JPH0530747B2 - - Google Patents
Info
- Publication number
- JPH0530747B2 JPH0530747B2 JP62008829A JP882987A JPH0530747B2 JP H0530747 B2 JPH0530747 B2 JP H0530747B2 JP 62008829 A JP62008829 A JP 62008829A JP 882987 A JP882987 A JP 882987A JP H0530747 B2 JPH0530747 B2 JP H0530747B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- command
- motor
- torque
- secondary magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Motor And Converter Starters (AREA)
- Control Of Ac Motors In General (AREA)
- Elevator Control (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、誘導電動機によつて駆動されるロ
ープ式エレベータの制御装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a rope elevator driven by an induction motor.
エレベータのかごを駆動する電動機に誘導電動
機(以下モータという)を用い、且つ電源にイン
バータを用いてモータの2次磁束とすべり周波数
を制御することによつて、モータの発生トルクを
制御してかごを運転するようにしたものがある。
この場合、モータのトルクリツプルを低減する必
要から通常インバータはPWM制御が行われる。
ところがPWM制御を行うと、PWMのスイツチ
ング周波数近傍でモータの電流高周波成分が増大
し、大きな騒音や振動を伴う。この騒音や振動を
低減する一つの方法として、モータの2次磁束を
負荷に応じて変化させる方法、すなわち負荷が大
きい場合、モータの定格磁束近傍で運転し、負荷
が小さい場合モータの2次磁束を低減して運転す
る方法がある。これはモータの発生トルクが後述
する如く2次磁束とトルク電流の積に比例するの
に対し、モータの騒音や振動は大略2次磁束の大
きさに依存し、トルク電流の大きさにはあまり依
存しないことを利用し、負荷が軽い場合のモータ
の騒音や振動を低減し静粛なエレベータを実現し
ようとするものである。
An induction motor (hereinafter referred to as a motor) is used as the electric motor that drives the elevator car, and an inverter is used as the power source to control the secondary magnetic flux and slip frequency of the motor, thereby controlling the torque generated by the motor. There is something that makes you want to drive.
In this case, the inverter is usually subjected to PWM control because it is necessary to reduce the torque ripple of the motor.
However, when PWM control is performed, the high frequency component of the motor current increases near the PWM switching frequency, resulting in large noise and vibration. One way to reduce this noise and vibration is to change the motor's secondary magnetic flux according to the load. In other words, when the load is large, the motor's secondary magnetic flux is operated near the rated magnetic flux, and when the load is small, the motor's secondary magnetic flux is There are ways to reduce this while driving. This is because the torque generated by a motor is proportional to the product of secondary magnetic flux and torque current, as described later, whereas motor noise and vibration roughly depend on the size of secondary magnetic flux and are not dependent on the size of torque current. The aim is to take advantage of this independence and reduce the noise and vibration of the motor when the load is light, thereby creating a quiet elevator.
今モータの発生トルクをT、1次電流I1の2次
磁束Φ2のベクトル方向の成分(以下励磁電流と
いう)をIM,IMと直交する成分(以下トルク電流
という)をIT、モータの1次巻線、2次巻線間の
相互インダクタンスをM、2次自己インダクタン
スをL2、2次抵抗をR2、すべり角周波数をωSと
し、上記各パラメータの指令値を各パラメータの
右肩に*をつけたもので示すと、これらのパラメ
ータ、T,Φ2,IM,IT,I1,M,L2,R2,ωSの間
には次の関係式が成立する。 Now, the torque generated by the motor is T, the component in the vector direction of the secondary magnetic flux Φ 2 of the primary current I 1 (hereinafter referred to as exciting current) is I M , the component orthogonal to I M (hereinafter referred to as torque current) is I T , The mutual inductance between the primary and secondary windings of the motor is M, the secondary self-inductance is L 2 , the secondary resistance is R 2 , the slip angular frequency is ω S , and the command values of the above parameters are each parameter. The following relational expression is established between these parameters T, Φ 2 , I M , I T , I 1 , M, L 2 , R 2 , and ω S. To establish.
IM=Φ2/M+L2/M・R2d/dtΦ2 ……(1)
ωS=R2・M/L2・Φ2IT ……(2)
T=M/L2Φ2IT ……(3)
I1=√T 2+M 2 ……(4)
従つてモータに所望のトルクTを発生するため
に制御回路は上記関係を満たすように構成され
る。I M =Φ 2 /M+L 2 /M・R 2 d/dtΦ 2 …(1) ω S =R 2・M/L 2・Φ 2 I T …(2) T=M/L 2 Φ 2 I T (3) I 1 =√ T 2 + M 2 (4) Therefore, in order to generate the desired torque T in the motor, the control circuit is configured to satisfy the above relationship.
すなわち
IM *=Φ2 *M+L2/M・R2d/dtΦ2 * ……(5)
IT *=L2・T*/M・Φ2 * ……(6)
I1 *=√T *2+M *2 ……(7)
ωS *=R2T*/Φ2 *2 ……(8)
この関係に基づいて構成された制御回路を第2
図に示す。第2図にて上記した符号は上記したも
のと同一のものを示すが、R,S、Tは三相電源
回路、1はエレベータのかごを駆動するモータ、
2は三相交流電力を直流可変電圧に変換するコン
バータ、Cは平滑コンデンサー、3は直流を可変
周波数の交流に変換するインバータ、4はモータ
1の回転速度を検出するパルスエンコーダ、5は
インバータ制御装置、6はエレベータかごの速度
指令をモータ1の角速度指令(角周波数指令)に
変換されたωr *とパルスエンコーダ4より変換さ
れたモータ1の角速度(角周波数)ωrとの偏差
を増巾し、トルク指令T*を出力する速度調節器
(以下ASRという)、7はトルク指令T*に応じて
モータ騒音とモータトルクの両者を考慮して適切
な2次磁束指令Φ2 *を出力する磁束指令発生器、
8は相互インダクタンス設定器、9は2次回路時
定数設定器、10は微分器、11はトルク指令
T*を2次磁束指令Φ2 *で割る割算器、12は
L2/Mの設定器、13は2次抵抗R2の設定器、
14は2次抵抗R2の設定器13の出力を2次磁
束指令Φ2 *で割り、すべり角周波数指令ωS *を出
力する割算器、15は励磁電流指令IM *とトルク
電流指令IT *から1次電流指令I1 *を演算するベク
トル演算器、ω1 *はすべり角周波数指令ωS *とモ
ータ1の角周波数ωrを加算してインバータ制御
装置5に入力する1次角周波数指令である。 That is, I M * = Φ 2 * M + L 2 / M・R 2 d/dtΦ 2 * ……(5) I T * = L 2・T * /M・Φ 2 * ……(6) I 1 * =√ T *2 + M *2 ...(7) ω S * = R 2 T * /Φ 2 *2 ...(8) The control circuit configured based on this relationship is
As shown in the figure. The above-mentioned symbols in FIG. 2 indicate the same ones as above, except that R, S, and T are three-phase power supply circuits, 1 is a motor that drives the elevator car,
2 is a converter that converts three-phase AC power into DC variable voltage, C is a smoothing capacitor, 3 is an inverter that converts DC to variable frequency AC, 4 is a pulse encoder that detects the rotation speed of motor 1, and 5 is inverter control. A device 6 increases the deviation between ω r * , which is the speed command of the elevator car converted into the angular velocity command (angular frequency command) of the motor 1, and the angular velocity (angular frequency) ω r of the motor 1, which is converted by the pulse encoder 4. The speed regulator (hereinafter referred to as ASR) that outputs the width and torque command T * , 7 outputs an appropriate secondary magnetic flux command Φ 2 * in consideration of both motor noise and motor torque according to the torque command T * . magnetic flux command generator,
8 is a mutual inductance setter, 9 is a secondary circuit time constant setter, 10 is a differentiator, 11 is a torque command
A divider that divides T * by the secondary magnetic flux command Φ 2 * , 12 is
L 2 /M setting device, 13 is secondary resistance R 2 setting device,
14 is a divider that divides the output of the setting device 13 of the secondary resistance R 2 by the secondary magnetic flux command Φ 2 * and outputs the slip angle frequency command ω S * ; 15 is the excitation current command I M * and the torque current command A vector calculator that calculates the primary current command I 1 * from I T * , ω 1 * is the primary current command that adds the slip angular frequency command ω S * and the angular frequency ω r of the motor 1 and inputs it to the inverter control device 5. This is the angular frequency command.
以上の構成において各部の機能は周知であるの
で詳細な説明は省略するが、回路の動作の概略は
次のとおりである。 Since the functions of each part in the above configuration are well known, a detailed explanation will be omitted, but an outline of the operation of the circuit is as follows.
まず、運転開始と共に角周波数指令ωr *が与え
られ、パルスエンコーダ4より得られた回転パル
スを変換して得たモータ1の角周波数ωrとの偏
差をASRで増巾してトルク指令T*を得る。この
トルク指令T*の大きさに対応して、モータ騒音
とモータトルクの両者を考慮して、あらかじめ設
定された関数機能を持つ磁束指令発生器7により
適切な2次磁束指令Φ2 *が出力される。このトル
ク指令T*と2次磁束指令Φ2 *により前記(5)〜(8)式
を満足するように構成された回路を経て1次電流
指令I1 *とすべり角周波数指令ωS *を得る。すべり
角周波数指令ωS *はモータ1の角周波数ωrと加算
されて1次角周波数指令ω1 *を得る。このI1 *と
ω1 *に従つてインバータ制御装置5はモータ1に
交流電流を供給し、モータ1は所望の角周波数指
令ωr *に応答して回転する。尚、通常、トルクの
過度応答を良くするため1次電流ベクトルと2次
磁束ベクトルがなす角度を1次角周波数指令ルー
トに加算するが、本発明とは直接関係がないので
省略する。 First, at the start of operation, an angular frequency command ω r * is given, and the deviation from the angular frequency ω r of the motor 1 obtained by converting the rotation pulse obtained from the pulse encoder 4 is amplified by ASR, and the torque command T Get * . Corresponding to the magnitude of this torque command T * , an appropriate secondary magnetic flux command Φ 2 * is output by the magnetic flux command generator 7, which has a preset function, taking into account both motor noise and motor torque. be done. Using this torque command T * and secondary magnetic flux command Φ 2 * , a primary current command I 1 * and a slip angular frequency command ω S * are generated through a circuit configured to satisfy equations (5) to (8) above. obtain. The slip angular frequency command ω S * is added to the angular frequency ω r of the motor 1 to obtain the primary angular frequency command ω 1 * . In accordance with I 1 * and ω 1 * , inverter control device 5 supplies alternating current to motor 1, and motor 1 rotates in response to desired angular frequency command ω r * . Note that, normally, in order to improve torque transient response, the angle formed by the primary current vector and the secondary magnetic flux vector is added to the primary angular frequency command route, but this is not directly related to the present invention and will therefore be omitted.
第2図の構成でエレベータが起動する場合の2
次磁束の動きについて第3図で説明する。 2 when the elevator starts with the configuration shown in Figure 2
Next, the movement of magnetic flux will be explained with reference to FIG.
運転開始と同時にエレベータのかごとカウンタ
ーウエートによるロープ張力を平衡させるために
必要なトルク指令が発生する。簡単のため、トル
ク指令は一定であるとする。そうすると2次磁束
指令Φ2 *もステツプ状に立ち上がり、これに基づ
いて必要な励磁電流指令IM *を(5)式により与える
必要がある。ところが(5)式の中のdΦ2 */dtは無限大
になるので実際には(5)式を満足するIM *は指令で
きず、インバータ主回路の電流容量で決まる電流
で制限されることになり第3図の如くのIM *の波
形となる。このため実際の2次磁束Φ2の立ち上
がりは第3図の如くt1の時間だけ遅れることにな
る。この磁束の発生の遅れ時間の間、モータ発生
トルクは(3)式より分かるように2次磁束Φ2に応
じて低減するため、モータ1は不平衡荷重に引つ
張られ、いわゆる起動シヨツクを発生する。以上
はトルク指令T*の大きさに対応して2次磁束指
令Φ2 *を可変とする制御装置について述べたが、
他の従来技術として2次磁束指令Φ2 *は負荷の大
きさに無関係に一定(定格値)とする方式があ
る。この第二の従来技術においても運転開始と同
時に2次磁束指令を与えれば前記と同じ理由によ
り実際の2次磁束Φ2の立ち上がりが遅れること
に変わりはない。そこでこのような2次磁束一定
の制御方式ではエレベータが運転開始する以前に
2次磁束を所定の一定値(定格値)に立上げてお
く方法が提案されている。ところが前述のトルク
指令T*の大きさに対応して2次磁束指令Φ2 *を可
変とする方式の制御はこの方法を適用すると運転
開始以前に設定する2次磁束の大きさが一定値で
あるのに対し、運転開始後の2次磁束指令Φ2 *は
可変であるため、やはり運転開始時に2次磁束の
段差が生じる。これを第4図で示す。第4図では
運転開始前の2次磁束設定値(定格値)より、低
い2次磁束に相当した負荷トルクで運転を開始し
た場合を示す。この場合も運転開始と共にΦ2 *は
ステツプ状に変化するがその変化方向が減少方向
であるため(5)式の第2項dΦ2 */dtは負の無限大、従
つてIM *も負の無限大になるが実際には負にはな
り得ないので実際の2次磁束Φ2はt2の時間だけ遅
れて減少する。従つてこのt2の期間、磁束Φ2が所
定値より大きいためPWM制御時のモータ騒音や
振動が大きくなる。又磁束Φ2が所定値より大き
いため一時的に起動トルクが大きく発生し、いわ
ゆる起動シヨツクを生じるという問題があつた。 At the same time as the start of operation, a torque command necessary to balance the rope tension between the elevator car and the counterweight is generated. For simplicity, it is assumed that the torque command is constant. Then, the secondary magnetic flux command Φ 2 * also rises in a stepwise manner, and it is necessary to give the necessary excitation current command I M * based on this using equation (5). However, since dΦ 2 * /dt in equation (5) becomes infinite, I M * that satisfies equation (5) cannot actually be commanded, and is limited by the current determined by the current capacity of the inverter main circuit. This results in a waveform of I M * as shown in Figure 3. Therefore, the actual rise of the secondary magnetic flux Φ 2 is delayed by the time t 1 as shown in FIG. 3. During this delay time in the generation of magnetic flux, the motor generated torque decreases according to the secondary magnetic flux Φ 2 as seen from equation (3), so the motor 1 is stretched by an unbalanced load, causing a so-called starting shock. Occur. The above has described a control device that makes the secondary magnetic flux command Φ 2 * variable in accordance with the magnitude of the torque command T * .
Another conventional technique is a method in which the secondary magnetic flux command Φ 2 * is kept constant (rated value) regardless of the size of the load. Even in this second prior art, if the secondary magnetic flux command is given at the same time as the start of operation, the rise of the actual secondary magnetic flux Φ 2 will still be delayed for the same reason as described above. Therefore, in such a control method for keeping the secondary magnetic flux constant, a method has been proposed in which the secondary magnetic flux is raised to a predetermined constant value (rated value) before the elevator starts operating. However, when this method is applied to the aforementioned control method in which the secondary magnetic flux command Φ 2 * is varied in accordance with the magnitude of the torque command T * , the magnitude of the secondary magnetic flux set before the start of operation is a constant value. On the other hand, since the secondary magnetic flux command Φ 2 * after the start of operation is variable, a level difference in the secondary magnetic flux also occurs at the start of operation. This is shown in FIG. FIG. 4 shows a case where operation is started with a load torque corresponding to a lower secondary magnetic flux than the secondary magnetic flux set value (rated value) before the start of operation. In this case as well, Φ 2 * changes stepwise with the start of operation, but since the direction of change is in the decreasing direction, the second term dΦ 2 * /dt in equation (5) is negative infinity, and therefore I M * is also Although it becomes negative infinity, it cannot actually become negative, so the actual secondary magnetic flux Φ 2 decreases with a delay of time t 2 . Therefore, during this period t 2 , the magnetic flux Φ 2 is larger than the predetermined value, so the motor noise and vibration during PWM control become large. Furthermore, since the magnetic flux Φ 2 is larger than a predetermined value, a large starting torque is temporarily generated, resulting in a problem of so-called starting shock.
この発明は上記のような従来技術が持つ問題点
を解決したエレベータの制御装置を提供すること
を目的とする。 An object of the present invention is to provide an elevator control device that solves the problems of the prior art as described above.
この発明によるエレベータの制御装置は、かご
内の荷重を検出する荷重検出器と、荷重検出器の
出力に応じてかごとカウンターウエートによるロ
ープ張力を平衡させるために必要なモータトルク
を出力する初期トルク設定器と、トルク指令に応
じて適切な2次磁束指令を出力する磁束指令発生
器を備え、2次磁束指令発生器の入力を運転開始
前は初期トルク設定器に接続し、運転開始直後に
速度調節器に切換えて接続する切換装置を設ける
ことにより運転開始前後のΦ2が急変することが
なくなり前記のような問題点の無いエレベータの
制御装置を得るものである。
The elevator control device according to the present invention includes a load detector that detects the load inside the car, and an initial torque that outputs the motor torque necessary to balance the rope tension caused by the car and the counterweight according to the output of the load detector. It is equipped with a setting device and a magnetic flux command generator that outputs an appropriate secondary magnetic flux command according to the torque command.The input of the secondary magnetic flux command generator is connected to the initial torque setting device before the start of operation, and immediately after the start of operation. By providing a switching device that switches and connects to the speed regulator, sudden changes in Φ 2 before and after the start of operation are prevented, and an elevator control system that is free from the above-mentioned problems is obtained.
〔実施例〕 本発明の一実施例を第1図に示す。〔Example〕 An embodiment of the present invention is shown in FIG.
第2図と同一部分は同一符号にて示しその説明
は省略するが、第2図の従来装置に対して、かご
内の荷重を検出する荷重検出器16と、荷重検出
器の出力に対応してかごとカウンターウエートに
よるロープ張力を平衡させるために必要なモータ
トルクT0を出力する初期トルク設定器17と切
換装置18が追加されている。切換装置は磁束指
令発生器7の入力が運転開始前は初期トルク設定
器側に、運転開始と同時に、ASR出力側に切換
接続される。第1図の構成で運転開始時の2次磁
束の応答をモータから見た負荷が軽い場合を第5
図に、重い場合を第6図に示す。励磁電流をステ
ツプ状に立ち上げた場合の磁束の応答遅れは0.2
秒〜0.4秒程度であるが初期設定トルクの確定、
すなわちかご内荷重信号が確定するのはかごの戸
閉中であり、この時点より励磁電流指令IM *を立
ち上げ、磁束の立ち上げを行えば、エレベータ運
転開始時には2次磁束Φ2は定常状態に達してい
るため第3図や第4図で説明した磁束の応答遅れ
による起動シヨツクやPWM制御時のモータ騒音
や振動が発生することがない。なお、運転開始直
後T*の立ち上がり時間だけ2次磁束指令Φ2 *が一
時的に落ち込むが、この時間は短いため実使用上
への影響はない。 The same parts as in Fig. 2 are designated by the same reference numerals and their explanations will be omitted. An initial torque setter 17 and a switching device 18 are added to output the motor torque T 0 necessary to balance the rope tensions due to the lever and counterweight. The switching device connects the input of the magnetic flux command generator 7 to the initial torque setter side before the start of operation, and to the ASR output side at the same time as the start of operation. Figure 5 shows the response of the secondary magnetic flux at the start of operation with the configuration shown in Figure 1 when the load is light as seen from the motor.
FIG. 6 shows a heavy case. When the excitation current is raised in steps, the magnetic flux response delay is 0.2
It takes approximately 0.4 seconds to confirm the initial setting torque.
In other words, the car load signal is determined when the car door is closed, and if the exciting current command I M * is started at this point and the magnetic flux is started, the secondary magnetic flux Φ 2 will be steady when the elevator starts operating. Since this state has been reached, the start-up shock due to the response delay of the magnetic flux explained in FIGS. 3 and 4 and the motor noise and vibration during PWM control do not occur. Immediately after the start of operation, the secondary magnetic flux command Φ 2 * temporarily drops during the rise time of T * , but this time is short and does not affect actual use.
又第1図の実施例では2次磁束指令Φ2 *より励
磁電流指令IM *を得る方法として、モータ定数を
用いて計算による方法を示したが、直接又は間接
に磁束を検出し、磁束指令Φ2 *と検出磁束値との
偏差を磁束調節器で増巾しこの出力を励磁電流指
令として与えるようにしてもよい。 In addition, in the embodiment shown in Fig. 1, a calculation method using motor constants was shown as a method for obtaining the excitation current command I M * from the secondary magnetic flux command Φ 2 * . The deviation between the command Φ 2 * and the detected magnetic flux value may be amplified by a magnetic flux regulator, and this output may be given as the excitation current command.
この発明によれば、運転開始時における起動シ
ヨツクや、PWM制御に基づくモータの振動や騒
音が少ない極めて乗心持の良いエレベータの制御
装置を得ることができる。
According to the present invention, it is possible to obtain an elevator control device that provides an extremely comfortable ride with less starting shock at the start of operation, less vibration and noise of the motor based on PWM control.
第1図は本発明の一実施例を示す制御回路図、
第2図は従来の制御回路図、第3図は第2図の回
路構成でステツプ状のトルク指令が与えられたと
きの2次磁束の応答を示す図、第4図は従来の制
御回路で運転開始以前に一定の2次磁束指令が与
えられている場合の運転開始後の2次磁束応答を
示す図、第5図は第1図の制御回路でモータの負
荷が軽い場合の運転開始前後における2次磁束等
の状態を示す図、第6図は第1図の制御回路でモ
ータ負荷が重い場合の運転開始前後における2次
磁束等の状態を示す図である。
1……モータ、2……コンバータ、3……イン
バータ、6……速度調節器、7……磁束指令発生
器、16……荷重検出器、17……初期トルク設
定器、18……切換装置、T*……トルク指令、
T0……初期トルク設定器出力、Φ2 *……2次磁束
指令、IM *……励磁電流指令。
FIG. 1 is a control circuit diagram showing one embodiment of the present invention;
Figure 2 is a conventional control circuit diagram, Figure 3 is a diagram showing the response of the secondary magnetic flux when a step-like torque command is given with the circuit configuration of Figure 2, and Figure 4 is a conventional control circuit diagram. A diagram showing the secondary magnetic flux response after the start of operation when a constant secondary magnetic flux command is given before the start of operation. Figure 5 shows the control circuit of Figure 1 before and after the start of operation when the motor load is light. FIG. 6 is a diagram showing the state of the secondary magnetic flux, etc. before and after the start of operation when the motor load is heavy in the control circuit of FIG. 1. 1... Motor, 2... Converter, 3... Inverter, 6... Speed regulator, 7... Magnetic flux command generator, 16... Load detector, 17... Initial torque setting device, 18... Switching device , T * ……torque command,
T 0 ... Initial torque setting device output, Φ 2 * ... Secondary magnetic flux command, I M * ... Excitation current command.
Claims (1)
交流電力に変換し、この交流電力によつて誘導電
動機を駆動してかごを運転するロープ式エレベー
タの制御装置において、 角速度指令と上記誘導電動機の角速度との偏差
を増巾してトルク指令を出力する速度調節器と、
トルク指令の大きさに対応して2次磁束指令を出
力する磁束指令発生器と、かご内の荷重を検出す
る荷重検出器と、荷重検出器の出力に応じてかご
とカウンターウエートによるロープ張力を平衡さ
せるため必要なモータトルクを出力する初期トル
ク設定器と、前記磁束指令発生器の入力を運転開
始前は前記初期トルク設定器に接続し、運転開始
直後に前記速度調節器に切換えて接続する切換装
置とを備えたことを特徴とするエレベータの制御
装置。[Scope of Claims] 1. In a control device for a rope elevator that connects an inverter to a DC power source to convert the DC power to AC power, and drives an induction motor using the AC power to operate the car, the control device provides: an angular velocity command; a speed regulator that outputs a torque command by amplifying the deviation between the angular velocity of the induction motor and the angular velocity of the induction motor;
A magnetic flux command generator that outputs a secondary magnetic flux command in response to the magnitude of the torque command, a load detector that detects the load inside the car, and a rope tension between the car and the counterweight according to the output of the load detector. An initial torque setting device that outputs the motor torque necessary for balancing and the input of the magnetic flux command generator are connected to the initial torque setting device before the start of operation, and are switched and connected to the speed regulator immediately after the start of operation. An elevator control device comprising: a switching device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62008829A JPS63176277A (en) | 1987-01-16 | 1987-01-16 | Controller for elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62008829A JPS63176277A (en) | 1987-01-16 | 1987-01-16 | Controller for elevator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63176277A JPS63176277A (en) | 1988-07-20 |
JPH0530747B2 true JPH0530747B2 (en) | 1993-05-10 |
Family
ID=11703678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62008829A Granted JPS63176277A (en) | 1987-01-16 | 1987-01-16 | Controller for elevator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63176277A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2503712B2 (en) * | 1990-03-08 | 1996-06-05 | 三菱電機株式会社 | Elevator speed control device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257790A (en) * | 1984-05-31 | 1985-12-19 | Fujitec Co Ltd | Controller of ac elevator |
JPS6181375A (en) * | 1984-09-29 | 1986-04-24 | 株式会社東芝 | Controller for alternating current elevator |
-
1987
- 1987-01-16 JP JP62008829A patent/JPS63176277A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257790A (en) * | 1984-05-31 | 1985-12-19 | Fujitec Co Ltd | Controller of ac elevator |
JPS6181375A (en) * | 1984-09-29 | 1986-04-24 | 株式会社東芝 | Controller for alternating current elevator |
Also Published As
Publication number | Publication date |
---|---|
JPS63176277A (en) | 1988-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3435104B2 (en) | Apparatus and method for generating braking torque in an AC drive | |
JPS638683B2 (en) | ||
US4815567A (en) | Apparatus for controlling an A.C. powered elevator | |
US5270498A (en) | Elevator speed control apparatus with drive motor residual secondary magnetic flux control | |
KR0134984B1 (en) | Motor control apparatus | |
JP2005027410A (en) | Induction motor driving method and driving apparatus | |
US4516664A (en) | Apparatus for controlling an A-C powered elevator | |
JPS6321429B2 (en) | ||
US5414333A (en) | Speed control apparatus for elevators using variable voltage and variable frequency control | |
JPH0336757B2 (en) | ||
JPH0530747B2 (en) | ||
JP4144446B2 (en) | Power converter | |
JPH0585470B2 (en) | ||
JP3622410B2 (en) | Control method of electric motor by inverter | |
JPH08208140A (en) | Elevator control equipment | |
JP3255839B2 (en) | AC elevator control device | |
JP3680530B2 (en) | Induction motor control device | |
JPS60139186A (en) | Controller for motor | |
JPH11235075A (en) | Flat linear induction motor | |
JP4568998B2 (en) | Induction motor control device | |
JPH027241B2 (en) | ||
KR900004038Y1 (en) | The control devices of elevator velocity | |
JP3503202B2 (en) | Inverter for driving induction motor | |
JP2898936B2 (en) | Elevator landing level adjustment device | |
JP4147970B2 (en) | Induction motor control method |