |
JPS5395298A (en) | 1978-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4334351A (en) | Novel PTC devices and their preparation | |
EP0338552B1 (en) | Flexible, elongated positive temperature coefficient heating assembly and method | |
US4400614A (en) | PTC Devices and their preparation | |
CA1136846A (en) | Electrically conductive composition, process for making an article using same | |
US4200973A (en) | Method of making self-temperature regulating electrical heating cable | |
JPH053120B2 (en) | ||
JPS6250505B2 (en) | ||
US4876440A (en) | Electrical devices comprising conductive polymer compositions | |
JPH0151867B2 (en) | ||
NL8103034A (en) | HEATING CABLE FOR USE IN AN ELECTRIC BLANKET. | |
US4367168A (en) | Electrically conductive composition, process for making an article using same | |
US4318881A (en) | Method for annealing PTC compositions | |
EP0040537B1 (en) | Ptc conductive polymer compositions and devices comprising them and a method of making them | |
US5057673A (en) | Self-current-limiting devices and method of making same | |
US4327480A (en) | Electrically conductive composition, process for making an article using same | |
US4764664A (en) | Electrical devices comprising conductive polymer compositions | |
JPS59226493A (en) | Self-temperature control heater | |
GB2075992A (en) | PTC Conductive Polymers and Devices Comprising Them | |
JPS6230793Y2 (en) | ||
JPH0359986A (en) | Heating body with positive resistance temperature coefficient | |
JPS61135087A (en) | Temperature self controlled heater | |
JPS61195577A (en) | Heating wire | |
JPS58212089A (en) | Self-temperature control heater | |
JPH0421997B2 (en) | ||
JPS61239583A (en) | heat sensitive wire |