[go: up one dir, main page]

JPH05306978A - Microorganism measuring instrument - Google Patents

Microorganism measuring instrument

Info

Publication number
JPH05306978A
JPH05306978A JP4112480A JP11248092A JPH05306978A JP H05306978 A JPH05306978 A JP H05306978A JP 4112480 A JP4112480 A JP 4112480A JP 11248092 A JP11248092 A JP 11248092A JP H05306978 A JPH05306978 A JP H05306978A
Authority
JP
Japan
Prior art keywords
microorganism
sample water
microbial
filter
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4112480A
Other languages
Japanese (ja)
Inventor
Susumu Nagasaki
進 長崎
Shigeo Sato
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4112480A priority Critical patent/JPH05306978A/en
Publication of JPH05306978A publication Critical patent/JPH05306978A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4094Concentrating samples by other techniques involving separation of suspended solids using ultrasound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To obtain a microorganism measuring instrument which can automatically and easily collect microorganisms in a short time and, at the same time, can be increased and stabilized in microorganism recovery. CONSTITUTION:This instrument is provided with a sample water flowing-in means, microorganism disintegrating liquid injecting means, filter cartridge 15 having a microorganism catching filter 45 which divides an outer tube 41 into two parts on a sample water flowing-in port 42 and sample water flowing- out port 43 sides in the outer tube provided with the ports 42 and 43, filter cartridge feeding device, transferring device, microorganism disintegrating device 16, and sample water collecting device and the measurement of microorganism is automated by means of a control means which controls the measuring apparatus of the instrument.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物の免疫学的測定
方法に関し、特に試料水中の微生物数を測定する際の前
処理に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for immunologically measuring microorganisms, and more particularly to pretreatment for measuring the number of microorganisms in sample water.

【0002】[0002]

【従来の技術】従来、試料水中の微生物の測定は、メン
ブランフィルタにより試料水を濃縮して超音波破砕した
後に免疫測定を行うことによりなされている。
2. Description of the Related Art Conventionally, the measurement of microorganisms in sample water has been carried out by concentrating the sample water with a membrane filter and ultrasonically crushing it, and then performing immunoassay.

【0003】このメンブランフィルタにより試料水の濃
縮を行う際は、濃縮時間の短縮や夾雑物の除去を行うた
めにプレフィルタを用いる必要がある。
When the sample water is concentrated with this membrane filter, it is necessary to use a pre-filter in order to shorten the concentration time and remove impurities.

【0004】図3に上記プレフィルタ及びメンブランフ
ィルタを用いた微生物濃縮装置の説明図を示す。
FIG. 3 shows an explanatory view of a microorganism concentrating device using the above prefilter and membrane filter.

【0005】この図に示されるように、この微生物濃縮
装置は試料水を入れる漏斗51、この試料水を濾過濃縮
する濾過部52、濾過濃縮された試料水を収容する枝付
きフラスコ53、及び漏斗51と枝付きフラスコ53と
を固定する固定ばさみ56により構成されている。
As shown in this figure, this microorganism concentrating apparatus has a funnel 51 for containing sample water, a filtering section 52 for filtering and concentrating the sample water, a side flask 53 for containing the filtered and concentrated sample water, and a funnel. It is composed of fixed scissors 56 for fixing 51 and the side flask 53.

【0006】図4はこの微生物濃縮装置の濾過部の拡大
図を示す。この図に示されるように、濾過部62は漏斗
51とOリング64、メンブランフィルタ65、枝付き
フラスコ53ががこの順に配置されて形成されている。
FIG. 4 is an enlarged view of the filtration section of this microorganism concentrating device. As shown in this figure, the filter section 62 is formed by arranging a funnel 51, an O-ring 64, a membrane filter 65, and a side flask 53 in this order.

【0007】上記装置にて微生物の濃縮を行うには、漏
斗51に試料水をいれ、枝付きフラスコ53の枝管を通
じて吸引ポンプにて内圧を低くする。これにより、試料
水は枝付きフラスコ内部に吸引される。
In order to concentrate the microorganisms with the above apparatus, sample water is put into the funnel 51, and the internal pressure is lowered by a suction pump through the side pipe of the side flask 53. As a result, the sample water is sucked into the side flask.

【0008】この際、試料水中の微生物は濾過部のメン
ブランフィルタ65に捕捉されるので、このメンブラン
フィルタ65を回収し、ガラスビーカ内にて緩衝液及び
ガラスビーズを加えて振とうする。
At this time, since the microorganisms in the sample water are captured by the membrane filter 65 of the filtration section, the membrane filter 65 is collected, and the buffer solution and the glass beads are added and shaken in the glass beaker.

【0009】これによりメンブランフィルタ65の表面
に補足された菌を緩衝液中に均一に懸濁させた後、上記
懸濁液をピペットにて分取し、サンプルチューブに移
す。
Thus, the bacteria captured on the surface of the membrane filter 65 are uniformly suspended in the buffer solution, and then the suspension is pipetted and transferred to a sample tube.

【0010】更に、超音波破砕器にてサンプルチューブ
内の懸濁液の超音波破砕を行った後に酵素免疫測定を行
うことにより試料水中の微生物を測定している。
Furthermore, the microorganisms in the sample water are measured by ultrasonically disrupting the suspension in the sample tube with an ultrasonic disruptor and then performing enzyme immunoassay.

【0011】[0011]

【発明が解決しようとする課題】しかし、上記従来の測
定方法においては酵素免疫測定の前処理である回収操作
が繁雑で回収率が一定とはなり難く、測定精度が低くな
る。また回収操作に15分程度を必要とし、時間のロス
が大きい。
However, in the above-mentioned conventional measuring method, the collecting operation, which is a pretreatment of the enzyme immunoassay, is complicated and the collecting rate is difficult to be constant, and the measuring accuracy becomes low. Further, the recovery operation requires about 15 minutes, which causes a large loss of time.

【0012】更に枝付きフラスコや漏斗等の濾過装置や
回収時に用いる振とう機等の大がかりな装置や器具が必
要となるうえ、前処理の自動化も困難である。
Further, a large-scale apparatus or instrument such as a filtering apparatus such as a side-branched flask or a funnel and a shaker used at the time of recovery is required, and automation of pretreatment is also difficult.

【0013】本発明は上記背景の下になされたものであ
り、微生物の回収操作を容易かつ短時間に行うことがで
き、かつ微生物の回収率を高くかつ安定化することがで
きる微生物の免疫学的測定方法及び微生物濾過容器を提
供することを目的とする。
The present invention has been made under the above-mentioned background, and a microbial immunology capable of performing a microbial recovery operation easily and in a short time and having a high microbial recovery rate and stabilization. An object of the present invention is to provide a method for dynamic measurement and a microorganism filtration container.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するた
め、本発明は試料水流入口及び濾過水流出口を備えた外
筒の内部に、この外筒内を試料水流入口側と試料水流出
口側とに仕切る微生物捕捉フィルタを有するフィルタカ
ートリッジと、試料水を供給する試料水供給手段と、前
記試料水供給手段から得られる試料水を前記フィルタカ
ートリッジに流入する試料水流入手段と、前記フィルタ
カートリッジに流入される試料水を強制濾過して、前記
微生物捕捉フィルタ上に残渣として捕捉される微生物と
濾過液とに分離する強制濾過手段と、微生物破砕液を供
給する微生物破砕液供給手段と、前記試料水の濾過が終
了した後に、前記微生物破砕液供給手段から得られる微
生物破砕液を、前記フィルタカートリッジ内の微生物捕
捉フィルタと前記外筒の試料水流出側との間隙部に注入
する微生物破砕液注入手段と、予め前記フィルタカート
リッジを微生物の破砕が可能な位置に有し、前記間隙部
への微生物破砕液注入が終了した後に微生物の破砕を行
う微生物破砕手段と、微生物測定手段と、前記微生物の
破砕が終了した後に、前記間隙部に注入された微生物破
砕液を前記微生物測定手段に輸送する微生物破砕液輸送
手段とを有する微生物測定装置を提供する。
In order to solve the above problems, the present invention provides an inside of an outer cylinder having a sample water inlet and a filtered water outlet, and the inside of the outer cylinder is a sample water inlet side and a sample water outlet side. A filter cartridge having a microbial capture filter for partitioning into sample, sample water supply means for supplying sample water, sample water inflow means for injecting sample water obtained from the sample water supply means into the filter cartridge, and inflow into the filter cartridge Forced filtering means for forcibly filtering the sample water to be separated into a microorganism and a filtrate that are captured as a residue on the microorganism trapping filter, a microorganism crushed liquid supply means for supplying a microbial crushed liquid, and the sample water After the completion of the filtration of (1), the microbial disruption liquid obtained from the microbial disruption liquid supply means is mixed with the microbial capture filter in the filter cartridge and the outside. Microorganism crushed liquid injection means for injecting into the gap with the sample water outflow side, and having the filter cartridge in a position capable of crushing microorganisms in advance, the microbial crushed liquid after the injection of the microbial crushed liquid into the gap is completed. Microorganism measurement having microbial crushing means for crushing, microbial measuring means, and microbial crushed liquid transporting means for transporting microbial crushed liquid injected into the gap to the microbial measuring means after crushing of the microorganisms is completed Provide the device.

【0015】また、前記微生物測定装置において、前記
微生物測定装置は、前記微生物破砕液が前記微生物測定
手段に輸送された後に、フィルタカートリッジ内の残留
微生物破砕液を除去する微生物破砕液除去手段と、洗浄
水供給手段と、前記洗浄水供給手段から得られる洗浄水
を前記フィルタカートリッジに流入させることにより、
前記微生物捕捉フィルタを洗浄し、これにより前記微生
物捕捉フィルタの洗浄を終えた後に、前記試料水供給手
段から得られる試料水を繰り返し測定することことを可
能とする微生物捕捉フィルタ洗浄手段とを有することを
特徴とする微生物測定装置も提供される。
Further, in the above-mentioned microorganism measuring apparatus, the microorganism measuring apparatus comprises means for removing crushed liquid of microorganisms remaining in the filter cartridge after the crushed liquid of microorganisms is transported to the means for measuring microorganisms. By introducing the cleaning water supply means and the cleaning water obtained from the cleaning water supply means into the filter cartridge,
After cleaning the microorganism-trapping filter, and thereby ending the washing of the microorganism-trapping filter, a microorganism-trapping filter cleaning means capable of repeatedly measuring the sample water obtained from the sample water supply means is provided. Also provided is a microorganism measuring device characterized by:

【0016】[0016]

【作用】本発明にては、試料水流入口及び濾過水流出口
を備えた外筒の内部に、この外筒内を試料水流入口側と
試料水流出口側とに仕切る微生物捕捉フィルタを有する
フィルタカートリッジを用いる。
According to the present invention, there is provided a filter cartridge having a microorganism trapping filter inside the outer cylinder having the sample water inlet and the filtered water outlet, which partition the inside of the outer cylinder into the sample water inlet side and the sample water outlet side. To use.

【0017】このフィルタカートリッジに試料水供給手
段から得られる試料水を前記フィルタカートリッジに流
入し、試料水を強制濾過して前記微生物捕捉フィルタ上
に残渣として捕捉される微生物と濾過液とに分離する。
The sample water obtained from the sample water supply means flows into this filter cartridge into the filter cartridge, and the sample water is forcibly filtered to separate into microorganisms and filtrate that are captured as a residue on the microorganism capture filter. ..

【0018】通常、微生物を含む試料水を濾過するには
ミクロフィルタ等の孔径の小さいフィルタを用い、濾過
が進むに従って試料水中の微生物がフィルタ上に捕捉さ
れていく。
Usually, in order to filter the sample water containing microorganisms, a filter having a small pore size such as a micro filter is used, and the microorganisms in the sample water are captured on the filter as the filtration progresses.

【0019】このため、一般に行われているようにフィ
ルタ上の試料水の重力による濾過では、濾過が殆ど進ま
ず、また濾過が進むにつれてフィルタ上に捕捉された微
生物等によりフィルタが目詰まりするので、濾過がある
程度進むと試料水は殆どフィルタを透過しなくなる。
Therefore, in the filtration of the sample water on the filter by gravity as is generally done, the filtration hardly progresses, and as the filtration proceeds, the filter is clogged with the microorganisms trapped on the filter. When the filtration proceeds to some extent, the sample water hardly passes through the filter.

【0020】従って、微生物を捕捉する際には吸引濾過
や加圧濾過等により濾過を強制的に進める必要がある。
本明細書にてはこのような強制的に進める濾過、例えば
吸引濾過、圧縮濾過、遠心濾過等を強制濾過と記載す
る。
Therefore, when capturing the microorganisms, it is necessary to forcibly advance the filtration by suction filtration or pressure filtration.
In the present specification, such forced filtration, such as suction filtration, compression filtration, centrifugal filtration, etc., is referred to as forced filtration.

【0021】上記のように強制濾過を行って試料水を濾
過すると、フィルタは目詰まり状態となり、試料水、微
生物破砕液等の液体はフィルタを透過しないとみなせる
状態となる。
When the sample water is filtered by performing the forced filtration as described above, the filter becomes clogged, and the liquid such as the sample water and the microbial disruption liquid is considered not to pass through the filter.

【0022】これにより、上記フィルタカートリッジを
用いて強制濾過を行うと、微生物捕捉フィルタは目詰ま
り状態となり、フィルタカートリッジ内の微生物捕捉フ
ィルタと前記外筒の試料水流出側との間隙部に液体を保
持することが可能な状態となる。
As a result, when forced filtration is carried out using the above filter cartridge, the microorganism trapping filter becomes clogged, and liquid is trapped in the gap between the microorganism trapping filter in the filter cartridge and the sample water outflow side of the outer cylinder. It becomes possible to hold.

【0023】このようにフィルタカートリッジにて試料
水を強制濾過した後は微生物捕捉フィルタが目詰まりし
た状態となるので、この状態で上記間隙部に微生物破砕
液を注入すると、微生物破砕液はフィルタを透過せずに
間隙部内に貯留される。
After the sample water is forcibly filtered by the filter cartridge in this way, the microorganism trapping filter becomes clogged. Therefore, if the microorganism disruption liquid is injected into the gap in this state, the microorganism disruption liquid will pass through the filter. It is stored in the gap without permeation.

【0024】一方、フィルタには微生物が捕捉されてい
るので、間隙部に微生物破砕液を貯留することによって
フィルタを微生物破砕液に投入したのと同じ状態とな
る。
On the other hand, since microorganisms are trapped in the filter, storing the crushed microorganism liquid in the gap results in the same state as when the filter was put into the crushed microorganism liquid.

【0025】上記のように間隙部を有するフィルタカー
トリッジを用いて試料水の濾過を行い、更に濾過を終え
た後に微生物破砕液をこの間隙部に貯留することによ
り、同一の容器(フィルタカートリッジ)にて、試料水
を濾過するとともに、微生物捕捉フィルタを微生物破砕
液に投入することができる。
As described above, the sample water is filtered using the filter cartridge having the gap, and after the filtration is finished, the microbial disruption liquid is stored in the gap, so that the same container (filter cartridge) is stored. Thus, the sample water can be filtered and the microorganism trapping filter can be added to the microorganism disruption liquid.

【0026】これにより従来は試料液の濾過を終えた後
に微生物捕捉フィルタを微生物破砕液の入った容器を予
め用意し、この微生物破砕液中に微生物捕捉フィルタを
投入する等の操作が必要であったが、このような繁雑で
人手を要する操作は不要となる。
Therefore, conventionally, after the filtration of the sample solution is completed, it is necessary to prepare a container containing the microorganism crushing solution and a microorganism crushing solution in advance, and to insert the microbial catching filter into the microorganism crushing solution. However, such a complicated and labor-intensive operation becomes unnecessary.

【0027】上記のように捕捉された微生物と微生物破
砕液とを接触させた状態で、予め前記フィルタカートリ
ッジを微生物の破砕が可能な位置に有する微生物破砕手
段を駆動することにより、微生物を破砕することができ
る。
The microorganisms are crushed by driving the microbial crushing means which has the filter cartridge in advance at a position where the microorganisms can be crushed while the microorganisms captured as described above and the microbial crushing liquid are in contact with each other. be able to.

【0028】この微生物の破砕が終了した後に、前記間
隙部に注入された微生物破砕液を微生物測定手段に輸送
することで、微生物の測定を容易に行うことができる。
After the crushing of the microorganisms is completed, the crushed liquid of the microorganisms injected into the gap is transported to the microorganism measuring means, whereby the microorganisms can be easily measured.

【0029】尚、本発明にて使用する試料水供給手段と
しては特に限定はなく、例えば予め試料水を貯留した試
料水タンク、あるいは下水処理場の排水を自動的に採取
する試料採取装置等が挙げられる。同様に、微生物破砕
液供給手段としては、例えば予め微生物破砕液を貯留し
た微生物破砕液タンク等が挙げられる。
The sample water supply means used in the present invention is not particularly limited, and may be, for example, a sample water tank in which sample water is stored in advance, or a sample collecting device for automatically collecting wastewater from a sewage treatment plant. Can be mentioned. Similarly, examples of the microbial crushed liquid supply means include a microbial crushed liquid tank in which the microbial crushed liquid is stored in advance.

【0030】また、試料液流入手段、微生物破砕液注入
手段、微生物破砕液輸送手段としては、通常の方法、例
えば管とポンプを組み合わせて容易に試料液等を流入す
ることが可能であり、微生物測定手段も特に限定はな
く、例えばEIA等の通常用いられる測定器を用いるこ
とができる。更に、微生物破砕手段も、通常用いられる
ものを使用することができ、例えば超音波破砕器等を用
いる。
As the sample liquid inflow means, the microorganism crushed liquid injection means, and the microbial crushed liquid transport means, it is possible to easily flow in the sample liquid etc. by using a conventional method, for example, combining a tube and a pump. The measuring means is not particularly limited, and for example, a commonly used measuring instrument such as EIA can be used. Further, as the microorganism crushing means, a commonly used means can be used, and for example, an ultrasonic crusher or the like is used.

【0031】好ましくは、バルブ(例えば電磁バルブ
等)等を上記管やポンプと組み合わせることにより、容
易に試料液の流入や微生物破砕液の注入、輸送等を行う
ことが可能である。
Preferably, by combining a valve (for example, an electromagnetic valve) with the above pipe or pump, it is possible to easily inflow the sample solution, inject and transport the microbial disruption solution, and the like.

【0032】更に、上記微生物測定装置に試料水や微生
物破砕液等の流入量等の測定装置等を設け、これらの測
定結果から微生物の濃縮倍率等を算出することにより、
一層正確に微生物の測定を行うことも可能である。
Further, by providing the above-mentioned microorganism measuring apparatus with a measuring apparatus for measuring the inflow amount of sample water, crushed microorganisms, etc., and calculating the concentration ratio of microorganisms from these measurement results,
It is also possible to measure the microorganisms more accurately.

【0033】また、微生物破砕液が微生物測定手段に輸
送された後に、フィルタカートリッジ内の残留微生物破
砕液を除去し、その後に洗浄水を前記フィルタカートリ
ッジに流入させて微生物捕捉フィルタを洗浄することが
好ましい。
Further, after the microbial disruption liquid is transported to the microorganism measuring means, the residual microbial disruption liquid in the filter cartridge is removed, and then washing water is allowed to flow into the filter cartridge to wash the microorganism trapping filter. preferable.

【0034】これにより微生物捕捉フィルタの洗浄を終
えた後に、試料水供給手段から得られる試料水を繰り返
し測定することが可能となり、例えば下水処理場におけ
る処理水を採取する処理水採取装置を試料水採取手段と
して用いることにより、下水処理場における水質の変化
を連続的に監視することも容易にできる。
This makes it possible to repeatedly measure the sample water obtained from the sample water supply means after the washing of the microorganism trapping filter is completed. For example, a treated water collecting device for collecting the treated water at a sewage treatment plant is used as the sample water. By using it as a sampling means, it is possible to easily continuously monitor changes in water quality in the sewage treatment plant.

【0035】尚、上記洗浄水にて微生物捕捉フィルタを
洗浄する際には、好ましくは洗浄水をフィルタカートリ
ッジの濾過水流出口側から流入する。これによりフィル
タの洗浄効果がより一層高くなる。
When washing the microorganism trapping filter with the above-mentioned washing water, the washing water is preferably introduced from the filtered water outlet side of the filter cartridge. This further enhances the filter cleaning effect.

【0036】上記のように本発明に係る微生物測定装置
においては、上記試料水供給手段、試料水流入手段、微
生物破砕液供給手段、微生物破砕液注入手段、微生物破
砕手段、微生物輸送手段、強制濾過手段等を制御装置に
より制御することで、上記微生物の測定を自動的に行う
ことができる。
As described above, in the microorganism measuring apparatus according to the present invention, the sample water supplying means, the sample water inflowing means, the microbial crushed liquid supplying means, the microbial crushed liquid injecting means, the microbial crushing means, the microbial transporting means, the forced filtration. The microorganisms can be measured automatically by controlling the means and the like by the control device.

【0037】上記制御装置による自動化は非常に容易で
あり、例えば下水処理場における処理水の経時変化等
の、従来は人手を必要とした試料水の連続的測定を自動
的にかつ容易に行うことができる。
Automation by the above control device is very easy. For example, continuous measurement of sample water, which conventionally required manpower, such as change with time of treated water in a sewage treatment plant, can be automatically and easily performed. You can

【0038】更にまた、圧力計、流量計等を上記微生物
測定装置に設け、これらから得られる情報や、上記試料
水や微生物破砕液等の流入量の測定装置から得られる情
報をもとにして上記バルブ、試料液流入手段等の各種制
御対象を制御することにより、微生物の測定を一層正確
かつ効率的に行うことも可能である。
Furthermore, a pressure gauge, a flow meter, etc. are provided in the above-mentioned microorganism measuring apparatus, and based on the information obtained from these, and the information obtained from the above-mentioned apparatus for measuring the inflow amount of the sample water, the microbial disruption liquid, etc. By controlling various control objects such as the valve and the sample liquid inflow means, it is possible to measure the microorganism more accurately and efficiently.

【0039】[0039]

【実施例】本実施例においては図2に示す濾過容器(フ
ィルタカートリッジ)を用いて微生物の超音波破砕を行
った。
Example In this example, ultrasonic disruption of microorganisms was performed using the filtration container (filter cartridge) shown in FIG.

【0040】図2において41は試料水流入口42及び
濾過水流出口43を有する外筒である。
In FIG. 2, reference numeral 41 is an outer cylinder having a sample water inlet 42 and a filtered water outlet 43.

【0041】この外筒41の内部には、円筒状で一端側
が開口し、この開口側を濾過水流出口43側に配置して
外筒内部を試料水流入口42側と濾過水流出口43側と
に仕切るフィルタ支持部44が設けられている。尚、上
記フィルタ支持部は、その開口側を試料水流出口42側
に配置してもよい。
Inside the outer cylinder 41, one end side is cylindrical and is opened. The opening side is arranged on the filtered water outlet 43 side so that the inside of the outer cylinder is on the sample water inlet 42 side and the filtered water outlet 43 side. A partitioning filter support portion 44 is provided. The opening side of the filter support may be arranged on the sample water outlet 42 side.

【0042】また、このフィルタ支持部44の試料水流
入口42側の表面を、微生物捕捉フィルタであるミクロ
フィルタ45にて覆う構成となっている。
Further, the surface of the filter support portion 44 on the side of the sample water inlet 42 is covered with a microfilter 45 which is a microorganism trapping filter.

【0043】尚、このフィルタ支持部44は、水の透過
が可能な材質にて形成するか、もしくは金属メッシュ等
の水の透過が可能な構造とする等の方法により、ミクロ
フィルタ45により濾過された水の透過が可能な構成と
する。また、ミクロフィルタとしては好ましくはポアサ
イズ0.45μm以下のものを用いる。従って、上記濾過容
器においては、試料水流入口42から流入する試料水は
必ず上記ミクロフィルタ45により濾過された後に濾過
水流出口43から流出する構成となる。
The filter support portion 44 is filtered by the micro filter 45 by a method such as being formed of a water permeable material or having a water permeable structure such as a metal mesh. The structure will allow water to pass through. Further, as the micro filter, one having a pore size of 0.45 μm or less is preferably used. Therefore, in the filtration container, the sample water flowing in from the sample water inlet 42 is always filtered by the microfilter 45 and then flows out from the filtered water outlet 43.

【0044】特に、通常上記ミクロフィルタ45におい
ては吸引濾過や圧縮濾過等により濾過を行い、常圧にて
は試料水や微生物破砕液がこのミクロフィルタ45を透
過することはないとして差し支えない。
In particular, the microfilter 45 is usually filtered by suction filtration, compression filtration or the like, and it does not matter that the sample water or the crushed microorganism solution does not pass through the microfilter 45 under normal pressure.

【0045】従って、上記濾過容器においては、吸引濾
過等により試料水の濾過を行った後に外筒41の試料水
流入口42から微生物破砕液を加えることにより、ミク
ロフィルタ45と外筒41との間に微生物破砕液を貯留
することが可能である。以下、本明細書にては上記のよ
うに微生物破砕液の貯留が可能である、ミクロフィルタ
45と外筒41との間隙部を微生物破砕液貯留部46と
記載する。
Therefore, in the above-mentioned filtration container, after filtering the sample water by suction filtration or the like, the microbial disruption liquid is added from the sample water inlet 42 of the outer cylinder 41 so that the space between the microfilter 45 and the outer cylinder 41 is increased. It is possible to store the disrupted liquid of microorganisms. Hereinafter, in the present specification, the gap between the microfilter 45 and the outer cylinder 41, which is capable of storing the disrupted microorganism liquid as described above, is referred to as the disrupted microorganism reservoir 46.

【0046】図1に本実施例に係る微生物測定装置の構
成図を示す。
FIG. 1 shows a block diagram of the microorganism measuring apparatus according to this embodiment.

【0047】この図において1は試料水タンク、9は試
料水タンク1と電磁バルブ6とを接続する試料水輸送管
であり、この試料水輸送管9には電磁バルブ2、流量計
3、試料水流入手段であるポンプ4、圧力計5が設けら
れている。このポンプ4を駆動することにより試料水を
電磁バルブ6及び注入管12を通じて上記フィルタカー
トリッジ9に注入できる構成となっている。
In the figure, 1 is a sample water tank, 9 is a sample water transport pipe for connecting the sample water tank 1 and the electromagnetic valve 6, and the sample water transport pipe 9 has an electromagnetic valve 2, a flowmeter 3, and a sample. A pump 4 and a pressure gauge 5, which are water inflow means, are provided. By driving the pump 4, the sample water can be injected into the filter cartridge 9 through the electromagnetic valve 6 and the injection pipe 12.

【0048】この際、流量計3により試料水の流量を、
また圧力計5により試料水の液圧をそれぞれ測定するこ
とが可能である。
At this time, the flow rate of the sample water is changed by the flow meter 3.
Further, the pressure gauge 5 can measure the liquid pressure of each sample water.

【0049】尚、電磁バルブ2を切り替えることによ
り、試料水の輸送を停止するとともに、試料水輸送管9
の電磁バルブ側を解放し、試料水輸送管9内を常圧とす
ることもできる。
By switching the electromagnetic valve 2, the transport of the sample water is stopped and the sample water transport pipe 9
It is also possible to open the electromagnetic valve side of and to bring the inside of the sample water transport pipe 9 to normal pressure.

【0050】8は微生物破砕液タンク、10は微生物破
砕液タンク8と電磁バルブ6とを接続する微生物破砕液
輸送管であり、この微生物破砕液輸送管10には微生物
破砕液注入手段であるポンプ7が設けられている。この
ポンプ7を駆動することにより、微生物破砕液タンク8
内の微生物破砕液を電磁バルブ6及び注入管12を通じ
てフィルタカートリッジ15に注入することができる構
成となっている。
Reference numeral 8 denotes a microbial crushed liquid tank, 10 denotes a microbial crushed liquid transport pipe connecting the microbial crushed liquid tank 8 and the electromagnetic valve 6, and the microbial crushed liquid transport pipe 10 is a pump as a microbial crushed liquid injection means. 7 is provided. By driving this pump 7, the microbial disruption liquid tank 8
The microorganism crushed liquid therein can be injected into the filter cartridge 15 through the electromagnetic valve 6 and the injection pipe 12.

【0051】また、注入管12には電磁バルブ14及び
廃液管13が設けられており、電磁バルブ14を切り替
えることにより、注入管12に輸送された試料水又は微
生物破砕液を廃液管13又はフィルタカートリッジ15
に輸送することが可能な構成となっている。
Further, the injection pipe 12 is provided with an electromagnetic valve 14 and a waste liquid pipe 13. By switching the electromagnetic valve 14, the sample water or the microbial disruption liquid transported to the injection pipe 12 is discharged to the waste liquid pipe 13 or a filter. Cartridge 15
It is configured to be transported to.

【0052】このフィルタカートリッジ15は、予め超
音波破砕器内の超音波破砕可能な位置にセットされ、か
つ注入管12により試料水流入口42を通じて試料水及
び微生物破砕液を供給することが可能な位置に設置され
ている。
This filter cartridge 15 is set in advance in a position where ultrasonic crushing can be performed in the ultrasonic crusher, and a position where the sample water and the microbial disruption liquid can be supplied by the injection pipe 12 through the sample water inlet 42. It is installed in.

【0053】また、本実施例においては、フィルタカー
トリッジ15の試料水流出部に貫通孔を設け、この貫通
孔に、電磁バルブ18及びポンプ19を有する微生物破
砕液採取管17を貫通させた。この際、貫通孔と試料水
採取管との隙間から試料水等が漏れない構成とする。
Further, in this embodiment, a through hole is provided in the sample water outflow portion of the filter cartridge 15, and the microbial disruption liquid collecting pipe 17 having the electromagnetic valve 18 and the pump 19 is passed through this through hole. At this time, the sample water and the like do not leak from the gap between the through hole and the sample water sampling tube.

【0054】電磁バルブ18を解放してポンプ19を駆
動することにより、フィルタカートリッジ15内の微生
物破砕液貯留部46に貯留された微生物破砕液をEIA
装置20に輸送することができる構成となっている。
By releasing the electromagnetic valve 18 and driving the pump 19, the microbial disrupted liquid stored in the microbial disrupted liquid storage portion 46 in the filter cartridge 15 is removed from the EIA.
It is configured so that it can be transported to the device 20.

【0055】尚、注入管12をフィルタカートリッジ1
5内の微生物破砕液貯留部46内に延長して微生物破砕
液の採取を可能とするとともに注入管12に枝管を設
け、この枝管電磁バルブ及びポンプを設けて微生物破砕
液をEIA装置20に輸送する構成としてもよい。この
場合はフィルタカートリッジ15に上記貫通孔を設ける
必要はない。
The injection tube 12 is connected to the filter cartridge 1
5 is extended to the inside of the microbial crushed liquid storage portion 46 to enable collection of the microbial crushed liquid, and a branch pipe is provided in the injection pipe 12, and this branched pipe electromagnetic valve and pump are provided to collect the microbial crushed liquid in the EIA device 20. It may be configured to be transported to. In this case, it is not necessary to provide the through hole in the filter cartridge 15.

【0056】フィルタカートリッジ15の濾過水流出口
43には電磁バルブ22、電磁バルブ23を有する濾過
水輸送管21が設けられている。
The filtered water outlet 43 of the filter cartridge 15 is provided with a filtered water transport pipe 21 having an electromagnetic valve 22 and an electromagnetic valve 23.

【0057】また、電磁バルブ23には輸送管27及び
ポンプ24が設けられており、電磁バルブ23を切り替
えることにより、フィルタカートリッジ15にて濾過さ
れた濾過液を、輸送管27を通じてタンク25に輸送す
ることが可能な構成となっている。
The electromagnetic valve 23 is provided with a transport pipe 27 and a pump 24. By switching the electromagnetic valve 23, the filtrate filtered by the filter cartridge 15 is transported to the tank 25 through the transport pipe 27. It is configured to be possible.

【0058】上記装置において、上記ポンプ、電磁バル
ブ等は制御装置により制御されており、微生物の測定を
自動的に行うことができる。その制御内容を以下に示
す。
In the above apparatus, the pump, electromagnetic valve and the like are controlled by the control device, and the microorganisms can be automatically measured. The control contents are shown below.

【0059】尚、初期状態においては、各バルブを以下
の状態としておく。
In the initial state, each valve is set to the following state.

【0060】バルブ2…管32側を閉じて試料水輸送管
9側を開放する。
Valve 2 ... Closes the pipe 32 side and opens the sample water transport pipe 9 side.

【0061】バルブ6…微生物破砕液輸送管10側を閉
じて試料水輸送管9側及び注入管12側を開放する。
Valve 6: The microbial disruption liquid transport pipe 10 side is closed and the sample water transport pipe 9 side and the injection pipe 12 side are opened.

【0062】バルブ14…廃液管13側を閉じて注入管
12側を開放する。
Valve 14 ... The waste liquid pipe 13 side is closed and the injection pipe 12 side is opened.

【0063】バルブ18…閉じる バルブ22…開放する。Valve 18 ... Close Valve 22 ... Open.

【0064】バルブ23…輸送管33側を閉じて輸送管
27側及び濾過水輸送管21側を開放する。
Valve 23: The side of the transport pipe 33 is closed and the side of the transport pipe 27 and the side of the filtered water transport pipe 21 are opened.

【0065】バルブ26、バルブ31…閉じる。The valves 26, 31 ... Are closed.

【0066】また、すべてのポンプは動作待ちの状態と
する。
Further, all the pumps are put in a waiting state for operation.

【0067】1.採水装置11により試料水タンク1に
試料水を供給する。
1. The sample water is supplied to the sample water tank 1 by the water sampling device 11.

【0068】2.ポンプ4を駆動して試料水タンク1か
らフィルタカートリッジ46に試料水を送りこみ、これ
により試料水を濾過する。本実施例にては上記のように
バルブを初期設定しているので、試料水は試料水輸送管
9及び注入管12を通じてフィルタカートリッジ15に
流入し、このフィルタカートリッジ内にて加圧濾過され
る。
2. The sample water is sent from the sample water tank 1 to the filter cartridge 46 by driving the pump 4, and the sample water is filtered by this. In this embodiment, since the valve is initially set as described above, the sample water flows into the filter cartridge 15 through the sample water transport pipe 9 and the injection pipe 12 and is filtered under pressure in this filter cartridge. ..

【0069】これにより試料水中の微生物は残渣として
フィルタ表面に残る。濾過水は濾過水輸送管21及び輸
送管27を通じて排出される。
As a result, the microorganisms in the sample water remain as a residue on the filter surface. The filtered water is discharged through the filtered water transport pipe 21 and the transport pipe 27.

【0070】3.流量計3により試料水の流入量を測定
し、この試料水の流入量が予め設定された積算量に達し
た時点でポンプ4を停止する。
3. The inflow amount of the sample water is measured by the flowmeter 3, and the pump 4 is stopped when the inflow amount of the sample water reaches a preset integrated amount.

【0071】または、圧力計5により試料水の液圧を測
定し、制御装置によりこの測定値が予め設定された値に
達した時点で、フィルタの目詰まりと判断してポンプ4
を停止することもできる。
Alternatively, the pressure of the sample water is measured by the pressure gauge 5, and when the measured value reaches a preset value by the controller, it is judged that the filter is clogged and the pump 4
Can also be stopped.

【0072】この場合はそれまでの流量積算値を記憶し
ておく。
In this case, the flow rate integrated value up to that point is stored.

【0073】4.電磁バルブ2を切り替えてポンプ4の
サクション側を大気解放とする(試料水輸送管9の試料
水タンク側を閉じて管32側を開放する)。次に、フィ
ルタカートリッジに残った試料水を押し出して濾過を終
了させる。
4. The electromagnetic valve 2 is switched to open the suction side of the pump 4 to the atmosphere (close the sample water tank side of the sample water transport pipe 9 and open the pipe 32 side). Next, the sample water remaining in the filter cartridge is pushed out to complete the filtration.

【0074】例えば上記ポンプ4のサクション側を大気
開放とした状態でポンプ4を再起動し、試料水輸送管9
及び注入管12を通じてフィルタカートリッジ15に空
気を送りこんで加圧濾過する等の方法により上記試料水
を押し出すことができる。この際、圧力計5により空気
圧を検出し、この値に基づいて濾過の終了を検出して制
御を行うことができる。
For example, the pump 4 is restarted with the suction side of the pump 4 open to the atmosphere, and the sample water transport pipe 9
Also, the sample water can be pushed out by a method of sending air into the filter cartridge 15 through the injection pipe 12 and performing pressure filtration. At this time, the air pressure can be detected by the pressure gauge 5, and the end of filtration can be detected based on this value to perform control.

【0075】5.上記濾過を終えた後にポンプ4を再停
止し、電磁バルブを6切り替えて試料水輸送管9側を閉
じ、微生物破砕液輸送管10側及び注入管12側を開放
する。
5. After completing the filtration, the pump 4 is stopped again, the electromagnetic valve is switched to 6, the sample water transport pipe 9 side is closed, and the microbial disruption liquid transport pipe 10 side and the injection pipe 12 side are opened.

【0076】更に、電磁バルブ22を閉じた後にポンプ
7を駆動し、一定量の微生物破砕液を微生物破砕液輸送
管10及び注入管12を通じてフィルタカートリッジ9
に注入する。
Further, after the electromagnetic valve 22 is closed, the pump 7 is driven so that a certain amount of the microbial disruption liquid is passed through the microbial disruption liquid transport pipe 10 and the injection pipe 12 to the filter cartridge 9
Inject.

【0077】上記のように常圧にては微生物破砕液は濾
過されないので、微生物破砕液はフィルタカートリッジ
15内の微生物破砕液貯留部46に貯留される。この
際、微生物破砕液の輸送量が多いと、ポンプ7により微
生物破砕液が加圧濾過されてしまうので、微生物破砕液
の注入量を、上記加圧濾過が起きない量とする。
As described above, the crushed liquid of microorganisms is not filtered under normal pressure, and thus the crushed liquid of microorganisms is stored in the crushed liquid storing portion 46 in the filter cartridge 15. At this time, if the transport amount of the crushed microbial liquid is large, the crushed microbial liquid is filtered under pressure by the pump 7, so the injection amount of the crushed microorganism liquid is set to an amount that does not cause the above-mentioned pressure filtration.

【0078】6.超音波破砕器16を駆動してフィルタ
内の微生物を破砕する。
6. The ultrasonic crusher 16 is driven to crush the microorganisms in the filter.

【0079】7.電磁バルブ18を開放してポンプ19
を駆動し、微生物破砕液貯留部46内の微生物破砕液を
吸引する。これにより、EIA測定装置に超音波破砕を
受けた微生物破砕液を一定量送ることができる。
7. Open the electromagnetic valve 18 and pump 19.
Is driven to suck the microbial crushed liquid in the microbial crushed liquid storage section 46. As a result, it is possible to send a fixed amount of the disrupted microbial solution that has undergone ultrasonic disruption to the EIA measuring device.

【0080】8.電磁バルブ22を解放する。また電磁
バルブ14を切り替えて注入管12の電磁バルブ6側を
閉じ、注入管12のフィルタカートリッジ15側、廃液
管13側を共に開放する。
8. The electromagnetic valve 22 is opened. Further, the electromagnetic valve 14 is switched to close the electromagnetic valve 6 side of the injection pipe 12, and both the filter cartridge 15 side and the waste liquid pipe 13 side of the injection pipe 12 are opened.

【0081】また、バルブ23を切り替えて、輸送管2
7側を閉じ、輸送管33側、濾過水輸送管21側を共に
開放する。
Further, by switching the valve 23, the transport pipe 2
7 side is closed, and both the transportation pipe 33 side and the filtered water transportation pipe 21 side are opened.

【0082】その後にポンプ24を駆動して洗浄水タン
ク25内の洗浄水を輸送管33及び濾過水輸送管21を
通じてフィルタカートリッジ15内に送り、フィルタカ
ートリッジ内のフィルタを逆洗浄する。
After that, the pump 24 is driven to send the wash water in the wash water tank 25 into the filter cartridge 15 through the transport pipe 33 and the filtered water transport pipe 21 to backwash the filter in the filter cartridge.

【0083】上記フィルタを逆洗浄することにより、濾
過された洗浄水は廃液として注入管12及び廃液管を通
じて排出される。
By backwashing the filter, the filtered washing water is discharged as waste liquid through the injection pipe 12 and the waste liquid pipe.

【0084】これによりフィルタカートリッジ内の残留
物(微生物、微生物破砕液等)は濾過され、再度微生物
の濾過を行うことが可能な状態に戻る。
As a result, the residue (microorganisms, microbial disruption liquid, etc.) in the filter cartridge is filtered, and the state where the microorganisms can be filtered again is restored.

【0085】9.EIA測定装置により微生物の濃度等
を測定する。この際、3項における試料水の量と、5項
における緩衝液の量とから微生物の濃縮倍率を算出し、
EIAにおける測定のデータとして送信する。これによ
り、元の試料水中の微生物量を正確に測定することがで
きる。
9. The concentration of microorganisms and the like are measured by an EIA measuring device. At this time, the concentration ratio of the microorganism is calculated from the amount of the sample water in the item 3 and the amount of the buffer solution in the item 5,
It is transmitted as data of measurement in EIA. Thereby, the amount of microorganisms in the original sample water can be accurately measured.

【0086】上記動作を繰り返す。この動作は、既存の
シーケンサやコンピュータ等を利用して上記ポンプ、バ
ルブ等を制御することにより容易に繰り返し行うことが
できる。
The above operation is repeated. This operation can be easily repeated by controlling the pumps, valves and the like using an existing sequencer or computer.

【0087】尚、3項においては流量計を用いて濾液の
レベルを測定したが、図1においてカッコ内に示したよ
うに、レベル計28を有する受水タンク29を設け、こ
の受水タンク29中の水質をレベル計19にて測定し、
この値をもとにしてポンプ4の制御を行うものとしても
よい。
In the third paragraph, the level of the filtrate was measured using a flow meter, but as shown in parentheses in FIG. 1, a water receiving tank 29 having a level meter 28 is provided, and this water receiving tank 29 is provided. Measure the water quality in the level meter 19,
The pump 4 may be controlled based on this value.

【0088】上記のように構成された装置にて上記制御
に基づいた測定を行うことにより、微生物の測定を自動
的に、また容易かつ正確に行うことができる。
By carrying out the measurement based on the above control by the apparatus constructed as described above, it is possible to automatically, easily and accurately measure the microorganisms.

【0089】従って、特に排水処理場等においては水質
の変化をリアルタイムに把握することができるので、水
質管理等に大きく貢献する。
Therefore, particularly in a wastewater treatment plant or the like, it is possible to grasp the change in water quality in real time, which greatly contributes to water quality management and the like.

【0090】尚、図1においてはポンプ4及びポンプ7
をそれぞれ設けているが、これらのポンプを電磁バルブ
6とフィルタカートリッジ9との間に設けることもでき
る。この際、電磁バルブ6を切り替え制御することによ
りこれらのポンプを1つのポンプにて代用することもで
きる。
In FIG. 1, pump 4 and pump 7
However, these pumps may be provided between the electromagnetic valve 6 and the filter cartridge 9. At this time, one pump can be substituted for these pumps by switching and controlling the electromagnetic valve 6.

【0091】更に、微生物破砕液側を閉鎖してポンプを
1つのポンプにて圧送側に設けているが、これらのポン
プをフィルタカートリッジ9の吸引側に設けてもよい。
この際、ポンプ4及びポンプ7は、1つのポンプにて代
用することも可能である。
Furthermore, although the crushed liquid side of microorganisms is closed and the pumps are provided on the pumping side by one pump, these pumps may be provided on the suction side of the filter cartridge 9.
At this time, the pump 4 and the pump 7 may be replaced by one pump.

【0092】[0092]

【発明の効果】本発明は、上記のように微生物測定装置
を構成しているので、以下の効果が得られる。
EFFECTS OF THE INVENTION Since the present invention constitutes the microorganism measuring apparatus as described above, the following effects can be obtained.

【0093】a.微生物の回収操作を容易かつ短時間に
行うことができ、また微生物の回収率を高くかつ安定化
することができる。
A. The operation of collecting the microorganisms can be performed easily and in a short time, and the recovery rate of the microorganisms can be increased and stabilized.

【0094】b.微量な微生物濃度等を自動的、連続的
に測定でき、また微生物の濃縮及び破砕も自動的、連続
的に行うことができる。
B. A minute amount of microorganisms can be automatically and continuously measured, and concentration and crushing of microorganisms can be automatically and continuously performed.

【0095】c.間隙部を有するフィルタカートリッジ
を用いて試料水の濾過を行い、更に濾過を終えた後に微
生物破砕液をこの間隙部に貯留することにより、フィル
タに捕捉された微生物と微生物破砕液とを接触させてい
る。
C. The sample water is filtered using a filter cartridge having a gap, and after the filtration is completed, the microbial disruption liquid is stored in this gap to bring the microorganisms captured by the filter into contact with the microbial disruption liquid. There is.

【0096】これにより、従来は試料液の濾過を終えた
後に微生物捕捉フィルタを微生物破砕液の入った容器を
予め用意し、この微生物破砕液中に微生物捕捉フィルタ
を投入する等の操作が必要であったが、このような繁雑
で人手を要する操作は不要となる。従って人的資源を効
率的に運用することができ、経済的にも有利である。 d.制御装置等を用いることにより、試料水中の微生物
を自動的に、かつ連続的に測定することができるうえ、
経済的にも有利である。例えば下水処理場における処理
水の水質変化を連続的に監視することも容易である。
Therefore, conventionally, after the filtration of the sample solution is completed, it is necessary to prepare in advance a container containing the microorganism crushing solution and the microorganism crushing solution, and to put the microbial crushing filter into the microorganism crushing solution. However, such a complicated and labor-intensive operation is unnecessary. Therefore, human resources can be efficiently used, which is economically advantageous. d. By using a control device, etc., microorganisms in the sample water can be measured automatically and continuously.
It is economically advantageous. For example, it is easy to continuously monitor the quality change of treated water in a sewage treatment plant.

【0097】e.塩素殺菌設備における塩素注入量制御
等において、大腸菌の数を目標値としたフィードバック
システムを容易に構築することも可能である。
E. It is also possible to easily construct a feedback system in which the number of E. coli is a target value in controlling the amount of chlorine injection in a chlorine sterilization facility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る微生物測定装置の説明
FIG. 1 is an explanatory diagram of a microorganism measuring apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係るフィルタカートリッジ
の説明図
FIG. 2 is an explanatory diagram of a filter cartridge according to an embodiment of the present invention.

【図3】従来例に係る微生物の濾過装置の説明図FIG. 3 is an explanatory view of a microorganism filtration device according to a conventional example.

【図4】従来例に係る微生物の濾過装置の説明図FIG. 4 is an explanatory view of a microorganism filtration device according to a conventional example.

【符号の説明】[Explanation of symbols]

1…試料水タンク、 2…電磁バルブ 3…流量計 4…ポンプ 5…圧力計 6…電磁バルブ 7…ポンプ 8…微生物破砕液タンク 9…試料水輸送管 10…微生物破砕液輸送管 11…採水装置 12…注入管 13…廃液管 14…電磁バルブ 15…フィルタカートリッジ 16…微生物破砕装置 17…微生物破砕液採取管 18…電磁バルブ 19…ポンプ 20…EIA装置 21…濾過水輸送管 22…電磁バルブ 23…電磁バルブ 24…ポンプ 25…タンク 26…バルブ 27…輸送管 28…レベル計 29…受水タンク 32…管 33…輸送管 41…外筒 42…試料水流入口 43…濾過水流出口 44…フィルタ支持部 45…ミクロフィルタ 46…微生物破砕液貯留部 1 ... Sample water tank, 2 ... Electromagnetic valve 3 ... Flowmeter 4 ... Pump 5 ... Pressure gauge 6 ... Electromagnetic valve 7 ... Pump 8 ... Microbial disrupted liquid tank 9 ... Sample water transport pipe 10 ... Microbial disrupted liquid transport pipe 11 ... Water device 12 ... injection pipe 13 ... waste liquid pipe 14 ... electromagnetic valve 15 ... filter cartridge 16 ... microorganism crushing device 17 ... microorganism crushed liquid collecting pipe 18 ... electromagnetic valve 19 ... pump 20 ... EIA device 21 ... filtered water transport pipe 22 ... electromagnetic Valve 23 ... Electromagnetic valve 24 ... Pump 25 ... Tank 26 ... Valve 27 ... Transport pipe 28 ... Level meter 29 ... Water receiving tank 32 ... Pipe 33 ... Transport pipe 41 ... Outer cylinder 42 ... Sample water inlet 43 ... Filtered water outlet 44 ... Filter support part 45 ... Micro filter 46 ... Microbial disrupted liquid storage part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料水流入口及び濾過水流出口を備えた
外筒の内部に、この外筒内を試料水流入口側と試料水流
出口側とに仕切る微生物捕捉フィルタを有するフィルタ
カートリッジと、 試料水を供給する試料水供給手段と、 前記試料水供給手段から得られる試料水を前記フィルタ
カートリッジに流入する試料水流入手段と、 前記フィルタカートリッジに流入される試料水を強制濾
過して、前記微生物捕捉フィルタ上に残渣として捕捉さ
れる微生物と濾過液とに分離する強制濾過手段と、 微生物破砕液を供給する微生物破砕液供給手段と、 前記試料水の濾過が終了した後に、前記微生物破砕液供
給手段から得られる微生物破砕液を、前記フィルタカー
トリッジ内の微生物捕捉フィルタと前記外筒の試料水流
出側との間隙部に注入する微生物破砕液注入手段と、 予め前記フィルタカートリッジを微生物の破砕が可能な
位置に有し、前記間隙部への微生物破砕液注入が終了し
た後に微生物の破砕を行う微生物破砕手段と、微生物測
定手段と、 前記微生物の破砕が終了した後に、前記間隙部に注入さ
れた微生物破砕液を前記微生物測定手段に輸送する微生
物破砕液輸送手段とを有することを特徴とする微生物測
定装置。
1. A filter cartridge having a microbial capture filter for partitioning the inside of an outer cylinder into a sample water inlet side and a sample water outlet side inside an outer cylinder provided with a sample water inlet and a filtered water outlet, and a sample water Sample water supply means for supplying, sample water inflow means for injecting sample water obtained from the sample water supply means into the filter cartridge, and forced filtration of sample water flowing into the filter cartridge to obtain the microorganism-trapping filter. Forced filtration means for separating microorganisms and filtrates captured as a residue on top, microbial crushed liquid supply means for supplying microbial crushed liquid, and after completion of filtration of the sample water, from the microbial crushed liquid supply means The resulting microorganism disruption liquid is injected into the gap between the microorganism trapping filter in the filter cartridge and the sample water outflow side of the outer cylinder to destroy the microorganism. A liquid injecting means, a filter cartridge having a position capable of crushing microorganisms in advance, a microbial crushing means for crushing the microorganisms after the injection of the microbial crushed liquid into the gap portion, a microorganism measuring means, and A microbial disruption liquid transporting means for transporting the microbial disruption liquid injected into the gap to the microorganism measuring means after the disruption of the microorganisms is completed.
【請求項2】 請求項1記載の微生物測定装置におい
て、 前記微生物測定装置は、 前記微生物破砕液が前記微生物測定手段に輸送された後
に、フィルタカートリッジ内の残留微生物破砕液を除去
する微生物破砕液除去手段と、 洗浄水供給手段と、 前記洗浄水供給手段から得られる洗浄水を前記フィルタ
カートリッジに流入させることにより、前記微生物捕捉
フィルタを洗浄し、これにより前記微生物捕捉フィルタ
の洗浄を終えた後に、前記試料水供給手段から得られる
試料水を繰り返し測定することを可能とする微生物捕捉
フィルタ洗浄手段とを有することを特徴とする微生物測
定装置。
2. The microorganism measuring device according to claim 1, wherein the microorganism measuring device removes residual microorganism disrupting liquid in the filter cartridge after the microorganism disrupting liquid is transported to the microorganism measuring means. A removing means, a cleaning water supplying means, and a cleaning water obtained from the cleaning water supplying means are caused to flow into the filter cartridge to clean the microorganism-trapping filter, and thereby after cleaning the microorganism-trapping filter. A microorganism measuring device, comprising: a microorganism capturing filter cleaning means capable of repeatedly measuring the sample water obtained from the sample water supplying means.
JP4112480A 1992-05-01 1992-05-01 Microorganism measuring instrument Pending JPH05306978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4112480A JPH05306978A (en) 1992-05-01 1992-05-01 Microorganism measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4112480A JPH05306978A (en) 1992-05-01 1992-05-01 Microorganism measuring instrument

Publications (1)

Publication Number Publication Date
JPH05306978A true JPH05306978A (en) 1993-11-19

Family

ID=14587698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4112480A Pending JPH05306978A (en) 1992-05-01 1992-05-01 Microorganism measuring instrument

Country Status (1)

Country Link
JP (1) JPH05306978A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004675A3 (en) * 1996-07-29 1998-03-05 Pall Corp Method for quantitation of microorganism contamination of liquids and apparatus therefor
JP2002544519A (en) * 1999-05-19 2002-12-24 アイティーティー・マニュファクチャリング・エンタープライジズ・インコーポレーテッド Water sampling with analyte extraction and accumulation
JP2007501020A (en) * 2003-03-17 2007-01-25 チャールズ リバー ラボラトリーズ, インコーポレイテッド Methods and compositions for detection of microbial contaminants
JP2008039481A (en) * 2006-08-02 2008-02-21 Japan Health Science Foundation Filtration and collection filter for suspended particles in water, filtration and collection method for suspended particles in water using the same, and management method for water quality
CN106018856A (en) * 2016-08-09 2016-10-12 上海昂林科学仪器有限公司 Anionic surfactant automatic analysis device
CN107782708A (en) * 2017-11-13 2018-03-09 青岛佳明测控科技股份有限公司 Microorganism in Water detection means and detection method
WO2018151316A1 (en) * 2017-02-20 2018-08-23 株式会社サタケ Microorganism sampling device
JP2020176930A (en) * 2019-04-19 2020-10-29 株式会社島津製作所 Pretreatment device
CN112048439A (en) * 2020-07-27 2020-12-08 中国科学院广州能源研究所 Sampling and culturing device for preventing disturbance of marine microorganism system for experiment

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004675A3 (en) * 1996-07-29 1998-03-05 Pall Corp Method for quantitation of microorganism contamination of liquids and apparatus therefor
US5820767A (en) * 1996-07-29 1998-10-13 Pall Corporation Method for quantitation of microorganism contamination of liquids
GB2329394A (en) * 1996-07-29 1999-03-24 Pall Corp Method for quantitation of microorganism contamination of liquids and apparatus therefor
US5979668A (en) * 1996-07-29 1999-11-09 Pall Corporation Filtration device for quantitation of microorganism contaminated liquids
GB2329394B (en) * 1996-07-29 2000-11-22 Pall Corp Method for quantitation of microorganism contamination of liquids and apparatus therefor
JP2002544519A (en) * 1999-05-19 2002-12-24 アイティーティー・マニュファクチャリング・エンタープライジズ・インコーポレーテッド Water sampling with analyte extraction and accumulation
US10119969B2 (en) 2003-03-17 2018-11-06 Charles River Laboratories, Inc. Compositions for the detection of microbial contaminants
JP2007501020A (en) * 2003-03-17 2007-01-25 チャールズ リバー ラボラトリーズ, インコーポレイテッド Methods and compositions for detection of microbial contaminants
JP2008039481A (en) * 2006-08-02 2008-02-21 Japan Health Science Foundation Filtration and collection filter for suspended particles in water, filtration and collection method for suspended particles in water using the same, and management method for water quality
CN106018856A (en) * 2016-08-09 2016-10-12 上海昂林科学仪器有限公司 Anionic surfactant automatic analysis device
CN106018856B (en) * 2016-08-09 2017-06-30 上海昂林科学仪器有限公司 Anion surfactant automatic analysing apparatus
WO2018151316A1 (en) * 2017-02-20 2018-08-23 株式会社サタケ Microorganism sampling device
US11512274B2 (en) 2017-02-20 2022-11-29 Satake Corporation Microorganism sampling device
CN107782708A (en) * 2017-11-13 2018-03-09 青岛佳明测控科技股份有限公司 Microorganism in Water detection means and detection method
CN107782708B (en) * 2017-11-13 2023-10-13 青岛佳明测控科技股份有限公司 Water quality microorganism detection device and detection method
JP2020176930A (en) * 2019-04-19 2020-10-29 株式会社島津製作所 Pretreatment device
CN112048439A (en) * 2020-07-27 2020-12-08 中国科学院广州能源研究所 Sampling and culturing device for preventing disturbance of marine microorganism system for experiment
CN112048439B (en) * 2020-07-27 2022-05-17 中国科学院广州能源研究所 A sampling and culturing device for preventing disturbance of marine microbial system for experiment

Similar Documents

Publication Publication Date Title
US5167802A (en) Apparatus for sampling pesticide residues in run-off with control of sample pump and distributor valve
CN101509843A (en) Sampling system for water filtrated by unattended shipborne multichannel film
CN101592568B (en) Sailing multi-channel membrane filtration suspended particle sampling system
JP2009533675A (en) Ultrafiltration system for online analyzer
JPH05306978A (en) Microorganism measuring instrument
CN106872225A (en) A kind of water sample pretreatment device and its application method
JP6484572B2 (en) Filtration collection device
US20080308494A1 (en) Fluid sampling interface apparatus
CN117848814B (en) A separation system and separation method for soil microplastics
JP2009118780A (en) Microorganism detection method and filtration apparatus
JPH10197440A (en) Particle analyzer
JP3660600B2 (en) Filtration device and waste filter medium forced separation device
JPH10323544A (en) Backwashing device for hollow yarn membrane filtration
US11998908B2 (en) Preprocessing device, preprocessing method, and non-transitory computer readable medium storing program
JPH05273217A (en) Measuring apparatus for microbe
EP1094311A2 (en) Fluid sampling
CN109385369B (en) A filtration system that prevents cell rupture
JP3401968B2 (en) Method and apparatus for detecting membrane breakage in hollow fiber membrane filtration device
US3733906A (en) Method and apparatus for the continuous withdrawal of samples from industrial process baths or the like for analysis
TW201543020A (en) Pretreatment device for on-line measurement in aqueous system, on-line measuring device having the same and pretreatment method for on-line measurement
JPH04225805A (en) Method for solid-liquid separation and apparatus therefor
CN206818497U (en) A kind of water sample preprocessing apparatus
JPH08206656A (en) Washing waste water treatment device of membrane filter apparatus
JPH03147778A (en) Sampling device of culture tank
CN214232985U (en) A device for collecting solid waste leachate filter residue