JPH05305234A - Preparation of steam reforming catalyst for methanol - Google Patents
Preparation of steam reforming catalyst for methanolInfo
- Publication number
- JPH05305234A JPH05305234A JP4109890A JP10989092A JPH05305234A JP H05305234 A JPH05305234 A JP H05305234A JP 4109890 A JP4109890 A JP 4109890A JP 10989092 A JP10989092 A JP 10989092A JP H05305234 A JPH05305234 A JP H05305234A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- aqueous solution
- precipitate
- oxide
- methanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はメタノール水蒸気改質用
触媒の調製方法に関する。FIELD OF THE INVENTION The present invention relates to a method for preparing a methanol steam reforming catalyst.
【0002】[0002]
【従来の技術】水素ガスはアンモニア合成やメタノール
合成用原料等の水素工業、水素化脱硫、水素化分解等の
石油精製工業、(ベンゼンの水素化による)ナイロン原
料であるシクロヘキサン製造等の有機化学工業、さらに
冶金工業、半導体工業用等の種々の分野で利用されてい
る。最近では燃料電池発電用燃料等の新しいエネルギー
源として水素需要は益々増大している。2. Description of the Related Art Hydrogen gas is used in the hydrogen industry such as a raw material for ammonia synthesis and methanol synthesis, in the petroleum refining industry such as hydrodesulfurization and hydrocracking, and in organic chemistry such as the production of cyclohexane which is a nylon raw material (by hydrogenation of benzene) It is used in various fields such as industry, metallurgical industry, and semiconductor industry. Recently, the demand for hydrogen has been increasing more and more as a new energy source such as fuel for fuel cell power generation.
【0003】従来から広く行われている水素製造方法と
して液化石油ガス(LPG)、液化天然ガス(LN
G)、およびナフサからのスチームリフォーミング方法
が採用されているが、(1)石油系原料の高騰および供
給不安定、(2)反応温度が高温(800℃〜1000
℃)であるため、また中小規模の水素ガス製造には不適
当等の問題があるため、何らかの解決策が待ち望まれて
いる。Liquefied petroleum gas (LPG) and liquefied natural gas (LN) have been widely used as hydrogen production methods.
G) and the steam reforming method from naphtha are adopted, but (1) soaring and unstable supply of petroleum-based raw materials, (2) high reaction temperature (800 ° C to 1000 ° C)
℃), and because there are problems such as inadequacy in the production of hydrogen gas in small and medium scale, some solution is desired.
【0004】これに対して近年、メタノールは石炭、天
然ガスなどから合成ガスを経由して大規模に製造するこ
とができ、さらに輸送が容易であることから、メタノー
ルと水蒸気を反応させて水素ガスを製造する方法が注目
されている。またメタノールの水蒸気改質反応はナフサ
よりはるかに低温で水素含有量の多いガスに改質され、
この改質反応の熱源として廃熱の利用も可能である。さ
らに水素、二酸化炭素以外の副生物がほとんど生じない
ことから、純水素を得るための分離工程が簡単である優
位性も有している。On the other hand, in recent years, methanol can be produced on a large scale from coal, natural gas or the like via synthetic gas and is easily transported. Therefore, methanol is reacted with steam to produce hydrogen gas. The method of manufacturing the is attracting attention. Also, the steam reforming reaction of methanol is reformed into a gas with a high hydrogen content at a much lower temperature than naphtha,
Waste heat can also be used as a heat source for this reforming reaction. Furthermore, since by-products other than hydrogen and carbon dioxide are scarcely generated, it has an advantage that the separation step for obtaining pure hydrogen is simple.
【0005】上記メタノール水蒸気改質反応は式(1)
のとおりである。 CH3 OH+H2 O → CO2 +3H2 ・・・・(1) −ΔH25℃=−11.8kcal/molThe above methanol steam reforming reaction is represented by the formula (1)
It is as follows. CH 3 OH + H 2 O → CO 2 + 3H 2 ... (1) −ΔH 25 ° C. = − 11.8 kcal / mol
【0006】この反応はメタノール合成原料への分解
(2)と、それによって生成したCOの水性ガスシフト
反応(3)が同時に起こる結果であると考えられ、両反
応を促進する触媒の開発が急務となっている。 CH3 OH → CO + 2H2 ・・・・(2) −ΔH25℃=−21.7kcal/mol CO + H2 O → CO2 + H2 ・・・・(3) −ΔH25℃=−9.8kcal/molIt is considered that this reaction is a result of the decomposition (2) to the methanol synthesis raw material and the water gas shift reaction (3) of CO produced thereby occurring simultaneously, and it is an urgent need to develop a catalyst that promotes both reactions. Is becoming CH 3 OH → CO + 2H 2 ··· (2) −ΔH 25 ° C = −21.7 kcal / mol CO + H 2 O → CO 2 + H 2 ··· (3) −ΔH 25 ° C = − 9.8 kcal / mol
【0007】反応(2)は平衡が高温ほど右側に有利と
なるが、反応(3)はその逆に高温になるほど右側に不
利となる。反応(3)を促進させる必要条件は水蒸気の
使用量を多くすることと反応温度を低くし得る触媒を使
用することである。しかし、大過剰の水の存在下でメタ
ノールの水蒸気改質反応を行うことは蒸発に過剰の熱量
を必要とするため経済的でなく、メタノールに対する水
の比率(モル比)はできるだけ式(1)の化学量論比に
近づけた状態で行われる方がよい。すなわち、反応温度
が低ければ水蒸気使用量を少なくすることができるの
で、なるべく低温活性の大きい触媒を使用することが必
要である。The reaction (2) is favored to the right as the equilibrium temperature increases, while the reaction (3) is conversely favored to the right as the temperature becomes higher. The necessary conditions for promoting the reaction (3) are to increase the amount of steam used and to use a catalyst that can lower the reaction temperature. However, performing a steam reforming reaction of methanol in the presence of a large excess of water is not economical because it requires an excessive amount of heat for evaporation, and the ratio of water to methanol (molar ratio) is as much as possible by the formula (1). It is better to carry out in a state close to the stoichiometric ratio of. That is, if the reaction temperature is low, the amount of steam used can be reduced, so it is necessary to use a catalyst having a low temperature activity as much as possible.
【0008】従来、メタノールの水蒸気改質反応により
水素含有量の高いガスを得るための触媒としては種々の
触媒が提案されている。例えば、アルミナなどの担体に
銅、白金およびニッケルなどを担持した含浸触媒が提案
されているが、これらの触媒はメタンの生成する反応が
起こりやすく目的成分である水素が生成する反応の選択
性は悪い。また、これらの触媒は低温活性および耐久性
に乏しいなど現在までのところ多くの問題点を残してい
る。Conventionally, various catalysts have been proposed as catalysts for obtaining a gas having a high hydrogen content by a steam reforming reaction of methanol. For example, impregnation catalysts in which copper, platinum, nickel, etc. are supported on a carrier such as alumina have been proposed, but these catalysts have a high selectivity for the reaction in which hydrogen, which is a target component, is apt to easily react to generate methane. bad. Further, these catalysts have many problems so far, such as low temperature activity and poor durability.
【0009】一方、上記の含浸処理に代わり銅、亜鉛、
アルミニウム及び/又はクロムの酸化物系の沈殿触媒が
提案されている。一般に、この触媒は低温活性はよい
が、副反応が起こりやすいため、高純度水素を得るには
問題があり、十分に調製方法に関する検討を行っている
とは言い難い。On the other hand, instead of the above impregnation treatment, copper, zinc,
Oxide-based precipitation catalysts of aluminum and / or chromium have been proposed. In general, this catalyst has good low-temperature activity, but since side reactions easily occur, there is a problem in obtaining high-purity hydrogen, and it is hard to say that the preparation method has been sufficiently investigated.
【0010】[0010]
【発明が解決しようとする課題】これまで調製されてき
た銅、亜鉛、アルミニウム及び/又はクロムを含む触媒
は共沈方法により調製されているが、主に、上記金属塩
混合水溶液をアルカリ性沈殿液に滴下し沈殿を生成する
方法、または金属塩水溶液とアルカリ沈殿液を同時に滴
下して中性付近の一定pH域にて沈殿物を得る方法が例
として挙げられている。その結果、前者の方法は各金属
により沈殿するpH域が異なり、3種金属の沈殿物が別
々に析出するため共沈とは言い難く、別々の結晶種より
なる沈殿物となり、好ましくない。一方、後者の方法は
3種金属が同時に沈殿し、3種金属を含んだ結晶種を形
成し、比較的比表面積が多く、均一な触媒となるが目標
値をクリアーするまでの活性を有していない。The catalyst containing copper, zinc, aluminum and / or chromium, which has been prepared so far, is prepared by a coprecipitation method. As an example, there is a method of forming a precipitate by dropping the solution into a solution, or a method of simultaneously adding an aqueous solution of a metal salt and an alkali precipitation solution to obtain a precipitate in a constant pH range around neutral. As a result, the former method is different from each other in the pH range in which it is precipitated, and the precipitates of the three kinds of metals are separately precipitated. Therefore, it is difficult to say coprecipitation, and the precipitates are composed of different crystal species, which is not preferable. On the other hand, in the latter method, the three kinds of metals are simultaneously precipitated to form crystal seeds containing the three kinds of metals, and the catalyst has a relatively large specific surface area and a uniform catalyst, but has activity until it clears the target value. Not not.
【0011】そこで本発明者らは低温活性のよい銅、亜
鉛、アルミニウム及び/又はクロムの酸化物系の特性を
生かし、副反応が起り難いメタノール水蒸気改質用触媒
の調製方法として、所定温度に保温した沈殿剤水溶液
に、まず亜鉛とアルミニウム及び/又はクロムを含んだ
水溶液を滴下して複合水酸化物沈殿を生成した後、銅を
含んだ水溶液を滴下して沈殿物を生成させ、得られた複
合水酸化物を焼成安定化する方法で、酸化銅、酸化亜
鉛、酸化アルミニウム及び/又は酸化クロムを含有する
触媒を調製する方法を提案した(特開平3〜52643
号公報)。Accordingly, the present inventors have made use of the characteristics of oxide systems of copper, zinc, aluminum and / or chromium having good low-temperature activity, and as a method for preparing a methanol steam reforming catalyst in which side reactions do not easily occur An aqueous solution containing zinc and aluminum and / or chromium was first added dropwise to the warmed aqueous precipitant solution to form a complex hydroxide precipitate, and then an aqueous solution containing copper was added dropwise to form a precipitate, which was obtained. A method for preparing a catalyst containing copper oxide, zinc oxide, aluminum oxide and / or chromium oxide by a method of stabilizing the composite hydroxide by calcination is proposed (JP-A-3-52643).
Publication).
【0012】上記触媒については、ある程度耐久性はあ
るものゝ、さらに耐久性を向上させる必要があった。そ
こで本発明は上記触媒の調製方法を改良した耐久性のよ
り優れたメタノール水蒸気改質用触媒の調製方法を提供
しようとするものである。The above catalyst has some durability, but it was necessary to further improve the durability. Therefore, the present invention intends to provide a method for preparing a methanol steam reforming catalyst having improved durability, which is an improvement of the above-mentioned catalyst preparation method.
【0013】[0013]
【課題を解決するための手段】そこで、本発明者らは、
既存の銅、亜鉛とアルミニウム及び/又はクロム系メタ
ノール水蒸気改質触媒の性能を上回る触媒の開発研究を
鋭意実施した結果、この種触媒のメタノール水蒸気改質
反応の主な活性種はCu+ であり、触媒中に有効な活性
点が多く存在するように調製すべきであるとの知見を得
た。Therefore, the present inventors have
As a result of diligent research and development of a catalyst that exceeds the performance of existing copper, zinc and aluminum and / or chromium-based methanol steam reforming catalysts, the main active species of the methanol steam reforming reaction of this type of catalyst is Cu + . , It was found that the catalyst should be prepared so that many active sites are present in the catalyst.
【0014】本発明は上記知見に基づいて完成されたも
のであって、酸化銅、酸化亜鉛、酸化アルミニウム及び
/又は酸化クロムを含有するメタノール水蒸気改質用触
媒を調製するにあたり、所定温度に保温した沈殿剤水溶
液に、まずアルミニウム及び/又はクロムを含有する水
溶液を滴下し、さらに亜鉛の化合物を含有する水溶液を
滴下して、複合水酸化物沈殿を生成した後、次に、銅を
含んだ水溶液を滴下して沈殿物を生成させ、得られた複
合水酸化物沈殿物を焼成安定化することを特徴とするメ
タノール水蒸気改質用触媒の調製方法である。The present invention has been completed on the basis of the above findings, and in preparing a methanol steam reforming catalyst containing copper oxide, zinc oxide, aluminum oxide and / or chromium oxide, it is kept at a predetermined temperature. First, an aqueous solution containing aluminum and / or chromium was added dropwise to the prepared precipitant aqueous solution, and then an aqueous solution containing a zinc compound was added dropwise to generate a complex hydroxide precipitate, and then copper was included. A method for preparing a catalyst for methanol steam reforming, which comprises dropping an aqueous solution to form a precipitate, and stabilizing the obtained composite hydroxide precipitate by calcination.
【0015】[0015]
【作用】本発明の高活性なメタノール水蒸気改質触媒の
調製方法をさらに詳述する。まず、沈殿剤水溶液を保温
し、攪拌しながらアルミニウム及び/又はクロムの化合
物を含有した液を滴下し、さらに亜鉛の化合物を含有し
た水溶液を滴下して沈殿物を析出させ、滴下後、次に銅
の化合物を含んだ水溶液を滴下して沈殿物を生成する。
この際、滴下終了時のpHが4以上で滴下した金属イオ
ンがほとんど全て複合水酸化物の沈殿物として析出す
る。沈殿剤水溶液はアルカリ水溶液であり、通常0.1
〜10M濃度のNa2 CO3 ,NaHCO3 ,NaO
H,K2 CO3 ,NH3 による水溶液が用いられ、とり
わけNa2 CO3 水溶液が好ましい。また、沈殿を生成
する際の溶液の温度を15〜90℃の範囲に保つのが好
ましい。さらに、銅、亜鉛、アルミニウム及び/又はク
ロムの化合物は硝酸塩、塩化物、硫酸塩、酢酸塩を0.
01〜1.0M濃度にて用いられ、とりわけ、硝酸塩が
好ましい金属塩である。また、滴下時間、熟成時間は特
に影響はないが、均一に金属イオンが分散し沈殿物が析
出する条件であればよく、通常は滴下時間0.1分〜3
時間、熟成時間0.1分〜3時間の範囲にて実施され
る。The method for preparing the highly active methanol steam reforming catalyst of the present invention will be described in more detail. First, the aqueous solution of the precipitating agent is kept warm, and a liquid containing a compound of aluminum and / or chromium is dropped while stirring, and an aqueous solution containing a compound of zinc is further dropped to deposit a precipitate. An aqueous solution containing a copper compound is added dropwise to form a precipitate.
At this time, almost all the metal ions added at a pH of 4 or more at the end of the addition are deposited as a precipitate of the composite hydroxide. The precipitant aqueous solution is an alkaline aqueous solution and is usually 0.1
10M concentration of Na 2 CO 3 , NaHCO 3 , NaO
An aqueous solution of H, K 2 CO 3 and NH 3 is used, and an Na 2 CO 3 aqueous solution is particularly preferable. Further, it is preferable to keep the temperature of the solution at the time of forming the precipitate in the range of 15 to 90 ° C. Furthermore, compounds of copper, zinc, aluminum and / or chromium are nitrates, chlorides, sulphates and acetates of 0.
It is used at a concentration of 01 to 1.0 M, and nitrate is a preferable metal salt. Further, the dropping time and the aging time are not particularly affected, but may be any conditions under which the metal ions are uniformly dispersed and the precipitate is deposited, and the dropping time is usually 0.1 minutes to 3 minutes.
The aging time is 0.1 minutes to 3 hours.
【0016】得られた沈殿物は種々の結晶種を有する
が、アルカリ金属イオンや陰イオンを十分洗浄除去した
後、200〜400℃の範囲にて焼成することにより、
CuO,ZnO,Al2 O3 及び/又はCr2 O3 を含
有するメタノール水蒸気改質触媒が得られる。触媒の組
成としては、原子比で表して、Cu:Zn:Al及び/
又はCr=100:10〜250:1〜100の範囲が
好ましい。The obtained precipitate has various crystal seeds, but after alkali metal ions and anions are sufficiently washed and removed, the precipitate is calcined in the range of 200 to 400 ° C.
A methanol steam reforming catalyst containing CuO, ZnO, Al 2 O 3 and / or Cr 2 O 3 is obtained. The composition of the catalyst is represented by the atomic ratio of Cu: Zn: Al and /
Alternatively, the range of Cr = 100: 10 to 250: 1 to 100 is preferable.
【0017】[0017]
(実施例1)炭酸ナトリウム(Na2 CO3 2.5m
ol)を水2リットルに溶かし70℃で保温する。この
アルカリ水溶液を溶液Aとする。硝酸亜鉛{Zn(NO
3 ) 2 ・6H2 O}0.225molと硝酸アルミニウ
ム{Al(NO3 )・9H2O}0.075molをそ
れぞれ水400ccに溶かし、60℃に保温し、この酸
性溶液を溶液B、溶液Cとする。さらに、硝酸銅{Cu
(NO3 )2 ・3H2O}0.3molを水200cc
に溶かし60℃に保温し、この酸性溶液を溶液Dとす
る。 (Example 1) Sodium carbonate (Na2CO3 2.5m
ol) is dissolved in 2 liters of water and kept at 70 ° C. this
Let the alkaline aqueous solution be solution A. Zinc nitrate {Zn (NO
3) 2・ 6H2O} 0.225 mol and aluminum nitrate
Mu {Al (NO3) 9H2O} 0.075 mol
Dissolve each in 400 cc of water and keep it warm at 60 ° C.
The sexual solutions are referred to as solution B and solution C. Furthermore, copper nitrate {Cu
(NO3)2・ 3H2O} 0.3 mol water 200 cc
And keep it at 60 ℃, and call this acidic solution D
It
【0018】まず、攪拌しながら溶液Aに溶液Cを30
分にわたって均一に滴下しさらに溶液Bを30分にわた
って均一に滴下し、懸濁液を得る。次に、溶液Dを前記
懸濁液に30分にわたって一定速度で滴下し、沈殿物を
得る。滴下終了時のpHは7であった。滴下後1時間の
熟成を行い、次に沈殿物のろ過及びNaイオン、NO 3
イオンが検知されないよう洗浄する。さらに、100
℃、24時間乾燥し、その後、300℃、3時間焼成す
ることにより、CuO−ZnO−Al2 O3 複合酸化物
を得た。この触媒を触媒1とする。First, while stirring, the solution C is added to the solution C by 30 times.
Over a period of 30 minutes, and the solution B was spread over 30 minutes.
Uniformly add dropwise to obtain a suspension. Next, the solution D is
The suspension was added dropwise at a constant rate over 30 minutes to remove the precipitate.
obtain. The pH at the end of the dropping was 7. 1 hour after dropping
Aging is performed, and then filtration of the precipitate and Na ions, NO 3
Clean so that no ions are detected. In addition, 100
Dry at ℃ for 24 hours, then bake at 300 ℃ for 3 hours
By this, CuO-ZnO-Al2O3Complex oxide
Got This catalyst is referred to as catalyst 1.
【0019】(実施例2)さらに、B液として硝酸亜鉛
{Zn(NO3 )2 ・6H2 O}0.2mol、C液と
して硝酸アルミニウム{Al(NO3 )3 ・9H2 O}
0.1molを用いる以外は実施例1と同様の調製法に
てメタノール水蒸気改質触媒を調製した。この触媒を触
媒2とする。(Example 2) Furthermore, 0.2 mol of zinc nitrate {Zn (NO 3 ) 2 .6H 2 O} as the B liquid and aluminum nitrate {Al (NO 3 ) 3 .9H 2 O} as the C liquid.
A methanol steam reforming catalyst was prepared by the same preparation method as in Example 1 except that 0.1 mol was used. This catalyst is referred to as catalyst 2.
【0020】さらに、B液として硝酸亜鉛{Zn(NO
3 )2 ・6H2 O}0.3mol、D液として硝酸銅
{Cu(NO3 )2 ・3H2 O}0.275molを用
いる以外は実施例1と同様の方法にて調製し触媒3を得
た。Furthermore, zinc nitrate {Zn (NO
3) 2 · 6H 2 O} 0.3mol, copper nitrate {Cu (NO 3) 2 · 3H 2 O} except for using 0.275mol was prepared in the same manner as in Example 1 Catalyst 3 as Solution D Obtained.
【0021】(実施例3)B液として硝酸亜鉛{Zn
(NO3 )2 ・6H2 O}を0.225mol、C液と
して硝酸アルミニウムの代わりに硝酸クロム{Cr(N
O3 )3 ・9H2 O}を0.075molを用いる以外
は実施例1と同様の調製方法にて触媒4を得た。(Example 3) Zinc nitrate {Zn as solution B
(NO 3) 2 · 6H 2 O} a 0.225 mol, instead of chromium nitrate aluminum nitrate as C solution {Cr (N
O 3) 3 · 9H 2 O } except for using 0.075mol the got catalyst 4 in the same preparation method as in Example 1.
【0022】さらに、B液として硝酸亜鉛{Zn(NO
3 )2 ・6H2 O}を0.225mol、C液として硝
酸クロム{Cr(NO3 )3 ・9H2 O}を0.05m
ol、硝酸アルミニウム{Al(NO3 )3 ・9H
2 O}0.05mol用いる以外は実施例1と同様の調
製方法にて触媒5を得た。Furthermore, zinc nitrate {Zn (NO
3) 2 · 6H 2 O} a 0.225 mol, 0.05 m chromium nitrate {Cr (NO 3) 3 · 9H 2 O} as C solution
ol, aluminum nitrate {Al (NO 3) 3 · 9H
2 O} 0.05 mol was obtained by the same preparation method as in Example 1 except that 0.05 mol was used.
【0023】(比較例1)実施例1と同様の組成の溶液
A,B,C,Dを用いて、下記方法により従来触媒のC
u−Zn−Al系複合酸化物を調製した。まず、溶液B
に溶液C,溶液Dを加えて、Cu,Zn,Alイオンを
有する酸性水溶液(pH=3)を得る。この水溶液に溶
液A(炭酸ナトリウム水溶液)を攪拌しながら一定速度
で1時間にわたり滴下しpH=7において滴下を終了し
た。滴下終了後、2時間の熟成を行い、得られた複合水
酸化物を洗浄ろ過し、300℃、3時間にて焼成を行っ
た。この触媒を触媒6とする。(Comparative Example 1) Using solutions A, B, C and D having the same composition as in Example 1, the conventional catalyst C was prepared by the following method.
A u-Zn-Al composite oxide was prepared. First, solution B
Solution C and solution D are added to to obtain an acidic aqueous solution (pH = 3) containing Cu, Zn and Al ions. Solution A (sodium carbonate aqueous solution) was added dropwise to this aqueous solution at a constant rate for 1 hour with stirring, and the addition was completed at pH = 7. After completion of the dropping, aging was carried out for 2 hours, the obtained composite hydroxide was washed and filtered, and baked at 300 ° C. for 3 hours. This catalyst is referred to as catalyst 6.
【0024】(実験例)実施例1〜3、比較例1にて得
られた触媒1〜6のメタノール水蒸気改質反応の活性評
価試験を下記条件にて実施した。 〇圧力 : 15kg/cm2 ・G 〇H2 O/CH3 OH: 2(モル比) 〇LHSV : 2h-1 (Experimental Example) An activity evaluation test of the methanol steam reforming reaction of the catalysts 1 to 6 obtained in Examples 1 to 3 and Comparative Example 1 was carried out under the following conditions. 〇 Pressure: 15kg / cm 2 · G 〇 H 2 O / CH 3 OH: 2 (molar ratio) 〇 LHSV: 2h -1
【0025】反応温度250℃での各触媒の活性評価結
果を表1に示す。表1に示すように本発明の触媒1〜5
は、比較触媒6と比較して初期活性が高くかつ1000
時間の耐久試験後も高い活性を有することがわかった。Table 1 shows the results of activity evaluation of each catalyst at a reaction temperature of 250 ° C. As shown in Table 1, catalysts 1 to 5 of the present invention
Has a high initial activity and 1000
It was found to have high activity even after the endurance test of time.
【0026】また、触媒1を用いて同じ方法で反応温度
を変えて試験を行った結果を表2に示す。表2に示すよ
うに本発明の触媒はメタノール水蒸気改質触媒として優
れていることがわかった。Table 2 shows the results of tests conducted by using the catalyst 1 and changing the reaction temperature in the same manner. As shown in Table 2, the catalyst of the present invention was found to be excellent as a methanol steam reforming catalyst.
【0027】[0027]
【表1】 生成ガスの組成(メタノールと水を除外) 触媒1〜5 H2 :74.6〜74.8%、CO:0.
8〜1.0%、CO2 :24.4〜24.6% 触媒 6 H2 :73.3%、CO:1%、CO2 :
24%、その他:1.7%[Table 1] Composition of produced gas (excluding methanol and water) Catalyst 1 to 5 H 2 : 74.6 to 74.8%, CO: 0.
8~1.0%, CO 2: 24.4~24.6% catalyst 6 H 2: 73.3%, CO : 1%, CO 2:
24%, others: 1.7%
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】以上の実施例及び比較例から本発明によ
り調製した触媒は従来の触媒に比し、メタノールと水と
反応させて水素富化ガスを得る反応に対し、低温で高活
性、高選択性かつ長寿命の触媒であることが明らかであ
る。EFFECTS OF THE INVENTION The catalyst prepared according to the present invention from the above Examples and Comparative Examples has a high activity and a high activity at a low temperature as compared with the conventional catalyst in the reaction of reacting with methanol and water to obtain a hydrogen-enriched gas. It is clearly a selective and long-life catalyst.
Claims (1)
び/又は酸化クロムを含有するメタノール水蒸気改質用
触媒を調製するにあたり、所定温度に保温した沈殿剤水
溶液に、まずアルミニウム及び/又はクロムを含有する
水溶液を滴下し、さらに亜鉛の化合物を含有する水溶液
を滴下して、複合水酸化物沈殿を生成した後、次に、銅
を含んだ水溶液を滴下して沈殿物を生成させ、得られた
複合水酸化物沈殿物を焼成安定化することを特徴とする
メタノール水蒸気改質用触媒の調製方法。1. In preparing a methanol steam reforming catalyst containing copper oxide, zinc oxide, aluminum oxide and / or chromium oxide, an aqueous precipitant solution kept at a predetermined temperature contains aluminum and / or chromium. Was added dropwise, and then an aqueous solution containing a zinc compound was added to form a composite hydroxide precipitate, and then an aqueous solution containing copper was added to form a precipitate, which was obtained. A method for preparing a catalyst for reforming methanol steam, which comprises stabilizing a composite hydroxide precipitate by calcination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10989092A JP3349167B2 (en) | 1992-04-28 | 1992-04-28 | Preparation method of methanol steam reforming catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10989092A JP3349167B2 (en) | 1992-04-28 | 1992-04-28 | Preparation method of methanol steam reforming catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05305234A true JPH05305234A (en) | 1993-11-19 |
JP3349167B2 JP3349167B2 (en) | 2002-11-20 |
Family
ID=14521757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10989092A Expired - Lifetime JP3349167B2 (en) | 1992-04-28 | 1992-04-28 | Preparation method of methanol steam reforming catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3349167B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6844292B1 (en) | 2000-04-19 | 2005-01-18 | Osaka Gas Co., Ltd. | Method for preparing catalyst for reforming methanol |
-
1992
- 1992-04-28 JP JP10989092A patent/JP3349167B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6844292B1 (en) | 2000-04-19 | 2005-01-18 | Osaka Gas Co., Ltd. | Method for preparing catalyst for reforming methanol |
Also Published As
Publication number | Publication date |
---|---|
JP3349167B2 (en) | 2002-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101319137B1 (en) | A Catalyst for Decomposing Hydrocarbons, a Method for Decomposing Hydrocarbons using the Same and a Method for Preparing Hydrogen, and an Electric Generating System | |
WO2009078979A2 (en) | Iron-based water gas shift catalyst | |
CN105358477A (en) | Method for pre-reforming olefin-containing hydrocarbon streams, pre-reforming catalyst and method for preparing the catalyst | |
JPH10277392A (en) | Catalyst for synthesis of methanol | |
KR100277048B1 (en) | Hydrogen Production Method and Catalysts Used Thereon | |
JP2634247B2 (en) | Preparation method of methanol steam reforming catalyst | |
JP3327630B2 (en) | Method for producing catalyst for methanol synthesis | |
JPH05305234A (en) | Preparation of steam reforming catalyst for methanol | |
JP2535760B2 (en) | Method for producing catalyst for steam reforming of methanol | |
JP2695663B2 (en) | Method for producing catalyst for methanol synthesis | |
JPH11290685A (en) | Cobalt catalyst for reforming and preparation of synthetic gas using the catalyst | |
JPS5870839A (en) | Catalyst for steam reforming of methanol | |
JPH09141099A (en) | Methanol synthesis catalyst | |
JP4202087B2 (en) | Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst | |
JP4092538B2 (en) | Method for producing hydrogen-containing gas | |
JPH09253495A (en) | Methanol synthesis catalyst | |
JP3276679B2 (en) | Steam reforming catalyst and hydrogen production method | |
JPH0576341B2 (en) | ||
JP3510406B2 (en) | Methanol synthesis catalyst | |
JPS61234939A (en) | Catalyst for producing h2-enriched gas | |
JP4350835B2 (en) | On-vehicle reforming method and apparatus for dimethyl ether | |
JP2001276620A (en) | Catalyst for reforming hydrocarbon | |
JPH0371174B2 (en) | ||
EP1287890A1 (en) | Method for preparing catalyst for reforming methanol | |
JPH05138024A (en) | Methanol reforming catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080913 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080913 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100913 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110913 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110913 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120913 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120913 Year of fee payment: 10 |