[go: up one dir, main page]

JPH0531100B2 - - Google Patents

Info

Publication number
JPH0531100B2
JPH0531100B2 JP20976085A JP20976085A JPH0531100B2 JP H0531100 B2 JPH0531100 B2 JP H0531100B2 JP 20976085 A JP20976085 A JP 20976085A JP 20976085 A JP20976085 A JP 20976085A JP H0531100 B2 JPH0531100 B2 JP H0531100B2
Authority
JP
Japan
Prior art keywords
light
per unit
unit area
equation
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20976085A
Other languages
Japanese (ja)
Other versions
JPS6269147A (en
Inventor
Yoshisuke Nishinomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIBEI DENSHI KK
Original Assignee
NICHIBEI DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIBEI DENSHI KK filed Critical NICHIBEI DENSHI KK
Priority to JP20976085A priority Critical patent/JPS6269147A/en
Publication of JPS6269147A publication Critical patent/JPS6269147A/en
Publication of JPH0531100B2 publication Critical patent/JPH0531100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/538Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Optical Distance (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は空港や港湾あるいは高速道路等に於い
て即座にかつ正確に視程を計測する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for instantly and accurately measuring visibility at airports, ports, expressways, etc.

〈従来の技術及びその問題点〉 従来からの視距離測定法としては、単分散エア
ロゾル(全て同一粒径の微粒子から成る)気体の
理論により霧中を走る光の減光係数σを計算し
Koschmiederの式V=3/σ又は3.9/σによつ
て視距離Vを算出する方法や、目視対象物から来
る光をホトセルで光電変換してアナログ電圧を出
力し、エアロゾルによる散乱光のみを計算し減光
係数σを求め、同じくKoschmiederの式によつ
て視距離Vを算出する方法がある。
<Conventional technology and its problems> The conventional visual distance measurement method calculates the attenuation coefficient σ of light traveling through fog using the theory of monodisperse aerosol gas (consisting of fine particles with the same particle size).
A method of calculating the viewing distance V using Koschmieder's formula V = 3/σ or 3.9/σ, or a method of photoelectrically converting the light coming from the visible object using a photocell and outputting an analog voltage, and calculating only the light scattered by aerosol. There is a method of finding the attenuation coefficient σ and calculating the viewing distance V using the Koschmieder equation.

しかるにこれらの方法は、多分散エアロゾル
(種々の粒径の微粒子から成る)気体の総合的効
果としての減光係数σの算出過程で、粒径分布の
精密測定には成功をしていても多分散モデルの光
に対する反応の数学的解析が非常に困難であると
いう問題点があり、又視距離Vを求める際に物体
の背景から来る光を直接測定する事なく単に無限
遠を見た時の光量で置き換えている為に物体の背
景に比較的近くの森や山がある場合には視距離V
に大きな誤差が出るという問題点があつた。
However, although these methods are successful in precisely measuring the particle size distribution in the process of calculating the extinction coefficient σ, which is the overall effect of polydisperse aerosol gas (consisting of fine particles of various particle sizes), they have many problems. There is a problem in that it is very difficult to mathematically analyze the reaction of the dispersion model to light, and when calculating the viewing distance V, it is difficult to calculate the distance V when the object is simply viewed at infinity without directly measuring the light coming from the background. Because it is replaced by the amount of light, if there is a relatively nearby forest or mountain in the background of the object, the viewing distance V
There was a problem that a large error occurred.

〈問題点を解決する為の手段〉 本発明では上述の諸問題を解決せんとするもの
であり、その要旨は発光部と近似黒体部と照度計
とを具備する被視体と、観測用固体カメラとを用
い、被視体発光部の光放射を0とし近似黒体部の
単位面積あたりの明るさをy1及びその背景光の単
位面積あたりの明るさy2とを測定し、次いで被視
体発光部から光放射を行ないその時の発光部の単
位面積あたりの明るさy3を測定し、又上記照度計
により外来光の単位面積あたりの明るさA(0)
を求め、これらのy1,y2,y3及びA(0)より
個々の物体の視程を計算する方法である。
<Means for Solving the Problems> The present invention attempts to solve the above-mentioned problems, and its gist is to provide a subject having a light-emitting section, an approximate blackbody section, and an illuminance meter, and an object for observation. Using a solid-state camera, the light emission of the light emitting part of the object to be viewed is set to 0, and the brightness per unit area of the approximate blackbody part is measured as y 1 and the brightness per unit area of the background light as y 2 . Light is emitted from the light emitting part of the object, and the brightness per unit area of the light emitting part at that time is measured, and the brightness per unit area of the external light A(0) is measured using the above illuminance meter.
This method calculates the visibility of each object from these y 1 , y 2 , y 3 and A(0).

〈実施例及び作用〉 以下本発明方法を、それを実施する装置を示す
図面を参酌し乍ら詳述する。
<Embodiments and Operations> The method of the present invention will be described in detail below with reference to the drawings showing an apparatus for carrying out the method.

第1図は本発明方法で用いる装置の一例を示す
説明図であり、被視体1と観測用固体カメラ2と
をある距離を隔てゝ対面状に配設している。被視
体1は第2図に示す様に発光部3、近似黒体部4
及び照度計5を具備しており、又固体カメラ2は
第3図に示す様に望遠レンズを内蔵した遮光筒6
を有し、かつマイコン式制御装置7と接続されて
いる。
FIG. 1 is an explanatory diagram showing an example of an apparatus used in the method of the present invention, in which a subject 1 and an observation solid-state camera 2 are disposed facing each other with a certain distance between them. As shown in FIG.
The solid-state camera 2 is equipped with a light-shielding tube 6 having a built-in telephoto lens as shown in FIG.
and is connected to a microcomputer type control device 7.

被視体1の内部構造を第4図に示すが、この様
に光源からの光はレンズによつて平行光線となさ
れ、固体カメラ2へ向つて放射するもので、例え
ば第5図で示す様な固体カメラ2がその受光面に
把えた映像をマイコン式制御装置7へ送り込むの
であり、従つてこの被視体の映像はそのまゝマイ
コン制御装置7内の主記憶装置に格納された画像
と解してもよい。
The internal structure of the object to be viewed 1 is shown in FIG. 4, and as shown in FIG. The solid-state camera 2 sends the image captured on its light-receiving surface to the microcomputer control device 7, and therefore, the image of the object to be viewed is the same as the image stored in the main memory of the microcomputer control device 7. You can understand it.

さて光を微粒子の浮遊する気体(エアロゾル気
体)に入射させると、光は散乱、吸収され入射光
の強度は次第に減衰して行く。入射光が平行光線
の場合この関係はI=Ioe-〓で与えられ、この
式はBouguer(又はLambert−Beer)の法則と呼
ばれている。ここでIoは入射光の初期強度、Iは
光が距離だけ進んだ点の強度、σは微粒子の減
光係数である。
Now, when light is incident on a gas containing floating particles (aerosol gas), the light is scattered and absorbed, and the intensity of the incident light gradually attenuates. When the incident light is a parallel ray, this relationship is given by I=Ioe - 〓, and this equation is called Bouguer's (or Lambert-Beer's) law. Here, Io is the initial intensity of the incident light, I is the intensity at the point where the light has traveled the distance, and σ is the attenuation coefficient of the fine particles.

このBouguerの法則を、地上に於ける任意物体
の観測に適用すると 物体から出た光に対し……B1()=B1(0)
e-〓 物体の背景から来る光に対し……B2()=B2
(0)e-〓 太陽、夜間照明等からの散乱光に対し……B3
()=B3(∞)(1−e-〓) 従つて、物体の位置(=0)でのコントラン
ストC(0)は、 C(0)=B1(0)−B2(0)/B2(0)=B1(0)/
B2(0)−1 物体から距離の位置でのコントラストC()
は C()=
{B1()+B3()}−{B2()+B3()}/B2
()+B3() 但し、B1(0),B2(0)は各々B1(),B2
()の=0に於ける値であり、またB3(∞)
はB3()の=無限大に於ける極限値である。
B3()はdB/d=−σB+Baとなる微分方程
式を積分して得ており、B3(∞)=Ba/σである。
Baは単位長当りの太陽光の混入量、σBは単位長
当りの散乱による減少量である。
When Bouguer's law is applied to the observation of any object on the ground, for the light emitted from the object...B 1 () = B 1 (0)
e - 〓 For the light coming from the background of the object...B 2 () = B 2
(0) e - 〓 Against scattered light from the sun, night lights, etc....B 3
()=B 3 (∞) (1-e - 〓) Therefore, the contrast C(0) at the position of the object (=0) is C(0)=B 1 (0)-B 2 ( 0)/B 2 (0)=B 1 (0)/
B 2 (0)-1 Contrast C() at a distance from the object
is C()=
{B 1 () + B 3 ()} − {B 2 () + B 3 ()} /B 2
()+B 3 () However, B 1 (0) and B 2 (0) are B 1 () and B 2 respectively
() at =0, and B 3 (∞)
is the limit value of B 3 () at = infinity.
B 3 () is obtained by integrating a differential equation such that dB/d=−σB+Ba, and B 3 (∞)=Ba/σ.
Ba is the amount of sunlight mixed in per unit length, and σB is the amount of reduction due to scattering per unit length.

本方式では、近似的に取り扱つているが、より
精密な測定をしたいときは、太陽光のふりそゝぐ
角度に応じて、B3(∞)=Ba/σのB3(∞)が異
なることを指摘しておく。
This method handles it approximately, but if you want to make more precise measurements, B 3 (∞) of B 3 (∞) = Ba / σ can be changed depending on the angle of sunlight. Let me point out something different.

本発明方法では、固体カメラ2内の受光素子又
はカメラフイルタを人の目の分光特性である標準
比視感度特性のものとして、又被視体の発光部3
をマイコン式制御装置7からの指令で点滅自在と
しておき次の測定を行なう。即ち、 被視体発光部の光放射を0(光源減灯)として
測定をする。その結果、近似黒体部(第2図4)
の表面の単位面積あたりの明るさy1と、その背景
光(第5図6)の単位面積当りの明るさy2が得ら
れる。
In the method of the present invention, the light-receiving element or camera filter in the solid-state camera 2 has a standard luminous efficiency characteristic that is the spectral characteristic of the human eye, and the light-emitting part 3 of the subject
The next measurement is performed by making it possible to blink freely by a command from the microcomputer type control device 7. That is, the measurement is performed with the light emission of the object's light emitting section set to 0 (light source dimmed). As a result, the approximate blackbody part (Fig. 2 4)
The brightness per unit area of the surface y 1 and the brightness per unit area of the background light (Fig. 5, 6) y 2 are obtained.

y1=B10)+B30) =0+B30)=B30) y2=B20)+B30)=B20)+y1 ∴y2−y1=B20) 式(1) ここで、固体カメラと被視体の間の距離0
一定で既知であるので、式(1)から、次式を得る。
y 1 = B 1 ( 0 ) + B 3 ( 0 ) = 0 + B 3 ( 0 ) = B 3 ( 0 ) y 2 = B 2 ( 0 ) + B 3 ( 0 ) = B 2 ( 0 ) + y 1 ∴y 2 − y 1 =B 2 ( 0 ) Equation (1) Here, since the distance 0 between the solid-state camera and the object to be viewed is constant and known, the following equation is obtained from Equation (1).

y1=B30)=B3(∞)(1−e-0) y2−y1=B20)=B2(0)e-0 式(2) 但し式(2)では、減光係数σと太陽等散乱光極限
値B3(∞)及び、背景光初期値B2(0)は未知数
のまゝである。
y 1 = B 3 ( 0 ) = B 3 (∞) (1-e -0 ) y 2 - y 1 = B 2 ( 0 ) = B 2 (0) e -0 Formula (2) However, Formula ( In 2), the attenuation coefficient σ, the solar equiscattered light limit value B 3 (∞), and the background light initial value B 2 (0) remain unknown.

次に被視体発光部の光放射を行なつて測定をす
る。
Next, light is emitted from the light emitting section of the object and measurement is performed.

物体光の観測値をy3、光源の初期値を既知とし
B′1(0)とすると、次式を得る。
Let the observed value of the object light be y 3 and the initial value of the light source be known.
If B' 1 (0), then the following equation is obtained.

y3=B′10)+B30)=B′10)+y1 (注)y1は式(1)で得たもの ∴y3−y1=B′10)=B′1(0)e-0 (注)B′1(0)≠B1(0) ∴σ=1/0ogeB′1(0)/y3−y1 式(3) 上記のy3の観測に於いては、エアロゾルによる
光束の拡散が生じているが、この拡散分を画像処
理プログラムで除去してy3を観測する。
y 3 = B′ 1 ( 0 ) + B 3 ( 0 ) = B′ 1 ( 0 ) + y 1 (Note) y 1 is obtained from equation (1) ∴y 3 −y 1 = B′ 1 ( 0 ) =B' 1 (0)e -0 (Note) B' 1 (0)≠B 1 (0) ∴σ=1/ 0 ogeB' 1 (0)/y 3 −y 1 Equation (3) Above During the observation of y 3 , the light flux is diffused due to aerosol, but this diffusion is removed by an image processing program to observe y 3 .

この様にして得られた、エアロゾルの減光係数
σを式(2)に代入すると、 B3(∞)=y1/(1−e-0) B2(0)=(y2−y1)/e-0η 式(4) となつて太陽等の散乱光の極限値B3(∞)及び背
景光初期値B2(0)が求まる。
Substituting the aerosol attenuation coefficient σ obtained in this way into equation (2), B 3 (∞) = y 1 / (1-e -0 ) B 2 (0) = (y 2 - y 1 )/e -0 η Formula (4) The limit value B 3 (∞) of scattered light from the sun, etc. and the initial value B 2 (0) of background light are determined.

さて物体の固有の明るさB1(0)は、その物体
がおかれている場所の現環境、現在時刻下に於け
る明るさA(0)に、その物体の光に対する反射
率(アルベド)ηを乗じたものである。即ち、 B1(0)=ηA(0) 式(5) 但し、その物体が自からも光を放射していると
きには、放射光強度をD(0)として B′1(0)=η′A(0)+D(0) 式(6) η′は、自発光時に於ける外来光に対する反射率
である。(η′0と近似して差しつかえのないと
きがある。) ηは、まさに物体固有のものであるが物体に当
る光の色によつても異なる値をとるのでコンピユ
ータに記憶させる場合に、色毎に記憶させておく
事が重要である。
Now, the intrinsic brightness of an object B 1 (0) is determined by the brightness A (0) in the current environment of the place where the object is placed and at the current time, and the reflectance (albedo) of the object for light. It is multiplied by η. That is, B 1 (0) = ηA (0) Equation (5) However, if the object also emits light from itself, assuming the emitted light intensity is D (0), B' 1 (0) = η' A(0)+D(0) Equation (6) η' is the reflectance to external light during self-emission. (There are times when it can be approximated as η'0.) Although η is unique to the object, it takes a different value depending on the color of the light hitting the object, so when storing it in a computer, It is important to memorize each color.

本発明方法では、外来光強度A(0)は照度計5
によつて実測され、式(5)又は式(6)(但しη′0)
によつてB1(0)又はB′1(0)が計算できる。
In the method of the present invention, the external light intensity A(0) is determined by the illumination meter 5
It was actually measured by Equation (5) or Equation (6) (however, η′0)
B 1 (0) or B′ 1 (0) can be calculated by

式(3)によつてエアロゾル減光係数σ、式(4)によ
つて太陽や夜間照明の光の散乱による観測光軸へ
の混入量の極限値B3(∞)、背景光の初期値B2
(0)が得られ、さらに照度計による観測によつ
て物体の固有の明るさB1(0)が求まる。また自
発光物体の放射強度D(0)は、被視体発光部の
放射強度の切換によつて幾通りかに別けて数式に
代入して行くことが出来る。かくしてコントラス
トC()は C()=B1()+B3()/B2()+B3()
−1式(7) 但し、 B1()=B1(0)e-〓=ηA(0)e-〓又はB′
1
(0)e-〓+η′A(0) B2()=B2(0)e-〓 B3()=B3(∞)(1−e-〓) として、物体から任意の距離に於けるコントラ
ストC()が算出できる。
Equation (3) gives the aerosol extinction coefficient σ, Equation (4) gives the limit value B 3 (∞) of the amount of light that enters the observation optical axis due to scattering of light from the sun and night lighting, and the initial value of the background light. B 2
(0) is obtained, and the intrinsic brightness B 1 (0) of the object is determined by observation using an illuminance meter. Furthermore, the radiation intensity D(0) of the self-luminous object can be substituted into the formula in several different ways by switching the radiation intensity of the light emitting part of the object. Thus, the contrast C() is C()=B 1 ()+B 3 ()/B 2 ()+B 3 ()
-1 formula (7) However, B 1 ()=B 1 (0)e - 〓=ηA(0)e - 〓or B'
1
(0)e - 〓+η′A(0) B 2 ()=B 2 (0)e - 〓 B 3 ()=B 3 (∞) (1−e - 〓), at any distance from the object. The contrast C() can be calculated.

しかも、このC()は色々な反射率ηをもつ
物体の個々について、現実の測定環境下でC()
が如何なる値をとるのかが計算できるし、自発光
体に対してもB1()=B′1(0)×e-〓とおくこと
によつてC()を求められる。(B′1(0)は自発
光体の放射光強度) 〈発明の効果〉 以上述べて来た本発明方法によれば、昼間で太
陽光の強度が大あるいは夜間照明の強度が大の様
な場合でもそれらの光に影響される事なく、しか
も固有の物体毎の視程を正確に求める事が出来る
ものである。
Moreover, this C() is different from C() under the actual measurement environment for individual objects with various reflectances η.
It is possible to calculate the value of C() for a self-luminous body by setting B 1 ()=B′ 1 (0)×e 〓. (B′ 1 (0) is the emitted light intensity of the self-luminous body) <Effects of the invention> According to the method of the present invention described above, the intensity of sunlight during the day or the intensity of illumination at night is high. Even in such cases, it is possible to accurately determine the visibility of each unique object without being affected by those lights.

即ち、従来の方法では、 B2(0)=B3(∞)と仮定、C()=C(0)
e-〓を得ていた。これはKoschmiederの公式と
よばれる周知の公式である。上記に於いて、我々
のたてた式にB2(0)=B3(∞)を代入すると、C
()=C(0)e-〓が得られる事が確認されてい
る。しかし、物体の背景が遠方の天空で満たされ
ているときはB2(0)=B3(∞)として良いが物体
の背景に比較的近くの森、山等が入つている場合
は、背景光の主たるものが、それ等の森や山に当
つた太陽光や夜間照明の散乱光になるので、太陽
光や夜間照明光の強度が大のときにはB2(0)=
B3(∞)と仮定してはいけないのである。その意
味でB2(0)とB3(∞)とを基本的に別個のもの
とした本発明方法は、Koschmioeder氏の明記し
た公式導出条件を正しく理解した装置となる点
で、従来の方式とは全く異なる新しい方式であ
り、従来昼間に於いて又は夜間照明の明るい場所
での測定誤差(人による視程の実測値と装置によ
る実測値との差)が大きく出ていたのである。
That is, in the conventional method, it is assumed that B 2 (0) = B 3 (∞), and C () = C (0).
e - 〓 was obtained. This is a well-known formula called Koschmieder's formula. In the above, if we substitute B 2 (0) = B 3 (∞) into the formula we created, we get C
It has been confirmed that ()=C(0)e - 〓 can be obtained. However, when the background of the object is filled with the distant sky, it is OK to set B 2 (0) = B 3 (∞), but when the background of the object is filled with relatively nearby forests, mountains, etc. The main source of light is the scattered light from sunlight and night lighting that hits those forests and mountains, so when the intensity of sunlight and night lighting is high, B 2 (0) =
We must not assume that B 3 (∞). In this sense, the method of the present invention, which basically separates B 2 (0) and B 3 (∞), is superior to the conventional method in that it is a device that correctly understands the formula derivation conditions specified by Mr. Koschmioeder. This is a new method that is completely different from the previous method, and conventionally there was a large measurement error (difference between the actual visibility value measured by a person and the actual value measured by the device) during the daytime or at night in a brightly lit place.

更に、従来の方法では、Koschmioederの公式
C()=C(0)e-〓に於いてC()/C(0)
=e-〓が0.02又は0.05=e-〓となるを視程と
定義してるが、これは=0に於ける固有コント
ラストC(0)が大なるほど遠方からその物体を
見分け易くなるという実体験に反する定義であ
り、本発明方法では、実測と計算からC(0)と
σとを割り出し、C()そのものを算出してい
る点で、従来相対的であつた視程の定義を絶対化
したと評せられる。このことは反射率の異なる物
体を次々と取換えて、現実の測定環境に置く実験
を計算によつてシミユレートして、物体毎の視程
を算出する画期的なシステムを実現する。この事
は従来の相対的視程の定義からは導出する事が不
可能であつた。
Furthermore, in the conventional method, in Koschmioeder's formula C()=C(0)e - 〓, C()/C(0)
Visibility is defined as = e - 〓 is 0.02 or 0.05 = e - 〓, which is based on actual experience that the larger the intrinsic contrast C(0) at = 0, the easier it is to distinguish the object from a distance. This is a contrary definition, and in the method of the present invention, C(0) and σ are determined from actual measurements and calculations, and C() itself is calculated, which makes the conventionally relative definition of visibility absolute. be praised. This realizes an innovative system that calculates the visibility of each object by replacing objects with different reflectances one after another and simulating experiments in a real measurement environment through calculations. This fact could not be derived from the conventional definition of relative visibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で用いる計測装置の概要説
明図、第2図は第1図に於けるA−A矢視図、第
3図は第1図に於けるB−B矢視図、第4図は被
視体の内部構造説明図、第5図は固体カメラの把
える映像の説明図。 図中、1……被視体、2……固体カメラ、3…
…発光部、4……近似黒体部、5……照度計、6
……遮光筒、7……マイコン式制御装置。
FIG. 1 is a schematic explanatory diagram of the measuring device used in the method of the present invention, FIG. 2 is a view taken along the line A-A in FIG. 1, and FIG. 3 is a view taken along the line B-B in FIG. FIG. 4 is an explanatory diagram of the internal structure of the object to be viewed, and FIG. 5 is an explanatory diagram of the image captured by the solid-state camera. In the figure, 1...object, 2...solid camera, 3...
...Light emitting part, 4...Approximate black body part, 5...Luminance meter, 6
... Light-shielding tube, 7... Microcomputer type control device.

Claims (1)

【特許請求の範囲】[Claims] 1 発光部と近似黒体部と照度計とを具備する被
視体と、観測用固体カメラとを用い、被視体発光
部の光放射を0とし近似黒体部の単位面積あたり
の明るさをy1及びその背景光の単位面積あたりの
明るさy2とを測定し、次いで被視体発光部から光
放射を行ないその時の発光部の単位面積あたりの
明るさy3を測定し、又上記照度計により外来光の
単位面積あたりの明るさA(0)を求め、これら
のy1,y2,y3及びA(0)より個々の物体の視程
を計算する方法。
1. Using a viewing object equipped with a light emitting section, an approximate blackbody section, and an illuminance meter, and a solid-state camera for observation, the light emission of the viewing object's light emitting section is set to 0, and the brightness per unit area of the approximate blackbody section is determined. y 1 and the brightness per unit area of the background light y 2 , then emit light from the light emitting part of the object and measure the brightness per unit area of the light emitting part y 3 at that time, and A method in which the brightness A(0) of external light per unit area is determined using the illuminance meter, and the visibility of each object is calculated from these y 1 , y 2 , y 3 and A(0).
JP20976085A 1985-09-20 1985-09-20 Measuring method for visibility Granted JPS6269147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20976085A JPS6269147A (en) 1985-09-20 1985-09-20 Measuring method for visibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20976085A JPS6269147A (en) 1985-09-20 1985-09-20 Measuring method for visibility

Publications (2)

Publication Number Publication Date
JPS6269147A JPS6269147A (en) 1987-03-30
JPH0531100B2 true JPH0531100B2 (en) 1993-05-11

Family

ID=16578173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20976085A Granted JPS6269147A (en) 1985-09-20 1985-09-20 Measuring method for visibility

Country Status (1)

Country Link
JP (1) JPS6269147A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830681B2 (en) * 1987-11-27 1996-03-27 三菱電機株式会社 Fume transmittance measuring device
JP3823965B2 (en) * 2003-10-17 2006-09-20 三菱電機株式会社 Laser radar equipment
ES2276263T3 (en) * 2004-05-10 2007-06-16 C.R.F. Societa Consortile Per Azioni VISIBILITY MEASUREMENT SYSTEM AND PROCEDURE.
GB0604990D0 (en) * 2006-03-11 2006-04-19 Univ Durham Optical transmissometer and light source and light detector for such optical transmissometer
CN102539386A (en) * 2012-01-09 2012-07-04 北京大学 Forward scattering type visibility meter based on white light, and visibility measurement method thereof
JP7476016B2 (en) * 2020-07-21 2024-04-30 株式会社日立製作所 Visibility assessment device, visibility assessment system, and visibility assessment method

Also Published As

Publication number Publication date
JPS6269147A (en) 1987-03-30

Similar Documents

Publication Publication Date Title
Horvath On the applicability of the Koschmieder visibility formula
Kolláth Measuring and modelling light pollution at the Zselic Starry Sky Park
Tobin et al. Imaging scattered light from the youngest protostars in L1448: signatures of outflows
US11336944B2 (en) Method for controlling a display parameter of a mobile device and computer program product
JPH0531100B2 (en)
Land et al. Waveguide modes and pupil action in the eyes of butterflies
CN103528801B (en) LED lamp type unified glare value optical measuring device
Penczek et al. 65‐1: Distinguished Paper: Photometric and Colorimetric Measurements of Near‐Eye Displays
ES2415774B1 (en) SYSTEM AND METHOD FOR THE MEASUREMENT AND MONITORING OF THE LUMINIC CONTAMINATION OF THE NIGHT SKY
CN104359866B (en) A kind of retro-reflection measurement apparatus
FR2632724A1 (en) METHOD AND DEVICE FOR MEASURING VISIBILITY THROUGH A VARIABLE OPERATING ENVIRONMENT
CN103443600B (en) Photo measure meter equipment
USH1655H (en) Backscatter haze measurement using a distributed light source
Zaytseva Integral and spectral sensitivity assessment of the active-pulse television systems
WO2016082416A1 (en) Retro-reflection measuring device
Presle et al. Visibility in turbid media with colored illumination
Gazzi et al. Distant contrast measurements through fog and thick haze
US2930281A (en) Photometers, more particularly photographic exposure meters
TW200821564A (en) Stray light measuring system and method thereof
Rhoads et al. Infrared counterpart of the gravitational lens 1938+ 66.6
Andriychuk et al. Using cameras with optical converter arrays in photometry
Gazzi et al. A field experiment on contrast reduction law
Boulenguez et al. Blue-light hazard of LEDs: comparison of the photobiological risk groups of fifteen lamps assessed using the uniform spectrum assumption and a new hyperspectral imaging method
KR102533767B1 (en) Surface luminance meter measuring device for light pollution evaluation and calibration method of surface luminance meter
CN113623561B (en) A light source system simulating starry sky background lighting