JPH05311337A - High ductility austenite-ferrite duplex heat resistant steel and its manufacture - Google Patents
High ductility austenite-ferrite duplex heat resistant steel and its manufactureInfo
- Publication number
- JPH05311337A JPH05311337A JP11611792A JP11611792A JPH05311337A JP H05311337 A JPH05311337 A JP H05311337A JP 11611792 A JP11611792 A JP 11611792A JP 11611792 A JP11611792 A JP 11611792A JP H05311337 A JPH05311337 A JP H05311337A
- Authority
- JP
- Japan
- Prior art keywords
- less
- resistant steel
- austenite
- temperature range
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 30
- 239000010959 steel Substances 0.000 title claims abstract description 30
- 229910000859 α-Fe Inorganic materials 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 8
- 239000000463 material Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000005491 wire drawing Methods 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910001566 austenite Inorganic materials 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 7
- 238000003466 welding Methods 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、伸線加工の可能な溶接
用線材として用いる高延性オーステナイト−フェライト
2相耐熱鋼およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high ductility austenitic-ferrite dual phase heat resistant steel used as a wire rod for welding which can be drawn and a method for producing the same.
【0002】[0002]
【従来の技術】ASTM規格に記載されている耐熱鋼H
Iに用いる溶接材料としては、母材と同等成分の線材が
用いられる。すなわち、この線材の成分組成は、ステン
レス鋼便覧 III 編 6.2.1 に記載されたところを転記
すると、下記の表1に示す通りである。2. Description of the Related Art Heat-resistant steel H described in ASTM standard
As the welding material used for I, a wire having the same composition as the base material is used. That is, the composition of the composition of this wire rod is as shown in Table 1 below when transcribed from the description in 6.2.1 of Stainless Steel Handbook III.
【0003】[0003]
【表1】 [Table 1]
【0004】この耐熱鋼HIは、高い炭素含有量と2相
組織をもつために、熱間加工性;例えば、熱間鍛造, 熱
間圧延いずれの場合も溶接用線材となるまでの歩留りの
低下が著しかった。また、伸線工程においても熱間加工
時に生じた微細な割れが残って、品質低下や歩留り低下
を招いていた。一方、この耐熱鋳鋼HIを線材に近い比
較的細い径のロッドに鋳造し、熱間加工を施すことなく
そのまま冷間圧延または伸線加工によって線材に加工す
る試みも行われているが、C含有量が高く極めて延性に
乏しいため、非常に多くの工程を経なければ所望の線径
が得られず、とくにコスト面で工業的な生産が困難であ
った。Since this heat-resistant steel HI has a high carbon content and a two-phase structure, it has a hot workability; for example, in both hot forging and hot rolling, the yield until it becomes a wire rod for welding decreases. Was remarkable. Further, even in the wire drawing step, fine cracks generated during hot working remain, leading to deterioration in quality and yield. On the other hand, it has been attempted to cast this heat-resistant cast steel HI into a rod having a relatively small diameter close to that of a wire rod, and then subject the rod to cold rolling or wire drawing as it is without hot working. Since the amount is high and the ductility is extremely poor, the desired wire diameter cannot be obtained without going through an extremely large number of steps, and industrial production is particularly difficult in terms of cost.
【0005】[0005]
【発明が解決しようとする課題】以上説明したように、
耐熱鋼HIは、C含有量が高くて極めて延性に乏しいこ
とから、従来は鋳造のままのものが使用されていた。一
方、この耐熱鋼HIを素線ロッドに鋳造し、冷間圧延加
工などを施して溶接用線材として用いる試みがなされて
いるが、上記のように、耐熱鋼HIは、非常に多くの工
程を経なければ、所望の線径が得られないことから、と
くにコスト面で工業的な生産は困難であった。As described above,
Since the heat-resistant steel HI has a high C content and extremely poor ductility, it has been conventionally used as cast. On the other hand, it has been attempted to cast this heat-resistant steel HI into a wire rod and subject it to cold rolling or the like to use as a wire rod for welding. However, as described above, the heat-resistant steel HI has many steps. If it does not pass, the desired wire diameter cannot be obtained, so that industrial production was difficult especially in terms of cost.
【0006】そこで、この発明は、上記の問題を解消し
得る、延性の高い耐熱鋼およびその製造方法について、
提案することを目的とする。Therefore, the present invention relates to a heat-resistant steel having high ductility and a method for producing the same, which can solve the above problems.
It is intended to be a suggestion.
【0007】[0007]
【課題を解決するための手段】発明者らは、耐熱鋼HI
が延性に乏しい原因について調査したところ、まず伸線
工程での線引き材の破壊はフェライト粒界に沿って起こ
り、このフェライト粒界には、Cr炭化物が多数析出して
いること、従って、このCr炭化物の析出を抑制すること
が耐熱鋼HIの延性改善に有効であること、を見出し、
本発明を完成するに到った。The inventors have found that the heat-resistant steel HI
When the cause of poor ductility was investigated, firstly, the fracture of the drawn material in the wire drawing process occurred along the ferrite grain boundary, and in this ferrite grain boundary, a large number of Cr carbides were precipitated, and therefore this Cr It was found that suppressing the precipitation of carbides is effective in improving the ductility of the heat resistant steel HI,
The present invention has been completed.
【0008】すなわち、本発明は、C:0.10〜0.50wt
%、Si:0.1 〜2.0 wt%、Mn:0.1 〜2.0 wt%、Cr:20
〜35wt%、Ni:10〜20wt%、B:0.0003〜0.0100wt%、
P:0.03wt%以下、S:0.01wt%以下、N:0.01〜0.20
wt%およびO:0.0080wt%以下を含有し、残部Feおよび
不可避的不純物からなり、フェライト量が3〜15%であ
る、高延性オーステナイト−フェライト2相耐熱鋼を提
案する。That is, according to the present invention, C: 0.10 to 0.50 wt.
%, Si: 0.1 to 2.0 wt%, Mn: 0.1 to 2.0 wt%, Cr: 20
~ 35wt%, Ni: 10-20wt%, B: 0.0003-0.0100wt%,
P: 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20
A high ductility austenite-ferrite dual phase heat resistant steel is proposed which contains wt% and O: 0.0080 wt% or less, consists of the balance Fe and unavoidable impurities, and has a ferrite amount of 3 to 15%.
【0009】さらに、本発明は、上記の成分において、
Mo:0.01〜0.5 wt%を含有する成分組成、あるいは、こ
のMoに代えて、またはこのMoとともに0.01〜0.5 wt%の
Cuを含有する成分組成になる、高延性オーステナイト−
フェライト2相耐熱鋼を提案する。Further, the present invention provides the above components,
Mo: 0.01-0.5 wt% component composition, or 0.01-0.5 wt% of Mo instead of or together with Mo
Highly ductile austenite with a composition containing Cu
We propose ferritic duplex heat resistant steel.
【0010】また、本発明の耐熱鋼は、上記した各成分
組成になる鋼素材をを鋳造し、その後1150〜1400℃の温
度域に加熱し、次いで800 ℃以上1150℃未満の温度域に
5秒間以上保持したのち、800 ℃以上の温度域から急速
冷却することによって、有利に製造し得る。The heat-resistant steel of the present invention is produced by casting a steel material having the above-mentioned composition of each component, heating it to a temperature range of 1150 to 1400 ° C, and then heating it to a temperature range of 800 ° C to less than 1150 ° C. It can be advantageously produced by holding it for at least 2 seconds and then rapidly cooling it from a temperature range of 800 ° C. or higher.
【0011】[0011]
【作用】次に本発明の各成分の限定理由について説明す
る。 C:0.10〜0.50wt% Cは、強度を確保するために0.10wt%以上の含有が必要
であるが、0.50wt%をこえる含有は粒界腐食に対する感
受性が強くなるため、0.50wt%を上限とする。Next, the reasons for limiting each component of the present invention will be described. C: 0.10 to 0.50 wt% C must contain 0.10 wt% or more to secure the strength, but if it exceeds 0.50 wt%, the susceptibility to intergranular corrosion becomes strong, so 0.50 wt% is the upper limit. And
【0012】Si:0.1 〜2.0 wt% Siは、溶接性および鋳造性のほか、耐熱性や耐食性をも
向上させる成分であり、0.1 wt%以上の含有が必要であ
る。一方、2.0 wt%をこえる含有は、もろいσ相の析出
を招くところから、2.0 wt%以下とする。Si: 0.1 to 2.0 wt% Si is a component that improves not only weldability and castability but also heat resistance and corrosion resistance, and it is necessary to contain 0.1 wt% or more. On the other hand, the content of more than 2.0 wt% causes precipitation of brittle σ phase, so it is set to 2.0 wt% or less.
【0013】Mn:0.1 〜2.0 wt% Mnは、耐熱性を向上するために0.1 wt%以上の含有が必
要であるが、2.0 wt%をこえる含有は、脆性の悪化を招
くので、0.1 〜2.0 wt%の範囲とした。Mn: 0.1 to 2.0 wt% Mn needs to be contained in an amount of 0.1 wt% or more in order to improve heat resistance, but if it exceeds 2.0 wt%, brittleness is deteriorated. The range was wt%.
【0014】Cr:20〜35wt% Crは、高温強さおよび耐食性を向上させる成分であり、
20wt%以上の含有が必要となるが、35wt%をこえると脆
化を招くため、20〜35wt%の範囲とする。Cr: 20-35 wt% Cr is a component for improving high temperature strength and corrosion resistance,
It is necessary to contain 20 wt% or more, but if it exceeds 35 wt%, embrittlement will occur, so the range is 20 to 35 wt%.
【0015】Ni:10〜20wt% Niは、オーステナイト形成成分であり、耐食性の改善お
よび靱性の向上のためには10wt%以上の含有が必要であ
るが、20wt%をこえると、強度が低下し粒界腐食傾向が
強くなるため、10〜20wt%の範囲とする。Ni: 10 to 20 wt% Ni is an austenite-forming component and must be contained in an amount of 10 wt% or more in order to improve corrosion resistance and toughness, but if it exceeds 20 wt%, the strength decreases. The intergranular corrosion tendency becomes stronger, so the range is 10 to 20 wt%.
【0016】Mo:0.01〜0.5 wt% Moは、溶接性を向上させると共に耐孔食性を向上させる
成分であり、0.01wt%未満ではこうした効果が得られな
いし、一方で 0.5wt%を超えるとオーステナイト相を不
安定にすることから、0.01〜0.5 wt%の範囲とする。Mo: 0.01 to 0.5 wt% Mo is a component that improves weldability and pitting corrosion resistance. If less than 0.01 wt%, such an effect cannot be obtained. On the other hand, if it exceeds 0.5 wt%, austenite is used. The range is 0.01 to 0.5 wt% because it makes the phase unstable.
【0017】Cu:0.01〜0.5 wt% Cuは、耐食性を向上させる成分であり、0.01wt%の添加
ではその効果が得られず、一方 0.5wt%を超えて含有さ
せると高温割れの原因になるから、0.01〜0.5wt%の範
囲とする。Cu: 0.01 to 0.5 wt% Cu is a component that improves the corrosion resistance. Addition of 0.01 wt% does not provide the effect, while Cu content exceeding 0.5 wt% causes hot cracking. From 0.01 to 0.5 wt%.
【0018】B:0.0003〜0.0100wt% Bは、炭化物の粒界析出を抑制するため、0.0003wt%以
上の含有が必要である。一方、0.0100wt%をこえる含有
は、(Fe,Cr)2 Bを形成して靱性の劣化を招いて溶接割
れが発生しやすいため、0.0100wt%以下とする。B: 0.0003 to 0.0100 wt% B is required to be contained in an amount of 0.0003 wt% or more in order to suppress grain boundary precipitation of carbides. On the other hand, if the content exceeds 0.0100 wt%, (Fe, Cr) 2 B is formed, the toughness is deteriorated, and weld cracking is likely to occur, so the content is made 0.0100 wt% or less.
【0019】P:0.03wt%以下 Pは、不純物となって粒界を脆化するため、0.03wt%以
下に抑制する。 S:0.010 wt%以下 Sは、粒界を脆化するため、0.010 wt%以下に抑制す
る。 N:0.01〜0.20wt% Nは、結晶粒を微細化し、靱性向上のため0.01wt%以上
は必要であるが、0.20wt%をこえると延性を劣化するた
め、0.20wt%以下に制限する。 O:0.0080wt%以下 Oは、凝固時に非金属介在物として鋼中に残留して清浄
度を害し、その分布状態によっては変形能を劣化させ、
赤熱脆性の原因になる。また、耐食性, 表面状態も劣化
するため、0.0080wt%以下に抑制する。P: 0.03 wt% or less P acts as an impurity and embrittles the grain boundaries, so it is suppressed to 0.03 wt% or less. S: 0.010 wt% or less S embrittles the grain boundary, and therefore is suppressed to 0.010 wt% or less. N: 0.01 to 0.20 wt% N needs to be 0.01 wt% or more to refine the crystal grains and improve toughness, but if it exceeds 0.20 wt%, ductility deteriorates, so N is limited to 0.20 wt% or less. O: 0.0080 wt% or less O remains in the steel as a non-metallic inclusion during solidification, impairs cleanliness, and deteriorates deformability depending on its distribution state.
It causes red heat brittleness. In addition, corrosion resistance and surface condition deteriorate, so 0.0080wt% or less is suppressed.
【0020】フェライト量:3〜15% オーステナイト−フェライト相におけるフェライト相の
比率を15%以下に制限することによって、オーステナイ
ト領域を増大してCを固溶させ、炭化物の析出を抑制す
るため、フェライト量の上限を15%とした。一方、下限
は、溶接時のビード割れを抑制する必要上、3%とし
た。Ferrite content: 3 to 15% By limiting the ratio of the ferrite phase in the austenite-ferrite phase to 15% or less, the austenite region is increased and C is solid-dissolved to suppress the precipitation of carbides. The upper limit of the amount was set to 15%. On the other hand, the lower limit is 3% because it is necessary to suppress bead cracking during welding.
【0021】また、上記に従う成分組成の鋼は、鋳造
後、1150〜1400℃の温度域に加熱し、次いで800 ℃以上
1150℃未満の温度域に5秒間以上保持したのち、800 ℃
以上の温度域から急速冷却する。すなわち、この温度が
1150℃未満の場合、析出した炭化物イドのオーステナイ
トマトリックスへの固溶吸収が不十分になり、伸線加工
時に充分な延性が得られない。一方、1400℃以上の温度
に加熱した場合、熱処理時、材料自体の強度, 延性が急
激に低下し、材料に破壊が起こる危険がある。Further, the steel having the chemical composition according to the above is cast and then heated in the temperature range of 1150 to 1400 ° C.
After keeping the temperature range below 1150 ℃ for 5 seconds or longer, 800 ℃
Rapid cooling from the above temperature range. That is, this temperature
If the temperature is lower than 1150 ° C, the solid solution absorption of the precipitated carbide id in the austenite matrix becomes insufficient, and sufficient ductility cannot be obtained during wire drawing. On the other hand, when heated to a temperature of 1400 ° C or higher, during the heat treatment, the strength and ductility of the material itself is drastically reduced, and there is a risk that the material will be destroyed.
【0022】次いで、上記固溶化熱処理によって、Cを
オーステナイトマトリックスに十分に固溶させた後、C
が炭化物として析出するのを防止し、かつオーステナイ
ト相を増大させるために、800 ℃以上1150℃未満の温度
域に5秒間以上保持する必要がある。この処理によっ
て、オーステナイト相中にCを吸収させることができ
る。なお、保持時間は、炭化物の析出を起こさせず、か
つフェライト相を減少させ、オーステナイト相を増大さ
せる温度に保持するために、30秒間以下とすることが好
ましい。Next, C is sufficiently dissolved in the austenite matrix by the solution heat treatment described above, and then C
In order to prevent the precipitation of carbon as a carbide and to increase the austenite phase, it is necessary to maintain the temperature range of 800 ° C or higher and lower than 1150 ° C for 5 seconds or longer. By this treatment, C can be absorbed in the austenite phase. The holding time is preferably 30 seconds or less in order to keep the temperature at which the precipitation of carbide does not occur, the ferrite phase is reduced, and the austenite phase is increased.
【0023】さらに、以上の熱処理を施したのち放冷す
ると、Cの析出が容易に起きるため、熱処理後は 800℃
以上の温度域から急速冷却する必要がある。ここで、冷
却速度は、30℃/秒以上とすることが好ましい。Further, if the above heat treatment is performed and then allowed to cool, precipitation of C easily occurs.
It is necessary to cool rapidly from the above temperature range. Here, the cooling rate is preferably 30 ° C./second or more.
【0024】[0024]
【実施例】表2に示す成分組成になる溶鋼500 kgf を水
平型連続鋳造装置にて、10mmφの線材に鋳造した。次い
で、表3に示す各熱処理を施したのち、各線材の絞り値
を測定した。その結果を、表3に併記する。[Example] 500 kgf of molten steel having the composition shown in Table 2 was cast into a wire rod having a diameter of 10 mm by a horizontal continuous casting machine. Then, after each heat treatment shown in Table 3, the aperture value of each wire was measured. The results are also shown in Table 3.
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【表3】 [Table 3]
【0027】[0027]
【発明の効果】本発明によれば、従来は絞り値が40%に
も満たなかった耐熱鋼の延性を格段に向上することがで
き、とくに通常の伸線を実現するのに必要な絞り値:50
%以上が得られるため、優れた特性の溶接用線材を安価
に得ることが可能である。EFFECTS OF THE INVENTION According to the present invention, the ductility of heat-resistant steel, which has hitherto been reduced to less than 40%, can be remarkably improved. In particular, the aperture value required to realize ordinary wire drawing. : 50
%, It is possible to obtain a welding wire rod having excellent characteristics at low cost.
Claims (6)
wt%、 Mn:0.1 〜2.0 wt%、 Cr:20〜35wt%、 Ni:10〜20wt%、 Mo:0.01〜0.5 wt%、 B:0.0003〜0.0100wt%、 P:0.03wt%以下、 S:0.01wt%以下、 N:0.01〜0.20wt%およびO:0.
0080wt%以下を含有し、残部Feおよび不可避的不純物か
らなり、フェライト量が3〜15%である、高延性オース
テナイト−フェライト2相耐熱鋼。1. C: 0.10 to 0.50 wt%, Si: 0.1 to 2.0
wt%, Mn: 0.1 to 2.0 wt%, Cr: 20 to 35 wt%, Ni: 10 to 20 wt%, Mo: 0.01 to 0.5 wt%, B: 0.0003 to 0.0100 wt%, P: 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20 wt% and O: 0.
A highly ductile austenitic-ferrite dual-phase heat-resistant steel containing less than or equal to 8 wt%, consisting of the balance Fe and unavoidable impurities, and having a ferrite amount of 3 to 15%.
wt%、 Mn:0.1 〜2.0 wt%、 Cr:20〜35wt%、 Ni:10〜20wt%、 B:0.0003〜0.0100wt%、 Cu:0.01〜0.5 wt%、 P:0.03wt%以下、 S:0.01wt%以下、 N:0.01〜0.20wt%およびO:0.
0080wt%以下を含有し、残部Feおよび不可避的不純物か
らなり、フェライト量が3〜15%である、高延性オース
テナイト−フェライト2相耐熱鋼。2. C: 0.10 to 0.50 wt%, Si: 0.1 to 2.0
wt%, Mn: 0.1 to 2.0 wt%, Cr: 20 to 35 wt%, Ni: 10 to 20 wt%, B: 0.0003 to 0.0100 wt%, Cu: 0.01 to 0.5 wt%, P: 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20 wt% and O: 0.
A highly ductile austenitic-ferrite dual-phase heat-resistant steel containing less than or equal to 8 wt%, consisting of the balance Fe and unavoidable impurities, and having a ferrite amount of 3 to 15%.
wt%、 Mn:0.1 〜2.0 wt%、 Cr:20〜35wt%、 Ni:10〜20wt%、 Mo:0.01〜0.5 wt%、 B:0.0003〜0.0100wt%、 Cu:0.01〜0.5 wt%、 P:0.03wt%以下、 S:0.01wt%以下、 N:0.01〜0.20wt%およびO:0.0080wt%以下を含有
し、残部Feおよび不可避的不純物からなり、フェライト
量が3〜15%である、高延性オーステナイト−フェライ
ト2相耐熱鋼。3. C: 0.10 to 0.50 wt%, Si: 0.1 to 2.0
wt%, Mn: 0.1 to 2.0 wt%, Cr: 20 to 35 wt%, Ni: 10 to 20 wt%, Mo: 0.01 to 0.5 wt%, B: 0.0003 to 0.0100 wt%, Cu: 0.01 to 0.5 wt%, P : 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20 wt% and O: 0.0080 wt% or less, the balance Fe and inevitable impurities, and the amount of ferrite is 3 to 15%. High ductility austenite-ferrite dual phase heat resistant steel.
wt%、 Mn:0.1 〜2.0 wt%、 Cr:20〜35wt%、 Ni:10〜20wt%、 Mo:0.01〜0.5 wt%、 B:0.0003〜0.0100wt%、 P:0.03wt%以下、 S:0.01wt%以下、 N:0.01〜0.20wt%およびO:0.
0080wt%以下を含有し、残部Feおよび不可避的不純物か
らなる鋼素材を鋳造し、その後1150〜1400℃の温度域に
加熱し、次いで 800℃以上1150℃未満の温度域に5秒間
以上保持したのち、800 ℃以上の温度域から急速冷却す
ることを特徴とする、高延性オーステナイト−フェライ
ト2相耐熱鋼の製造方法。4. C: 0.10 to 0.50 wt%, Si: 0.1 to 2.0
wt%, Mn: 0.1 to 2.0 wt%, Cr: 20 to 35 wt%, Ni: 10 to 20 wt%, Mo: 0.01 to 0.5 wt%, B: 0.0003 to 0.0100 wt%, P: 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20 wt% and O: 0.
A steel material containing less than WTwt% and the balance Fe and unavoidable impurities is cast, then heated to a temperature range of 1150 to 1400 ° C, and then kept at a temperature range of 800 ° C to less than 1150 ° C for 5 seconds or more. A method for producing a high ductility austenite-ferrite dual phase heat resistant steel, characterized by rapidly cooling from a temperature range of 800 ° C or higher.
wt%、 Mn:0.1 〜2.0 wt%、 Cr:20〜35wt%、 Ni:10〜20wt%、 B:0.0003〜0.0100wt%、 Cu:0.01〜0.5 wt%、 P:0.03wt%以下、 S:0.01wt%以下、 N:0.01〜0.20wt%およびO:0.
0080wt%以下を含有し、残部Feおよび不可避的不純物か
らなる鋼素材を鋳造し、その後1150〜1400℃の温度域に
加熱し、次いで 800℃以上1150℃未満の温度域に5秒間
以上保持したのち、800 ℃以上の温度域から急速冷却す
ることを特徴とする、高延性オーステナイト−フェライ
ト2相耐熱鋼の製造方法。5. C: 0.10 to 0.50 wt%, Si: 0.1 to 2.0
wt%, Mn: 0.1 to 2.0 wt%, Cr: 20 to 35 wt%, Ni: 10 to 20 wt%, B: 0.0003 to 0.0100 wt%, Cu: 0.01 to 0.5 wt%, P: 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20 wt% and O: 0.
A steel material containing less than WTwt% and the balance Fe and unavoidable impurities is cast, then heated to a temperature range of 1150 to 1400 ° C, and then kept at a temperature range of 800 ° C to less than 1150 ° C for 5 seconds or more A method for producing a high ductility austenite-ferrite dual phase heat resistant steel, characterized by rapidly cooling from a temperature range of 800 ° C or higher.
wt%、 Mn:0.1 〜2.0 wt%、 Cr:20〜35wt%、 Ni:10〜20wt%、 Mo:0.01〜0.5 wt%、 B:0.0003〜0.0100wt%、 Cu:0.01〜0.5 wt%、 P:0.03wt%以下、 S:0.01wt%以下、 N:0.01〜0.20wt%およびO:0.0080wt%以下を含有
し、残部Feおよび不可避的不純物からなる鋼素材を鋳造
し、その後1150〜1400℃の温度域に加熱し、次いで 800
℃以上1150℃未満の温度域に5秒間以上保持したのち、
800 ℃以上の温度域から急速冷却することを特徴とす
る、高延性オーステナイト−フェライト2相耐熱鋼の製
造方法。6. C: 0.10 to 0.50 wt%, Si: 0.1 to 2.0
wt%, Mn: 0.1 to 2.0 wt%, Cr: 20 to 35 wt%, Ni: 10 to 20 wt%, Mo: 0.01 to 0.5 wt%, B: 0.0003 to 0.0100 wt%, Cu: 0.01 to 0.5 wt%, P : 0.03 wt% or less, S: 0.01 wt% or less, N: 0.01 to 0.20 wt% and O: 0.0080 wt% or less, and cast a steel material consisting of the balance Fe and inevitable impurities, and then 1150 to 1400 ° C. To a temperature range of 800 and then 800
After keeping the temperature range above ℃ and below 1150 ℃ for 5 seconds or more,
A method for producing a high ductility austenite-ferrite dual phase heat resistant steel, which comprises rapidly cooling from a temperature range of 800 ° C or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11611792A JP2915691B2 (en) | 1992-05-08 | 1992-05-08 | High ductility austenitic-ferrite dual phase heat resistant steel and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11611792A JP2915691B2 (en) | 1992-05-08 | 1992-05-08 | High ductility austenitic-ferrite dual phase heat resistant steel and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05311337A true JPH05311337A (en) | 1993-11-22 |
JP2915691B2 JP2915691B2 (en) | 1999-07-05 |
Family
ID=14679116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11611792A Expired - Fee Related JP2915691B2 (en) | 1992-05-08 | 1992-05-08 | High ductility austenitic-ferrite dual phase heat resistant steel and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2915691B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012132679A1 (en) * | 2011-03-31 | 2012-10-04 | 株式会社クボタ | Cast austenitic stainless steel |
-
1992
- 1992-05-08 JP JP11611792A patent/JP2915691B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012132679A1 (en) * | 2011-03-31 | 2012-10-04 | 株式会社クボタ | Cast austenitic stainless steel |
JP5863770B2 (en) * | 2011-03-31 | 2016-02-17 | 株式会社クボタ | Austenitic cast stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JP2915691B2 (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3617337A1 (en) | HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR | |
CN114423880B (en) | High-strength ultra-thick steel material having excellent low-temperature impact toughness and method for producing same | |
JP5659758B2 (en) | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability | |
CN114318159B (en) | A 345MPa container steel plate with hydrogen-induced cracking resistance and its preparation method | |
JP2020504236A (en) | High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same | |
CN113412337A (en) | High Mn steel and method for producing same | |
JPH06306543A (en) | High strength PC bar wire excellent in delayed fracture resistance and its manufacturing method | |
JP3483493B2 (en) | Cast steel for pressure vessel and method of manufacturing pressure vessel using the same | |
JP4507669B2 (en) | Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness | |
JP6684353B2 (en) | Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same | |
JPH09249940A (en) | High-strength steel material excellent in sulfide stress cracking resistance and method for producing the same | |
JP4926447B2 (en) | Manufacturing method of high strength steel with excellent weld crack resistance | |
JPH06128631A (en) | Method for producing high manganese ultra high strength steel with excellent low temperature toughness | |
JP3077567B2 (en) | Method of manufacturing steel for low-temperature rebar | |
JP2007191785A (en) | Method for producing high-tensile steel material with excellent weld crack resistance | |
JP4123597B2 (en) | Manufacturing method of steel with excellent strength and toughness | |
JP5653269B2 (en) | Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them. | |
JP5194571B2 (en) | Method for producing high-strength steel excellent in weld crack sensitivity with tensile strength of 570 N / mm2 or higher | |
JPH05195156A (en) | High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production | |
JPH07278672A (en) | Manufacturing method of high strength bolts with excellent delayed fracture resistance | |
JPH0827517A (en) | Heat treatment method for 9% Ni steel with excellent yield strength and toughness | |
JP2915691B2 (en) | High ductility austenitic-ferrite dual phase heat resistant steel and method for producing the same | |
JPH08120345A (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
JP3250263B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP2007138203A (en) | High tensile steel plate excellent in weldability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090416 |
|
LAPS | Cancellation because of no payment of annual fees |