JPH05304945A - Fine alga belonging to genus chlorella for immobilizing co2 in high concentration - Google Patents
Fine alga belonging to genus chlorella for immobilizing co2 in high concentrationInfo
- Publication number
- JPH05304945A JPH05304945A JP4245860A JP24586092A JPH05304945A JP H05304945 A JPH05304945 A JP H05304945A JP 4245860 A JP4245860 A JP 4245860A JP 24586092 A JP24586092 A JP 24586092A JP H05304945 A JPH05304945 A JP H05304945A
- Authority
- JP
- Japan
- Prior art keywords
- strain
- concentration
- microalgae
- culture
- chlorella
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000195649 Chlorella <Chlorellales> Species 0.000 title claims abstract description 37
- 230000003100 immobilizing effect Effects 0.000 title description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 15
- 108090000623 proteins and genes Proteins 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 9
- 241000195651 Chlorella sp. Species 0.000 claims description 3
- 239000001963 growth medium Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 23
- 241000195493 Cryptophyta Species 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 8
- 239000002689 soil Substances 0.000 abstract description 8
- 229920001817 Agar Polymers 0.000 abstract description 7
- 239000008272 agar Substances 0.000 abstract description 7
- 239000002803 fossil fuel Substances 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 abstract description 5
- 238000002485 combustion reaction Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 241001465754 Metazoa Species 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 44
- 239000002609 medium Substances 0.000 description 20
- 238000005273 aeration Methods 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 13
- 238000012258 culturing Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000005431 greenhouse gas Substances 0.000 description 8
- 235000013339 cereals Nutrition 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 239000002054 inoculum Substances 0.000 description 4
- 230000000243 photosynthetic effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000195585 Chlamydomonas Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 235000016425 Arthrospira platensis Nutrition 0.000 description 2
- 240000002900 Arthrospira platensis Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000011681 asexual reproduction Effects 0.000 description 2
- 238000013465 asexual reproduction Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003495 flagella Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 235000008935 nutritious Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 240000009108 Chlorella vulgaris Species 0.000 description 1
- 235000007089 Chlorella vulgaris Nutrition 0.000 description 1
- 241000566265 Chlorococcum littorale Species 0.000 description 1
- 241000003481 Chloromonas augustae Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000288982 Loris Species 0.000 description 1
- 241000196305 Nannochloris Species 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000782014 Planktothrix agardhii NIES-204 Species 0.000 description 1
- 241000195663 Scenedesmus Species 0.000 description 1
- 241000789814 Spirulina subsalsa IAM M-223 Species 0.000 description 1
- 241000304538 Tetradesmus acuminatus Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940019452 loris Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006916 nutrient agar Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 102220201851 rs143406017 Human genes 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/59—Biological synthesis; Biological purification
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Treating Waste Gases (AREA)
- Fodder In General (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高CO2 濃度条件下でC
O2 を固定するクロレラ属の微細藻に関し、より詳しく
は火力発電所などにおける化石燃料燃焼排ガス中の高濃
度CO2 を固定するために使用でき、人間活動に由来す
る温室効果ガスの放出削減に寄与し得るクロレラ属の微
細藻に関するものである。The present invention relates to C under high CO 2 concentration conditions.
Regarding Chlorella microalgae that fixes O 2 , it can be used to fix high-concentration CO 2 in fossil fuel combustion exhaust gas at thermal power plants, etc., and can reduce the emission of greenhouse gases derived from human activities. It relates to microalgae of the genus Chlorella that can contribute.
【0002】[0002]
【従来の技術】藻類は、主に水中に生育し光合成を行な
う下等植物の総称である。その中で、主に単細胞からな
る微小な藻類が微細藻類と呼ばれているが、その種類は
非常に多い。微細藻類のうち、現在、クロレラやセネデ
スムス、スピルリナについて健康食品としての利用およ
び産業化が行なわれているが、その培養の炭素源として
は主に酢酸や無機炭酸塩を用いており、微細藻類に固有
のCO2 固定能を積極的に利用する試みはあまりなされ
ていない。このように、工業用のCO2 や火力発電所排
ガスなどの化石燃料燃焼排ガス中のCO2 を固定するた
めに、微細藻類が用いられている例はない。また、排ガ
ス中のCO2 を固定化したCO2 固定産物を飼料や工業
用SCP(Single Cell Protein ,微生物タンパク質)
として利用する産業は現在皆無の状態である。過去、徳
川生物研究所が都市ガスを燃焼した排ガスで微細藻を培
養した研究例はあるが、固定されるCO2 量が少なく、
しかも燃料費が嵩みすぎ、産業化には至っていない。2. Description of the Related Art Algae is a general term for lower plants that grow in water and undergo photosynthesis. Among them, microalgae consisting mainly of single cells are called microalgae, but the types are extremely large. Among microalgae, chlorella, Senedesmus, and spirulina are currently being used and industrialized as health foods, but acetic acid and inorganic carbonates are mainly used as carbon sources for their culture, and microalgae are used. There have been few attempts to positively utilize the inherent CO 2 fixing ability. As described above, there is no example in which microalgae are used to fix CO 2 in fossil fuel combustion exhaust gas such as industrial CO 2 and exhaust gas from thermal power plants. In addition, CO 2 fixed products obtained by fixing CO 2 in exhaust gas are used for feed and industrial SCP (Single Cell Protein, microbial protein).
There is currently no industry to use as. In the past, Tokugawa Biological Research Institute has researched examples of culturing microalgae with exhaust gas from burning city gas, but the amount of CO 2 fixed was small,
Moreover, the fuel cost is too high and has not been industrialized.
【0003】火力発電所などから多量に排出される化石
燃料燃焼ガス由来のCO2 を、微細藻類のCO2 固定能
を利用して産業的に固定化するためには、排ガスを培養
槽に直接導入した条件でも効率的に機能する微細藻類を
用いることが重要な鍵となる。しかしながら、従来知ら
れていた微細藻類の株では、培養槽に吹き込む空気に富
化できるCO2 の濃度は1ないし5容量%(以下、特記
しない限り%は容量%を意味する)程度であった。化石
燃料を燃焼させた際の排ガスは、燃焼条件によって大き
く異なるものの、現在日本国内の火力発電所排ガス中の
CO2 濃度の平均的な値が、石炭火力で16%前後、石
油火力で15%前後、LNG火力で11%前後(いずれ
も乾燥ガスベース)である。このように、火力発電所排
ガス中のCO2 濃度はおおよそ10ないし15%前後で
ある。これらの排ガスを直接培養槽に吹き込んだ場合、
CO2 濃度が高くて普通の微細藻では生育できない条件
となってしまう。また、最適なCO2 条件にするために
空気で希釈して用いる場合は、排ガスの希釈システムの
コストがCO2 固定コストを引きあげる大きな要因とな
る。以上のことから、排ガスを直接培養槽に導入して微
細藻類を培養しCO2 を固定するためには、高濃度のC
O2 条件下でも機能する微細藻類の株を検索し用いるこ
とが必要である。比較的高いCO2 条件下でも生育する
ものには、海産微細藻類としてナンノクロリス(Nannoch
loris)属NANNO2株〔M. Negro等,Appl. Biochem.
Biotechnol., 28/29, 877-886 (1991), N. Nishikawa
等,Energy conversion and management, Vol. 33, 553
-560 (1992) 〕、淡水産微細藻類としてクラミドモナス
(Chlamydomonas) 属MGA−131株〔山田等,日本農
芸化学会誌,第164巻,第3号,第 659頁 (1990)
〕、クロレラ・ブルガリス(Chlorella vulgaris)21
1/8k株〔H. J. Silva 等, J. Gen. Microbiol., 13
0, 2833-2838 (1984) 〕等が報告されている。なお、排
ガス中のCO2 固定に用いる微細藻類については、株式
会社海洋バイオテクノロジー研究所が発見した、10%
のCO2 濃度でも生育できる海洋性微細藻クロロコッカ
ム・リットラーレ(Chlorococcum littorale)が知られて
いるにすぎない(平成2年8月31日,日本経済新
聞)。In order to industrially immobilize CO 2 derived from fossil fuel combustion gas, which is discharged from thermal power plants in large quantities, by utilizing the CO 2 immobilizing ability of microalgae, the exhaust gas is directly fed to the culture tank. The important key is to use microalgae that function efficiently even under the introduced conditions. However, in the conventionally known strains of microalgae, the concentration of CO 2 that can be enriched in the air blown into the culture tank was about 1 to 5% by volume (hereinafter,% means volume% unless otherwise specified). .. Exhaust gas produced by burning fossil fuel varies greatly depending on the combustion conditions, but the average CO 2 concentration in the exhaust gas of thermal power plants in Japan is currently around 16% for coal-fired power and 15% for oil-fired power. Before and after, about 11% in LNG thermal power (all are dry gas base). Thus, the CO 2 concentration in the exhaust gas of a thermal power plant is around 10 to 15%. When these exhaust gases are blown directly into the culture tank,
The CO 2 concentration is so high that it cannot grow on ordinary microalgae. Further, when used by diluting with air to obtain the optimum CO 2 condition, the cost of the exhaust gas dilution system becomes a major factor of raising the CO 2 fixed cost. From the above, in order to introduce the exhaust gas directly into the culture tank to culture the microalgae and fix the CO 2 , a high concentration of C
It is necessary to search for and use microalgae strains that function even under O 2 conditions. Those that grow under relatively high CO 2 conditions include Nannochloris (Nannochris) as a marine microalgae.
loris) NANNO2 strain [M. Negro et al., Appl. Biochem.
Biotechnol., 28/29, 877-886 (1991), N. Nishikawa
Etc., Energy conversion and management, Vol. 33, 553
-560 (1992)], Chlamydomonas as freshwater microalgae
(Chlamydomonas) genus MGA-131 strain [Yamada et al., Journal of Japan Society for Agricultural Chemistry, Volume 164, No. 3, page 659 (1990)
], Chlorella vulgaris 21
1 / 8k strain [HJ Silva et al., J. Gen. Microbiol., 13
0, 2833-2838 (1984)] etc. have been reported. Regarding the microalgae used to fix CO 2 in the exhaust gas, the marine biotechnology research institute found 10%.
The marine microalga Chlorococcum littorale, which can grow even at a CO 2 concentration of 2 ), is only known (August 31, 1990, Nihon Keizai Shimbun).
【0004】また、微細藻類はその体を構成する物質の
約半分がタンパク質であり、工業用タンパク質もしくは
その原料として利用できる可能性があり、また高栄養の
飼料として利用できる。大気中の温室効果ガスの増加に
よる地球温暖化を防止するためには、温室効果ガスの放
出を抑制することが大事であるが、微細藻類のCO2固
定産物を飼料や工業用タンパク質として用いれば、以下
に記述する、間接的な温室効果ガス放出低減効果が認め
られる。すなわち、現在、世界で家畜飼料として用いら
れる飼料穀物は穀物総生産量の40数%にものぼるが、
その飼料穀物生産に際しては、穀物作物の残さの堆肥化
に伴うメタン発生や、肥料の分解に伴う亜酸化窒素など
の強力な温室効果ガスが放出される。1990年のIP
CC(気候変動に関する政府間パネル)会議報告書によ
ると、今後20年のスケールで考えると、単位重量当り
の温室効果はメタンがCO2 の約60倍、亜酸化窒素が
約270倍と、はるかに強力である。しかし、微細藻類
の培養でSCP生産を行えば、これらの温室効果ガスが
ほとんど発生しない。今後の飼料穀物の増産をSCP飼
料の生産で代替えしてゆくと、飼料を生産する場合に発
生する温室効果ガスを大幅に低減するのに貢献できる。
また、世界的に見ると、飼料穀物増産のために森林の耕
地化が大規模に行なわれ、森林に蓄積された炭素がCO
2 として大気中に放出されているが、微細藻類SCPの
生産は森林の耕地化を伴わず、森林の耕地化を押さえる
効果が見込まれる。以上のように、排ガス中のCO2 を
固定して微細藻類を培養すれば、森林破壊に起因する温
室効果ガスの放出を間接的に抑制する効果も期待でき
る。[0004] In addition, about half of the substances constituting the body of microalgae are proteins, and there is a possibility that they can be used as industrial proteins or their raw materials, and they can also be used as highly nutritious feed. In order to prevent global warming due to an increase in greenhouse gases in the atmosphere, it is important to suppress the release of greenhouse gases, but if a CO 2 fixation product of microalgae is used as feed or industrial protein. The indirect greenhouse gas emission reduction effect described below is recognized. In other words, currently, feed grains used as livestock feed in the world account for 40% or more of the total grain production,
During the production of the feed grain, a strong greenhouse gas such as methane generation accompanying composting of the residue of the grain crop and nitrous oxide accompanying the decomposition of the fertilizer is released. IP of 1990
According to the CC (Intergovernmental Panel on Climate Change) conference report, the greenhouse effect per unit weight is about 60 times that of CO 2 and about 270 times that of nitrous oxide, considering the scale of the next 20 years. To be powerful. However, when SCP is produced by culturing microalgae, these greenhouse gases are hardly generated. If the production increase of feed grains in the future is replaced by the production of SCP feed, it can contribute to the significant reduction of greenhouse gases generated when producing feed.
In addition, globally, the arable land of forests has been extensively converted to increase the production of feed grains, and the carbon accumulated in the forests becomes CO.
Although it is released into the atmosphere as 2 , the production of microalgae SCP does not accompany the cultivation of forests and is expected to have the effect of suppressing the cultivation of forests. As described above, by fixing CO 2 in the exhaust gas and culturing the microalgae, the effect of indirectly suppressing the release of greenhouse effect gas due to deforestation can be expected.
【0005】[0005]
【発明が解決しようとする課題】本発明は、このような
状況を考慮してなされたものであり、上記の高濃度にC
O2 を含有する排ガスを利用した培養が可能となるよう
な微細藻、該微細藻による排ガス等を利用したCO2 固
定方法、および前記微細藻のCO2 固定産物からなる飼
料または工業用タンパク質を提供することを課題とす
る。SUMMARY OF THE INVENTION The present invention has been made in consideration of such a situation, and has the above-mentioned high concentration of C.
A microalga capable of culturing using an exhaust gas containing O 2 , a CO 2 fixing method using the exhaust gas from the microalga, and a feed or industrial protein comprising the CO 2 fixing product of the microalga. The challenge is to provide.
【0006】[0006]
【課題を解決するための手段】本発明者は、種々研究を
重ねた結果、高いCO2 濃度の大気を通気した培養にお
いてCO2 を固定し生育する特定の微細藻を分離・純化
し、前記排ガスを模擬したガスを通気した培養が、該微
細藻の増殖を促進するか、またはCO2 固定能の低下を
もたらさないことを見いだし、さらに、該微細藻のCO
2 固定産物中のタンパク質含量が40重量%以上と高い
ことを知得して、本発明を完成した。Means for Solving the Problems As a result of various studies, the present inventor has isolated and purified specific microalgae that fix and grow CO 2 in culture aerated with a high CO 2 concentration in the atmosphere. It was found that the culture aerated with a gas simulating the exhaust gas does not promote the growth of the microalgae or bring about a decrease in the CO 2 fixing ability.
2 It was found that the protein content in the immobilized product was as high as 40% by weight or more, and the present invention was completed.
【0007】本発明者は、排ガス中のCO2 固定に適用
できる菌株を検索するために以下の点に着目した。排ガ
ス中のCO2 濃度は、大気中の濃度に比べて3けた高い
が、自然界の藻類が生息する場所の中でも、土壌のよう
に時期や条件によってCO2濃度が高くなる場所が存在
する。従って、自然界からの検索サンプルは、湖沼など
の水の他に、そのような高CO2 濃度となる水田の田面
水や土壌などから採取した。The present inventor has paid attention to the following points in order to search for strains applicable to CO 2 fixation in exhaust gas. The CO 2 concentration in the exhaust gas is three orders of magnitude higher than the concentration in the atmosphere, but among the places where natural algae inhabit, there are places such as soil where the CO 2 concentration increases depending on the time and conditions. Therefore, search samples from the natural world were collected from water such as lakes and marshes, as well as paddy water and soil of paddy fields having such a high CO 2 concentration.
【0008】すなわち、本発明は、5ないし20容量%
のCO2 濃度で安定に生育可能であるクロレラ(Chlorel
la) 属の微細藻に関する。本発明において「安定に生育
可能である」とは通常の大気通気条件下での生育と同等
か、またはそれ以上に生育することを意味する。That is, the present invention is 5 to 20% by volume.
(Chlorel) that can grow stably at various CO 2 concentrations
la) concerning microalgae of the genus. In the present invention, “stable growth” means that the growth is equivalent to or higher than the growth under normal atmospheric aeration conditions.
【0009】本発明者はさまざまな採取地からの湖沼
水、田面水および土壌などを分離源とし、弱光下での前
培養後、特定の混合ガス(CO2 =15%,O2 =2
%,N2=83%)を通気して集積培養し、さらに平板
寒天培地を用いた分離・純化方法により、クローン化お
よび無菌化して微細藻の6つの新規純粋分離株を得、こ
れらをHA−1株、HA−2株、HC−1株、HC−2
株、HT−1株およびHT−2株と命名した。これらは
火力発電所排ガスのような高いCO2 濃度のガスを通気
して培養しても生育できる株である。これらの分離株に
ついて光学顕微鏡を用いて、その形態や生活環を観察
し、属レベルの分類を行ったところ、いずれも形態は類
似しており、体制分化は単細胞、細胞形態は球形、大き
さは約2〜7μmであり、体内に自生胞子を形成する無
性生殖により増殖を行い、そして細胞内の葉緑体数は1
個で鞭毛を有せず運動性はなかった。以上の特徴から、
6つの新規分離株は全てクロレラ属に属すると判断され
た。なお、現在、工業技術院微生物工業技術研究所では
藻類は受託していないため、本発明の上記分離株はいず
れも寄託されていない。The present inventor uses lake water, rice field water, soil and the like from various sampling sites as a separation source, and after pre-culturing under weak light, a specific mixed gas (CO 2 = 15%, O 2 = 2)
%, N 2 = 83%), aerated and cultivated, and then cloned and sterilized by a separation / purification method using a plate agar medium to obtain 6 new pure isolates of microalgae. -1 strain, HA-2 strain, HC-1 strain, HC-2
The strain was named strain HT-1 and strain HT-2. These are strains that can grow even when aerated with a gas having a high CO 2 concentration such as exhaust gas from a thermal power plant. The morphology and life cycle of these isolates were observed using an optical microscope and genus-level classification was performed.The morphology was similar, and systematic differentiation was single cell, cell morphology was spherical, and size. Is about 2 to 7 μm, proliferates by asexual reproduction that forms autospores in the body, and the number of chloroplasts in the cell is 1
The individual had no flagella and was not motile. From the above characteristics,
All six new isolates were determined to belong to the genus Chlorella. At present, the Institute of Microbial Science and Technology of the Agency of Industrial Science and Technology does not deposit algae, so none of the above isolates of the present invention has been deposited.
【0010】また、本発明の上記微細藻はCO2 以外に
酢酸や炭酸塩などの特別な炭素源なしで生育可能である
ことから、CO2 を固定・資化し得るものである。従っ
て、本発明は、本発明に係る微細藻を用いるCO2 の固
定方法に関する。この方法において、CO2 濃度5ない
し20%の気体を培養液に曝気することが好ましい。こ
のような気体としては、例えば化石燃料を燃焼させた場
合に発生する種々の排ガスなどでよく、特に火力発電所
排ガスなどがある。具体例を示すと、上記微細藻クロレ
ラ属HA−1株は、10%のCO2 濃度の空気を通気し
た培養で増殖が最大となり、CO2 の富化による生育促
進効果が認められる。CO2 15%では、10%に比べ
てCO2 濃度の増加による阻害が見られるが、増殖能力
は高いレベルを保持している。この特性は、排ガスを直
接培養槽に導いて通気培養すれば、HA−1株の増殖を
促進するか、またはCO2 固定能の低下をもたらさない
で培養できることを示すものである。Further, the microalgae of the present invention since it is able to grow without special carbon source such as acetate or carbonate in addition to CO 2, it is capable of fixing and assimilate CO 2. Therefore, the present invention relates to a method for fixing CO 2 using the microalgae according to the present invention. In this method, it is preferable to aerate the culture medium with a gas having a CO 2 concentration of 5 to 20%. As such a gas, for example, various exhaust gases generated when a fossil fuel is burned may be used, and in particular, thermal power station exhaust gas is used. As a specific example, the above-mentioned microalga Chlorella HA-1 strain shows the maximum growth in the culture aerated with air having a CO 2 concentration of 10%, and a growth promoting effect due to CO 2 enrichment is recognized. At 15% CO 2 , inhibition was observed due to an increase in CO 2 concentration compared to 10%, but the proliferative capacity remained at a high level. This characteristic indicates that if the exhaust gas is directly introduced into the culture tank and subjected to aeration culture, the culture can be performed without promoting the growth of the HA-1 strain or reducing the CO 2 fixing ability.
【0011】CO2 固定産物である微細藻体に含まれる
タンパク質含量は乾物重の42〜44%であり、各CO
2 条件下で培養した藻体間に大差はない。HA−1株等
を包含する本発明の微細藻の藻体の約半分がタンパク質
であることは、高栄養の飼料または工業用タンパク質
(またはその原料)として使用し得ることを示してい
る。従って、本発明は本発明に係る微細藻のCO2 固定
産物からなる飼料または工業用タンパク質に関する。The protein content of the microalgae, which is a CO 2 -fixing product, is 42 to 44% of the dry matter weight.
There is no great difference between the algal cells cultured under the two conditions. The fact that about half of the algal bodies of the microalgae of the present invention including the HA-1 strain and the like are proteins indicates that they can be used as highly nutritive feeds or industrial proteins (or raw materials thereof). Therefore, the present invention relates to a feed or industrial protein comprising the CO 2 fixing product of microalgae according to the present invention.
【0012】[0012]
【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
【0013】実施例1 微細藻の分離,純化,分類 さまざまな採取地からの湖沼水、田面水または土壌(全
部で38種類)のうち分離試料として水の場合は1m
l、土壌の場合は湿重量で1gをMBM液体培地(表
1)20mlを入れた大型試験管に加え、蛍光灯下(照
度2500ルクス)、25℃で3週間静置培養した。光
照射サイクルは明条件(光照射)12時間、暗条件(光
未照射)12時間とした。Example 1 Separation, purification, and classification of microalgae Lake water, paddy water or soil (38 types in total) from various sampling sites, 1 m for water as a separation sample
l, in the case of soil, 1 g of wet weight was added to a large test tube containing 20 ml of MBM liquid medium (Table 1), and static culture was carried out at 25 ° C for 3 weeks under fluorescent light (illuminance 2500 lux). The light irradiation cycle was 12 hours for bright conditions (light irradiation) and 12 hours for dark conditions (light non-irradiation).
【表1】 (脚注) *A−5溶液の組成は以下のとおりである: H3 BO3 286mg MnSO4 ・7H2 O 250mg ZnSO4 ・7H2 O 22.2mg CuSO4 ・5H2 O 7.9mg Na2 MoO4 2.1mg 蒸留水 1リットル 次に、混合ガス(CO2 =15%,O2 =2%,N2 =
83%)を通気量60ml/分以上で試験管に流し、こ
の条件で生育する微細藻類を集積培養した。写真撮影用
白熱燈を用いて光を照射した(照度約11000ルク
ス)。温度25℃、明条件10時間、暗条件14時間で
5日間培養した。培養液は、OD=660nmで吸光度
が0.03〜0.05程度になるようにMBM培地に植
え継ぎ、上記条件でさらに3日集積培養した。植え継ぎ
と集積培養をさらに繰り返した結果、CO2 濃度15%
の条件下でも生育する微細藻を含む集積培養試料が得ら
れた。得られた集積培養試料から、以下の方法で微細藻
を分離した。集積培養試料を滅菌水で順次希釈した後、
希釈液をDetmer平板寒天培地(表2)に塗布し、
蛍光灯下(照度2500ルクス)、25℃で2週間静置
培養した。光照射サイクルは明条件12時間、暗条件1
2時間とした。生育したコロニーをMBM寒天培地(表
1のMBM液体培地に1.5%寒天を加えたもの)およ
びMBM液体培地で植え継いだ。[Table 1] (Footnote) * Composition of A-5 solution is as follows: H 3 BO 3 286mg MnSO 4 · 7H 2 O 250mg ZnSO 4 · 7H 2 O 22.2mg CuSO 4 · 5H 2 O 7.9mg Na 2 MoO 4 2.1 mg distilled water 1 liter Next, mixed gas (CO 2 = 15%, O 2 = 2%, N 2 =
(83%) was allowed to flow in a test tube with an aeration rate of 60 ml / min or more, and microalgae growing under these conditions were accumulated and cultured. Light was emitted using an incandescent lamp for photography (illuminance: about 11,000 lux). The culture was carried out at a temperature of 25 ° C. for 10 hours under light conditions and 14 hours under dark conditions for 5 days. The culture solution was subcultured in an MBM medium so that the absorbance was about 0.03 to 0.05 at OD = 660 nm, and the cells were further integrated and cultured for 3 days under the above conditions. As a result of further repeating subculture and enrichment culture, CO 2 concentration of 15%
An enriched culture sample containing microalgae that could grow even under the conditions described above was obtained. Microalgae were separated from the obtained integrated culture sample by the following method. After serially diluting the accumulated culture sample with sterile water,
Apply the dilution to Detmer plate agar (Table 2),
The cells were statically cultured at 25 ° C for 2 weeks under a fluorescent lamp (illuminance: 2500 lux). Light irradiation cycle is 12 hours in light and 1 in dark
It was 2 hours. The grown colonies were subcultured on MBM agar medium (MBM liquid medium in Table 1 to which 1.5% agar was added) and MBM liquid medium.
【表2】Detmer寒天平板培地の組成 ─────────────────────── Ca(NO3 )2 ・4H2 O 1.0g KCl 0.25g MgSO4 ・7H2 O 0.25g KH2 PO4 0.25g FeCl3 0.002g 寒天 15g 水道水 1リットル ─────────────────────── 植え継いだ試料は、バクテリアなどによる汚染の有無を
栄養寒天培地などで確認し、分離試料は他の微生物の混
入がないクローンであることを確認した。さらに、純化
した分離株は、前述の集積培養条件下での生育試験を再
度行ない、集積培養条件での生育能を確認した。このよ
うにして15%という高濃度CO2 を固定して生育する
微細藻が6株分離され、これをHA−1株、HA−2
株、HC−1株、HC−2株、HT−1株およびHT−
2株と命名した。これらの分離株について光学顕微鏡に
より、その形態や生活環を観察したところ、全てクロレ
ラ属に属すると判断された。上記分離株の分離源の採取
地や形態等を表3にまとめて示す。また、これらの分離
株の顕微鏡写真を図1ないし図6に示し、それぞれの色
彩写真を参考写真1ないし6に示す。なお、上記6分離
株以外のサンプルでは、当該条件下で生育できる微細藻
株は分離できなかった。また、以下の9種の国立環境研
究所系統保存微細藻類株:Chloralla pyrenoidosa NIES
-226, Chloralla vulgaris NIES-227, Scenedesmus acu
minatus NIES-92, Scenedesmus acutusNIES-94, Chlamy
domonas augustae NIES-158, Chlamydomonas pulsatill
a NIES-122, Oscillatoria agardhii NIES-204, Spirul
ina platensis NIES-45, Spirulina subsalsa NIES-27
について上記の集積培養条件下での生育を調べたとこ
ろ、明らかな成長が認められたのはChloralla pyrenoid
osa NIES-226のみで、他の株は白色になって死滅する
か、ほとんど生育しなかった。TABLE 2 Composition of Detmer agar plate medium ─────────────────────── Ca (NO 3) 2 · 4H 2 O 1.0g KCl 0.25g MgSO 4 · 7H 2 O 0.25g KH 2 PO 4 0.25g FeCl 3 0.002g agar 15g water 1 liter of water ─────────────────────── The subcultured samples were confirmed to be contaminated by bacteria and the like on a nutrient agar medium, etc., and the separated samples were confirmed to be clones free from other microorganisms. Furthermore, the purified isolate was subjected to the above growth test under the enrichment culture condition again to confirm the growth ability under the enrichment culture condition. In this way, 6 strains of microalgae that grow with a high concentration of CO 2 fixed at 15% were separated, and these strains were designated as HA-1 strain and HA-2 strain.
Strain, HC-1 strain, HC-2 strain, HT-1 strain and HT-
Two strains were named. The morphology and life cycle of these isolates were observed with an optical microscope, and all were judged to belong to the genus Chlorella. Table 3 shows the collection sites and morphology of the separation sources of the above-mentioned isolates. Further, micrographs of these isolates are shown in FIGS. 1 to 6, and respective color photographs are shown in reference photos 1 to 6. In addition, in the samples other than the above 6 isolates, microalgae strains that can grow under the conditions could not be isolated. In addition, the following 9 species of the National Institute for Environmental Studies strain-preserving microalgae strain: Chloralla pyrenoidosa NIES
-226, Chloralla vulgaris NIES-227, Scenedesmus acu
minatus NIES-92, Scenedesmus acutusNIES-94, Chlamy
domonas augustae NIES-158, Chlamydomonas pulsatill
a NIES-122, Oscillatoria agardhii NIES-204, Spirul
ina platensis NIES-45, Spirulina subsalsa NIES-27
When the growth was examined under the above-mentioned enrichment culture conditions, clear growth was observed in Chloralla pyrenoid.
With osa NIES-226 only, the other strains became white and died or barely grew.
【表3】 分離株の採取地および特徴* ─────────────────────────────────── 分離株 採取地(分離試料) 細胞の大きさ 属名 ─────────────────────────────────── HA−1株 茨城県美穂村(ハス田の低土) 2−7μm Chlorella HA−2株 茨城県北浦白浜(湖水) 2−8μm Chlorella HC−1株 佐賀県筑後川下流(田面水) 2−6μm Chlorella HC−2株 佐賀県筑後川下流(田面水) 2−7μm Chlorella HT−1株 香川県綾上町(貯水池水) 2−6μm Chlorella HT−2株 香川県善通寺市(貯水池水) 2−7μm Chlorella ─────────────────────────────────── (脚注) *6種の分離株いずれも単細胞で球形であり、自生胞子
形成による無性生殖によって増殖する。葉緑体数は1つ
で、鞭毛を持たず運動性はない。緑藻である。[Table 3] Location and characteristics of isolates * ──────────────────────────────────── Isolate collection Ground (separated sample) Cell size Genus name ─────────────────────────────────── HA-1 strain Miho village, Ibaraki prefecture (low soil of lotus field) 2-7 μm Chlorella HA-2 strain Ibaraki prefecture Kitaura Shirahama (lake water) 2-8 μm Chlorella HC-1 strain Saga prefecture Chikugo river downstream (tamen water) 2-6 μm Chlorella HC-2 Co., Ltd. Lower Chikugo River, Saga (Tamizu) 2-7 μm Chlorella HT-1 Co., Ltd. Ayagami Town, Kagawa (reservoir water) 2-6 μm Chlorella HT-2 Co., Ltd. Zentsuji City, Kagawa (reservoir water) 2-7 μm Chlorella ──── ─────────────────────────────── (Footnote) * All six isolates are single-celled, spherical, and autologous. Formation by growing by asexual reproduction. It has only one chloroplast and has no flagella and is not motile. It is a green alga.
【0014】実施例2 微細藻分離株の培養特性 (a)増殖比 実施例1に記載のクロレラ属の6種の分離株と対照株Ch
loralla pyrenoidosaNIES-226(国立環境研究所系統保
存微細藻類)について、CO2 濃度と生長速度の関係に
ついて検討した。本実施例で用いた培養装置は培養槽、
恒温槽、光照射システム、CO2 富化空気供給装置から
構成され、光照射システムとCO2 富化空気供給装置は
タイマーで時間制御した。培養槽は、高さ30cm×内
径8cmのアクリル製円筒状の容器で、外部壁は側面か
らの入光を防ぐために白色塗料を塗布した。光照射シス
テムには、平行光束型高輝度光源装置UI−501C
(ウシオ電気製)を用いた。この装置では、紫外線と赤
外線を各々レンズ型フィルターとコールドミラーを用い
て減衰させており、また波長特性については光合成に利
用可能な可視光線(400〜700nm)をバランスよ
く発生しており太陽光を模擬できる。本培養装置では、
光は培養槽の上部から照射され、培養液の受光面積は5
0cm2 であった。照度計で測定した受光面の平均照度
は55000ルクスで1100μE/m2 /秒に相当
し、これは関東地方における夏期昼間照度の約半分にあ
たる。CO2 富化空気供給装置は、純CO2 ガスボン
ベ、エアーポンプ、ガス流量計、電磁弁から構成され、
エアーポンプと電磁弁はタイマーに連動し、空気とCO
2 の混合を制御できるようになっている。調整されたC
O2 富化空気は、培養液下部からガラス製フィルター
(木下理化株式会社製)を通して細かな泡として供給し
た。なお、CO2 富化空気のCO2 濃度は赤外線吸収方
式CO2 分析計LX−710型(飯島電子工業株式会社
製)によって定期的に確認した。培養槽の温度は温度コ
ントローラー(大洋株式会社製)によって一定に保っ
た。培養実験は以下のように行った。上述した培養装置
を4組設置し、各装置に、それぞれ空気、5%CO2 を
含む空気、10%CO2 を含む空気および15%CO2
を含む空気を0.25リットル/分の流速で通気した。
培養液として上記のMBM液体培地に比べ栄養塩濃度が
高く、高密度の培養により適しているM4N培地(表
4)を用いた。また、接種源は、M4N培地を用いて空
気を通気しながら培養した各分離株および対照株を70
00rpmで30分間遠心分離し、蒸留水で洗浄してさ
らに遠心分離し、蒸留水に再懸濁して調製した。各培養
装置の培養槽には950mlのM4N培地を入れ、接種
源を50ml接種した。接種源中の藻体量は各株毎の一
連の実験において同量であり、各株毎の接種量は約80
ないし110mgであった。接種した後、各装置におい
て、それぞれの濃度のCO2 を含んだ空気を通気しなが
ら、25℃で1週間培養した。光照射サイクルは明条件
12時間、暗条件12時間とし、通気は明条件期間のみ
行った。なお、培養は無菌条件ではなく開放系で行っ
た。培養後、培養液の全量を遠心分離し、蒸留水で洗浄
してさらに遠心分離し蒸留水に再懸濁した。懸濁液を1
05℃で乾燥し、生産乾物量を測定した。乾物試料はさ
らにC/NコーダーNC−800型(住友化学工業株式
会社製)を用いて炭素含量および窒素含量を測定した。Example 2 Culture Characteristics of Microalgae Isolates (a) Growth Ratio Six isolates of the genus Chlorella described in Example 1 and the control strain Ch
For loralla pyrenoidosaNIES-226 (National Institute for Environmental Studies strain preservation microalgae), was examined the relationship CO 2 concentration and growth rate. The culture device used in this example is a culture tank,
It consisted of a constant temperature bath, a light irradiation system and a CO 2 enriched air supply device, and the light irradiation system and the CO 2 enriched air supply device were time-controlled by a timer. The culture tank was a cylindrical acrylic container having a height of 30 cm and an inner diameter of 8 cm, and the outer wall was coated with white paint to prevent light from entering from the side surface. The light irradiation system includes a parallel light flux type high brightness light source device UI-501C.
(Manufactured by Ushio Denki) was used. In this device, ultraviolet rays and infrared rays are attenuated using a lens type filter and a cold mirror, respectively, and in terms of wavelength characteristics, visible light (400 to 700 nm) that can be used for photosynthesis is generated in a well-balanced manner. Can be simulated. In the main culture device,
Light is emitted from the upper part of the culture tank, and the light receiving area of the culture solution is 5
It was 0 cm 2 . The average illuminance on the light-receiving surface measured by an illuminometer is 55,000 lux, which is equivalent to 1100 μE / m 2 / sec, which is about half of the summer daytime illuminance in the Kanto region. The CO 2 enriched air supply device is composed of a pure CO 2 gas cylinder, an air pump, a gas flow meter, and a solenoid valve,
The air pump and solenoid valve are linked to the timer, and air and CO
The mixing of 2 can be controlled. Adjusted C
The O 2 enriched air was supplied as fine bubbles from the bottom of the culture solution through a glass filter (Kinoshita Rika Co., Ltd.). The CO 2 concentration in the CO 2 -enriched air was periodically confirmed by an infrared absorption type CO 2 analyzer LX-710 (made by Iijima Electronics Industry Co., Ltd.). The temperature of the culture tank was kept constant by a temperature controller (manufactured by Taiyo Co., Ltd.). The culture experiment was performed as follows. Four sets of the above-mentioned culture devices are installed, and each device has air, air containing 5% CO 2 , air containing 10% CO 2 and 15% CO 2.
Containing air was aerated at a flow rate of 0.25 l / min.
As a culture medium, M4N medium (Table 4) having a higher nutrient concentration than the above MBM liquid medium and more suitable for high density culture was used. As for the inoculum, 70% of each isolate and control strain were cultivated in M4N medium with aeration of air.
It was prepared by centrifugation at 00 rpm for 30 minutes, washing with distilled water, further centrifugation, and resuspension in distilled water. 950 ml of M4N medium was placed in the culture tank of each culture device, and 50 ml of the inoculum was inoculated. The amount of algal bodies in the inoculum was the same in a series of experiments for each strain, and the inoculum amount for each strain was about 80.
To 110 mg. After inoculation, each device was cultured at 25 ° C. for 1 week while aerating air containing CO 2 at each concentration. The light irradiation cycle was 12 hours for light conditions and 12 hours for dark conditions, and ventilation was performed only during the light conditions. The culture was performed in an open system rather than aseptic conditions. After culturing, the entire amount of the culture solution was centrifuged, washed with distilled water, further centrifuged, and resuspended in distilled water. 1 suspension
It was dried at 05 ° C. and the dry matter produced was measured. The dry matter sample was further measured for carbon content and nitrogen content using a C / N coder NC-800 type (manufactured by Sumitomo Chemical Co., Ltd.).
【表4】 結果を図7ないし図13に示すが、微細藻の増殖を示す
指標として、増殖比、すなわち1週間の培養で増殖した
量(最終乾物重から接種乾物重を差し引いた量)を接種
乾物重で除した値を用いた。従って、増殖比に1を加え
た数値は接種したクロレラの量が1週間で何倍になった
かを示す。本実験条件下では、クロレラ乾物重の経時的
増加率はほぼ直線的であったため、増殖比は、増殖率を
示す指標として用い得ると判断された。これによると、
本発明のクロレラ属HA−1株(図7)の増殖比は5%
CO2と10%CO2 でほぼ同じで、15%CO2 でや
や低下するものの高い値を維持しており、HA−2株
(図8)、HC−1株(図9)およびHT−2株(図1
2)の3株は5%CO2 から15%CO2 までほぼ一定
の高い増殖比を示し、HT−1株(図11)はCO2 濃
度の上昇とともに増殖比も増加した。従って、これらの
5株は10%から15%CO2 濃度である火力発電所排
ガスと同程度のCO2 濃度での生長促進が明らかであ
り、CO2 濃度に関しては、火力発電所排ガスを直接用
いて培養することが可能であり、空気で希釈する全く必
要がない。また、HC−2株(図10)は上記5株には
やや劣るものの、増殖比が10%CO2濃度で最も高
く、これまでのクロレラ属の微細藻にはなかった培養特
性を示すものである。これに対し、対照株であるChlora
lla pyrenoidosa NIES-226(図13)は、空気を通気を
した場合に比較して、5%CO2 富化空気を通気した条
件では、増殖比が約3倍となり、明らかな生長促進効果
が認められたものの、10%CO2 および15%CO2
の下では生長低下が認められた。このことは、この藻を
用いて火力発電所排ガスにより培養する場合、空気で排
ガスを希釈しなければ、効率的な培養ができないことを
示す。[Table 4] The results are shown in FIG. 7 to FIG. 13. As an index showing the growth of microalgae, the growth ratio, that is, the amount grown in one week of culture (the amount obtained by subtracting the inoculated dry matter weight from the final dry matter weight) was defined as the inoculated dry matter weight. The divided value was used. Therefore, the value obtained by adding 1 to the growth ratio shows how many times the amount of chlorella inoculated was increased in one week. Under the conditions of the present experiment, the rate of increase in dry weight of chlorella with time was almost linear, so it was judged that the growth ratio could be used as an indicator of the growth rate. according to this,
The growth ratio of the chlorella HA-1 strain of the present invention (FIG. 7) is 5%.
CO 2 and 10% CO 2 are almost the same, and 15% CO 2 slightly decreases but maintains a high value. HA-2 strain (FIG. 8), HC-1 strain (FIG. 9) and HT-2 Stock (Fig. 1
The 3 strains of 2) showed a substantially constant high growth ratio from 5% CO 2 to 15% CO 2 , and the HT-1 strain (FIG. 11) also increased the growth ratio as the CO 2 concentration increased. Therefore, it is clear that these 5 strains promote growth at a CO 2 concentration similar to that of a 10% to 15% CO 2 concentration of a thermal power plant exhaust gas. Regarding the CO 2 concentration, the thermal power plant exhaust gas is directly used. It is possible to cultivate the cells without any need for dilution with air. Moreover, HC-2 strain (Fig. 10) Although slightly inferior to the 5 strains, growth ratio is highest at 10% CO 2 concentration, shows the cultural characteristics not found in microalgae of the genus Chlorella far is there. In contrast, the control strain Chlora
In the case of lla pyrenoidosa NIES-226 (Fig. 13), the growth ratio was about 3 times, and a clear growth promoting effect was recognized under the condition that 5% CO 2 enriched air was aerated compared to the case where air was aerated. But 10% CO 2 and 15% CO 2
Growth was observed under This indicates that when the algae are used to cultivate the exhaust gas from a thermal power plant, the exhaust gas cannot be efficiently cultured unless the exhaust gas is diluted with air.
【0015】(b)生長速度,CO2 固定速度,光合成
効率 次に、前項(a)の実験結果から、照射された太陽エネ
ルギー量がどれだけの乾物量、固定炭素量にどれだけの
速さで変換されているかについてを表5にまとめて示
す。なお、表5には各分離株の最適CO2 濃度における
増殖比〔前項(a)参照〕、生長速度、CO2 固定速度
および光合成効率(photosynthetic efficiency, P.E.)
を示したが、生長速度は生産乾物量から光照射面積1日
あたりの速度に換算し(単位:g乾物/m2 /日)、C
O2 固定速度は生産乾物量にC/Nコーダーの測定によ
って得られた炭素量を乗じて算出し(単位:g炭素/m
2 /日)、そして光合成効率はクロレラの藻体に取り込
まれた炭素量から固定されたエネルギー量を求め、照射
光エネルギー量に対する百分率で示した(すなわち、微
細藻類の1g炭素あたりの化学エネルギーは11.4K
calであるので、炭素量にこの数値を乗じて、光の照
射エネルギーで除した;本実験条件での照射光エネルギ
ー量=2450Kcal/m2 /日・培養槽)。(B) Growth rate, CO 2 fixation rate, photosynthetic efficiency Next, from the experimental results of the previous section (a), how much solar energy quantity was irradiated, how much dry matter quantity, and how much carbon quantity was fixed carbon quantity were irradiated. Table 5 collectively shows whether or not the conversion has been performed. In Table 5, the growth ratio of each isolate at the optimum CO 2 concentration [see (a) above], growth rate, CO 2 fixation rate and photosynthetic efficiency (PE).
The growth rate was converted from the amount of dry matter produced into the rate per day of the light irradiation area (unit: g dry matter / m 2 / day), and C
The O 2 fixation rate was calculated by multiplying the dry matter produced by the amount of carbon obtained by the measurement with a C / N coder (unit: g carbon / m 2.
2 / day), and the photosynthetic efficiency was calculated as the fixed energy amount from the amount of carbon taken up by the alga body of Chlorella and expressed as a percentage of the irradiation light energy amount (that is, the chemical energy per 1 g carbon of microalga is 11.4K
Since it is cal, the amount of carbon was multiplied by this value and divided by the irradiation energy of light; the amount of irradiation light energy under the present experimental conditions = 2450 Kcal / m 2 / day-culture tank).
【表5】 クロレラ分離株の生長速度,CO2 固定速度,光合成効率 ──────────────────────────────── 供試株 最適CO2 増殖比 生長速度 CO2 光合成 濃度 固定速度 効率 ──────────────────────────────── HA−1 10 5.90 17.1 7.80 3.62 HA−2 5 4.63 10.6 4.44 2.06 HC−1 10 4.86 14.0 6.29 2.92 HC−2 10 3.61 11.7 4.98 2.31 HT−1 15 5.74 12.9 6.10 2.83 HT−2 10 5.52 12.6 5.69 2.64 対照 5 4.74 15.4 6.83 3.17 ──────────────────────────────── 表5に示した結果によると、対照のChloralla pyrenoid
osa NIES-226株は5%CO2 条件では、生長速度、CO
2 固定速度が早く、P.E.も高い。しかし、前項
(a)で示したように、10%CO2 では5%CO2 に
比較して57%、15%CO2 では40%に増殖比が低
下しているので高濃度CO2 での生長促進効果が望めな
い。これに対し、本発明の分離株の場合、HA−1株が
高濃度CO2条件下で、生長速度、CO2 固定速度およ
びP.E.ともに、対照の5%CO2条件下での値以上
の値を示し、HC−1株およびHT−1株もそれに近い
値を示しており、高い生産力が10%ないし15%CO
2 濃度でも得られるものである。[Table 5] Growth rate, CO 2 fixation rate, photosynthetic efficiency of chlorella isolates ───────────────────────────────── Test strain Optimal CO 2 growth ratio Growth rate CO 2 photosynthesis Concentration Fixed rate Efficiency ──────────────────────────────── HA -1 10 5.90 17.1 7.80 3.62 HA-2 5 4.63 10.6 4.44 2.06 HC-1 10 4.86 14.0 6.29 2.92 HC-2 10 3.61 11.7 4.98 2.31 HT-1 15 5.74 12.9 6.10 2.83 HT-2 10 5.52 12.6 5.69 2.64 Control 5 5 4.74 15.4 6.83 3.17 ──────────────────────────────── Based on the results shown in Table 5 The control of Chloralla pyrenoid
The osa NIES-226 strain had a growth rate and CO under 5% CO 2 condition.
2 Fixed speed is fast, E. Is also high. However, as indicated in the previous section (a), 57% compared to 10% CO 2 in 5% CO 2, at high concentrations CO 2 since the growth ratio is decreased to 15% in CO 2 40% Growth promotion effect cannot be expected. In contrast, if isolates of the present invention, HA-1 strain with high-concentration CO 2 conditions, growth rate, CO 2 fixed speed and P. E. Both showed values higher than the value under the control of 5% CO 2 condition, and HC-1 strain and HT-1 strain also showed values close thereto, and high productivity was 10% to 15% CO 2.
It can be obtained even at 2 concentrations.
【0016】実施例3 HA−1株の培養条件に関する
培養特性 本発明の上記6つの分離株中、最も生育のよかったクロ
レラ属HA−1株の主要な培養条件に関する培養特性に
ついて検討した。微細藻類の増殖に影響を与える主要な
因子は光、培地組成、通気CO2 濃度、通気量(攪拌速
度)、温度および培地pHであるが、このうち通気CO
2 濃度、通気量、温度および培地pHの4種の培養因子
について条件を変えて検討した。培養は上記の条件を変
える以外は実施例2に従った。結果を図14ないし図1
7に示した。これによると、CO2 濃度10%が生長に
最適であり、20%でもかなり高い増殖比を示し、その
後CO2 濃度の上昇につれて増殖比も低下し、100%
CO2 通気条件下ではほとんど生長しなかった(図1
4)。図15に示す通気量についての実験では、0.2
5リットル/分および0.5リットル/分で若干生長が
よかったが、0.10リットル/分と1.0リットル/
分との差は小さかった。図16に示す温度について検討
した実験では、増殖比は20℃で低かったものの、25
℃から35℃でほぼ一定であり、HA−1株は温度適応
範囲の広い中温性株であることが判明した。図17に示
す培地pHについての実験では、最適なpH(初期培
地)は4から5程度であることが示された。ただし、培
養に伴い、培地pHは1週間の培養後で約0.6前後上
昇した。pHが3の場合は、増殖することができず死滅
した。しかし、この株はpH4でも活発に生長すること
から、pHが低くても機能する株であることが示され
た。培地pHはCO2 濃度と同様にクロレラの生育に与
える影響が強い因子であるので、排ガスに含まれるNO
X 等の酸性物質の影響の可能性を考えると、HA−1株
の低pH耐性は有用な形質である。以上の結果から、ク
ロレラ属HA−1株は、排ガスを用いて培養する場合に
おいて、重要な制御項目である排ガス濃度、流量、温
度、培地pHに関して厳密な管理を行わなくても、効率
よく培養できるものである。大規模な培養システムを考
えた場合、培養システムは単純でメンテナンスが簡便な
ことが必要であるので、このクロレラ属HA−1株は簡
便なCO2 固定培養システムに適したものといえる。Example 3 Culture Characteristics of HA-1 Strain on Culture Conditions The culture characteristics of the HA-6 strain of the genus Chlorella having the highest growth rate among the above-mentioned 6 isolates of the present invention were examined. The main factors affecting the growth of microalgae are light, medium composition, aeration CO 2 concentration, aeration amount (stirring speed), temperature and medium pH.
2 conditions of 4 kinds of culture factors such as concentration, aeration rate, temperature and medium pH were examined under different conditions. The culture was carried out according to Example 2 except that the above conditions were changed. The results are shown in FIGS.
7 shows. According to this, a CO 2 concentration of 10% is optimum for growth, and even at 20%, a considerably high growth ratio is shown, and thereafter, as the CO 2 concentration increases, the growth ratio also decreases to 100%.
Almost no growth occurred under CO 2 aeration conditions (Fig. 1
4). In the experiment on the air flow rate shown in FIG.
Growth was slightly better at 5 liters / minute and 0.5 liters / minute, but 0.10 liters / minute and 1.0 liters / minute
The difference from the minute was small. In the experiment in which the temperature shown in FIG. 16 was examined, the growth ratio was low at 20 ° C.
It was found that the HA-1 strain was almost constant from 0 ° C to 35 ° C, and that the HA-1 strain was a mesophilic strain with a wide temperature adaptation range. The experiment on medium pH shown in FIG. 17 showed that the optimum pH (initial medium) was about 4 to 5. However, along with the culture, the pH of the medium increased by about 0.6 after the culture for 1 week. When the pH was 3, it could not grow and died. However, this strain actively grows even at pH 4, indicating that it is a strain that functions even at low pH. Since the pH of the medium has a strong influence on the growth of Chlorella as well as the CO 2 concentration, NO contained in the exhaust gas
Considering the possibility of the influence of acidic substances such as X , low pH tolerance of the HA-1 strain is a useful trait. From the above results, in the case of culturing using flue gas, the chlorella HA-1 strain can be efficiently cultivated without strict control of exhaust gas concentration, flow rate, temperature and medium pH, which are important control items. It is possible. Considering a large-scale culture system, the culture system needs to be simple and easy to maintain. Therefore, it can be said that the HA-1 strain of the genus Chlorella is suitable for a simple CO 2 -fixing culture system.
【0017】実施例4 微細藻体のタンパク質含量 実施例1で得られたクロレラ属HA−1株のCO2 固定
産物である微細藻体に含まれるタンパク質含量を分析し
た。分析は以下の手順で行なった。まず、藻体を15分
間超音波処理して破砕し、さらに1N NaOHを加え
た後100℃で10分間加熱してタンパク質を抽出し、
バイオラッド社プロテインアッセイキットを用いてアル
ブミンを標準として測定した。その結果を表6に示す。
各CO2条件下で培養した藻体のタンパク質含量に大差
はなく、乾物重の42〜44%がタンパク質であった。
この結果は、HA−1株の藻体の半分近くがタンパク質
であり、高栄養の飼料または工業用タンパク質もしくは
その原料として使えることを示している。Example 4 Protein Content of Microalgae The protein content of microalgae, which is a CO 2 -fixing product of the HA-1 strain of Chlorella obtained in Example 1, was analyzed. The analysis was performed according to the following procedure. First, the algal cells are sonicated for 15 minutes to be crushed, and 1N NaOH is further added, followed by heating at 100 ° C. for 10 minutes to extract proteins,
Albumin was measured using a protein assay kit from Bio-Rad as a standard. The results are shown in Table 6.
There was no great difference in the protein content of the algal cells cultured under each CO 2 condition, and 42 to 44% of the dry weight was protein.
This result indicates that nearly half of the HA-1 strain algal bodies are proteins and can be used as highly nutritious feeds or industrial proteins or their raw materials.
【表6】 各CO2 濃度条件下で通気培養したHA−1株藻体のタンパク質含量 ──────────────────────────────── 通気CO2 濃度(%) ────────────────────── 0.035 5 10 15 (空気) ──────────────────────────────── タンパク質含量 (乾物当り%) 44.2 44.4 42.0 43.2 ────────────────────────────────[Table 6] Protein content of HA-1 strain algal cells aerated under various CO 2 concentration conditions ──────────────────────────── ─────Aeration CO 2 concentration (%) ────────────────────── 0.035 5 10 15 (air) ──────── ───────────────────────── Protein content (% of dry matter) 44.2 44.4 42.0 43.2 ─────── ───────────────────────────
【0018】[0018]
【発明の効果】以上詳細に記載したように、本発明は5
ないし20%という高いCO2 濃度で安定に生育し、C
O2 を固定するクロレラ属の微細藻を単離したものであ
る。従って、本発明の微細藻は、火力発電所などのCO
2 濃度の高い排ガスを直接培養槽に導いても、該排ガス
中のCO2 を固定し、安定に生育し得るものである。さ
らに、本発明の微細藻によるCO2 固定産物はタンパク
含量が高く、家畜の飼料や工業用タンパク質の原料とし
て有効利用することができる。このように、本発明の微
細藻を用いて排ガス中のCO2 固定を行ない、固定産物
を有効利用することによって、CO2 などの温室効果ガ
スによる地球温暖化の防止、人口増や生活レベルの上昇
に起因する食糧問題の解決ならびに熱帯林の破壊・砂漠
化の防止などが図られるため、本発明は地球環境問題解
決に大きく寄与するものである。As described in detail above, the present invention has five advantages.
Stable growth at high CO 2 concentration of 20% to 20%
It is an isolation of a microalga of the genus Chlorella that fixes O 2 . Therefore, the microalgae of the present invention can be used as CO in a thermal power plant or the like.
Even when the exhaust gas having a high concentration of 2 is directly introduced into the culture tank, CO 2 in the exhaust gas is fixed and stable growth is possible. Furthermore, the CO 2 fixing product of the microalgae of the present invention has a high protein content and can be effectively used as a feed for livestock and a raw material for industrial proteins. As described above, by fixing CO 2 in exhaust gas using the microalgae of the present invention and effectively utilizing the fixed product, prevention of global warming due to greenhouse gases such as CO 2 and increase of population and living level can be achieved. The present invention greatly contributes to the solution of global environmental problems because it solves the food problem caused by the rise and prevents destruction of tropical forests and desertification.
【図1】本発明のクロレラ属HA−1株の生物の形態を
示す顕微鏡写真である。FIG. 1 is a micrograph showing the morphology of the organism of the chlorella HA-1 strain of the present invention.
【図2】本発明のクロレラ属HA−2株の生物の形態を
示す顕微鏡写真である。FIG. 2 is a micrograph showing the morphology of the organism of the chlorella HA-2 strain of the present invention.
【図3】本発明のクロレラ属HC−1株の生物の形態を
示す顕微鏡写真である。FIG. 3 is a micrograph showing the morphology of the organism of the chlorella HC-1 strain of the present invention.
【図4】本発明のクロレラ属HC−2株の生物の形態を
示す顕微鏡写真である。FIG. 4 is a micrograph showing the morphology of organisms of the Chlorella strain HC-2 of the present invention.
【図5】本発明のクロレラ属HT−1株の生物の形態を
示す顕微鏡写真である。FIG. 5 is a photomicrograph showing the morphology of the organism of the Chlorella sp. HT-1 strain of the present invention.
【図6】本発明のクロレラ属HT−2株の生物の形態を
示す顕微鏡写真である。FIG. 6 is a micrograph showing the morphology of the organism of the chlorella HT-2 strain of the present invention.
【図7】CO2 濃度の異なる空気を通気してHA−1株
を培養した場合の生育を示すグラフである。FIG. 7 is a graph showing growth in the case of culturing the HA-1 strain with aeration of air having different CO 2 concentrations.
【図8】CO2 濃度の異なる空気を通気してHA−2株
を培養した場合の生育を示すグラフである。FIG. 8 is a graph showing growth in the case of culturing the HA-2 strain with aeration of air having different CO 2 concentrations.
【図9】CO2 濃度の異なる空気を通気してHC−1株
を培養した場合の生育を示すグラフである。FIG. 9 is a graph showing growth in the case of culturing the HC-1 strain with aeration of air having different CO 2 concentrations.
【図10】CO2 濃度の異なる空気を通気してHC−2
株を培養した場合の生育を示すグラフである。FIG. 10: HC-2 by aeration with air having different CO 2 concentrations
It is a graph which shows growth at the time of culturing a strain.
【図11】CO2 濃度の異なる空気を通気してHT−1
株を培養した場合の生育を示すグラフである。FIG. 11: HT-1 was produced by aerating air with different CO 2 concentrations.
It is a graph which shows growth at the time of culturing a strain.
【図12】CO2 濃度の異なる空気を通気してHT−2
株を培養した場合の生育を示すグラフである。FIG. 12: HT-2 by ventilating air with different CO 2 concentrations
It is a graph which shows growth at the time of culturing a strain.
【図13】CO2 濃度の異なる空気を通気して対照株
(Chloralla pyrenoidosa NIES-226)を培養した場合の
生育を示すグラフである。FIG. 13 is a graph showing the growth when a control strain (Chloralla pyrenoidosa NIES-226) was cultured by aerating air with different CO 2 concentrations.
【図14】CO2 濃度とHA−1株の生育の関係を示す
グラフである。FIG. 14 is a graph showing the relationship between CO 2 concentration and growth of strain HA-1.
【図15】通気量とHA−1株の生育の関係を示すグラ
フである。FIG. 15 is a graph showing the relationship between the amount of aeration and the growth of strain HA-1.
【図16】温度とHA−1株の生育の関係を示すグラフ
である。FIG. 16 is a graph showing the relationship between temperature and growth of HA-1 strain.
【図17】培地pHとHA−1株の生育の関係を示すグ
ラフである。FIG. 17 is a graph showing the relationship between medium pH and growth of HA-1 strain.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C12P 21/00 C12R 1:89) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // (C12P 21/00 C12R 1:89)
Claims (11)
に生育可能であるクロレラ属の微細藻。1. A microalga of the genus Chlorella capable of stable growth at a CO 2 concentration of 5 to 20% by volume.
載の微細藻。2. The microalga according to claim 1, which is a Chlorella HA-1 strain.
載の微細藻。3. The microalga according to claim 1, which is a strain of Chlorella HA-2.
載の微細藻。4. The microalga according to claim 1, which is a Chlorella sp. HC-1 strain.
載の微細藻。5. The microalgae according to claim 1, which is a chlorella HC-2 strain.
載の微細藻。6. The microalgae according to claim 1, which is an HT-1 strain of Chlorella sp.
載の微細藻。7. The microalgae according to claim 1, which is an HT-2 strain of the genus Chlorella.
の微細藻を用いるCO2 の固定方法。8. A method of fixing CO 2 using the microalgae according to claim 1.
培養液に曝気することからなる請求項8記載の方法。9. The method according to claim 8, which comprises aerating the culture medium with a gas having a CO 2 concentration of 5 to 20% by volume.
る請求項9記載の方法。10. The method according to claim 9, wherein the gas to be aerated is exhaust gas from a thermal power plant.
載の微細藻のCO2固定産物からなる飼料または工業用
タンパク質。11. A feed or industrial protein comprising the CO 2 -fixing product of the microalga according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24586092A JP3336439B2 (en) | 1991-10-31 | 1992-08-20 | Chlorella microalgae that fix high concentration CO2 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-313852 | 1991-10-31 | ||
JP31385291 | 1991-10-31 | ||
JP24586092A JP3336439B2 (en) | 1991-10-31 | 1992-08-20 | Chlorella microalgae that fix high concentration CO2 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05304945A true JPH05304945A (en) | 1993-11-19 |
JP3336439B2 JP3336439B2 (en) | 2002-10-21 |
Family
ID=26537446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24586092A Expired - Fee Related JP3336439B2 (en) | 1991-10-31 | 1992-08-20 | Chlorella microalgae that fix high concentration CO2 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3336439B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010517736A (en) * | 2007-01-16 | 2010-05-27 | ムージャン、ベルナルド ア.ホタ. ストロイアッツォ | How to promote the conversion of carbon dioxide to energy |
JP2015002743A (en) * | 2007-09-12 | 2015-01-08 | ディーエスエム アイピー アセッツ ビー.ブイ. | Biological oils and production and use thereof |
US9790461B2 (en) | 2012-12-14 | 2017-10-17 | Denso Corporation | Culture method and culture system for microalgae |
CN116333886A (en) * | 2022-12-06 | 2023-06-27 | 华南农业大学 | An oleaginous unicellular green algae and its application |
-
1992
- 1992-08-20 JP JP24586092A patent/JP3336439B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010517736A (en) * | 2007-01-16 | 2010-05-27 | ムージャン、ベルナルド ア.ホタ. ストロイアッツォ | How to promote the conversion of carbon dioxide to energy |
JP2015002743A (en) * | 2007-09-12 | 2015-01-08 | ディーエスエム アイピー アセッツ ビー.ブイ. | Biological oils and production and use thereof |
US9453172B2 (en) | 2007-09-12 | 2016-09-27 | Dsm Ip Assets B.V. | Biological oils and production and uses thereof |
US9790461B2 (en) | 2012-12-14 | 2017-10-17 | Denso Corporation | Culture method and culture system for microalgae |
CN116333886A (en) * | 2022-12-06 | 2023-06-27 | 华南农业大学 | An oleaginous unicellular green algae and its application |
CN116333886B (en) * | 2022-12-06 | 2024-03-12 | 华南农业大学 | Single-cell green algae capable of producing oil and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3336439B2 (en) | 2002-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aghaalipour et al. | Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems | |
Scragg et al. | Growth of microalgae with increased calorific values in a tubular bioreactor | |
Watanabe et al. | Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere | |
CN102229889B (en) | A strain of chlorella and its cultivation method and application | |
US20110020913A1 (en) | Process for the production of algal biomass with a high lipid content | |
CN100434505C (en) | A method for bacteria and algae to fix desert quicksand | |
Unpaprom et al. | A newly isolated green alga, Scenedesmus acuminatus, from Thailand with efficient hydrogen production | |
CN102250773A (en) | Scenedesmus as well as culturing method and application thereof | |
CN107287125B (en) | Method for culturing chlorella pyrenoidosa | |
Tao et al. | Microalgae production in human urine: Fundamentals, opportunities, and perspectives | |
Piotrowski et al. | Temperate-zone cultivation of Oedogonium in municipal wastewater effluent to produce cellulose and oxygen | |
JP3336439B2 (en) | Chlorella microalgae that fix high concentration CO2 | |
CN102453685B (en) | A method of utilizing carbon dioxide to cultivate marine green algae to accumulate starch | |
Solovchenko et al. | Possibilities of bioconversion of agricultural waste with the use of microalgae | |
CN103184157A (en) | Algal culture process for treating protozoa and realizing stable high yield | |
JP3181237B2 (en) | Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella | |
US20240026257A1 (en) | System and Method Using Nanobubble Oxygenation for Mass Propagation of a Microalgae That Remain Viable in Cold Storage | |
JP3757325B2 (en) | Microalgae for carbon dioxide fixation | |
CN109609384A (en) | One chlorella Chlorella sorokinianaTX and its high density fast culture process | |
JP3468955B2 (en) | Method for producing lactic acid by microalgae | |
CN1174090C (en) | A kind of method of cultivating hair vegetable cell | |
CN107475100A (en) | A kind of both culturing microalgae system | |
Uddin et al. | Spirulina (Spirulina platensis) production in different photobioreactors on rooftop | |
CN113136345A (en) | Method for heterotrophic-autotrophic continuous culture of photosynthetic microorganisms, culture system and application thereof | |
Kitaya et al. | Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070809 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090809 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090809 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100809 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110809 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |