[go: up one dir, main page]

JPH05304784A - Double voltage pulse power supply - Google Patents

Double voltage pulse power supply

Info

Publication number
JPH05304784A
JPH05304784A JP10629392A JP10629392A JPH05304784A JP H05304784 A JPH05304784 A JP H05304784A JP 10629392 A JP10629392 A JP 10629392A JP 10629392 A JP10629392 A JP 10629392A JP H05304784 A JPH05304784 A JP H05304784A
Authority
JP
Japan
Prior art keywords
capacitor
reactor
charge
power supply
pulse power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10629392A
Other languages
Japanese (ja)
Inventor
Kimihiro Hoshi
公弘 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10629392A priority Critical patent/JPH05304784A/en
Publication of JPH05304784A publication Critical patent/JPH05304784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To prevent a harmful residual charge from occurring by increasing the capacity of a first capacitor which is connected in parallel with a charge power supply out of first and second capacitors which are connected in series to be larger than that of the second capacitor. CONSTITUTION:When a semiconductor switching element 7 conducts current and then the charge of a first capacitor 4 is inverted after the first capacitor 4 and a second capacitor 5 are charged, they are charged initially so that the amount of charge of the first capacitor 4 is equal to that of the second capacitor 5. Namely, capacities C1 and C2 are set so that the capacity of the first capacitor 4 and that of the second capacitor 5 satisfy an equation (CIE<2>-R(t).I (t)<2>)/2=(C2E2)/2 (E; power supply voltage, C1>C2) when a synthesis resistor of the semiconductor switching element 7, a first reactor 3, and the first capacitor 4 is set to R(t) and an inversion current is set to i(t).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高電圧パルス電源に好適
な倍電圧方式のパルス電源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage doubler type pulse power source suitable for a high voltage pulse power source.

【0002】[0002]

【従来の技術】図2は、従来の高電圧のパルスを得るた
めの回路で、一般にパルス電源と呼ばれている。図2に
おいて、1は充電電源、2はリアクトル、3は第1のリ
アクトルで、第1のリアクトル3はリアクトル2に比べ
てインダクタンス値がかなり小さい。4は第1のコンデ
ンサ、5は第2のコンデンサで、その容量は等しい。6
は第2のリアクトルでリアクトル2に比べてインダクタ
ンス値はかなり小さい。ここで第1のコンデンサ4と第
2のコンデンサ5に充電される過程を説明する。第1の
コンデンサ4には、リアクトル2→リアクトル3→コン
デンサ4を通して、つまりル―トAに沿って図2に示す
極性に電圧Eに充電される。第2のコンデンサ5には、
リアクトル2→第1のリアクトル3→第2のコンデンサ
5→第2のリアクトル6を通してつまりル―トBに沿っ
て図2に示す極性に充電される。第2のリアクトル6は
リアクトル2に比べてインダクタンス値が非常に小さい
ので第2のコンデンサ5の充電電圧は第1のコンデンサ
4の充電電圧Eとほぼ同じEとなる。7は第1のスイッ
チで例えば、ここではサイリスタとする。8は第2のス
イッチで可飽和リアクトル等の磁気スイッチが使用され
る。9は負荷でレ―ザ放電部などが相当する。ここでサ
イリスタ7を点弧すると第1のリアクトル3を通して第
1のコンデンサ4の電荷は反転して、第1のコンデンサ
4と第2のコンデンサ5の極性は同極性となる。よって
第1のコンデンサ4と第2のコンデンサ5の電圧を合せ
た直列電圧は、ほぼ2Eとなるり、そのため倍電圧とい
う呼び名が使用される。磁気スイッチ8には、ほぼ2E
の電圧が印加されて可飽和リアクトルである磁気スイッ
チ8は飽和導通状態になり第1のコンデンサ4と第2の
コンデンサ5の電荷は磁気スイッチ8を通して負荷9例
えばレ―ザ放電部にて消費される。
2. Description of the Related Art FIG. 2 shows a conventional circuit for obtaining high-voltage pulses, which is generally called a pulse power supply. In FIG. 2, 1 is a charging power source, 2 is a reactor, 3 is a first reactor, and the first reactor 3 has a considerably smaller inductance value than the reactor 2. Reference numeral 4 is a first capacitor, 5 is a second capacitor, and their capacities are equal. 6
Is a second reactor and has an inductance value considerably smaller than that of the reactor 2. Here, the process of charging the first capacitor 4 and the second capacitor 5 will be described. The first capacitor 4 is charged with the voltage E through the reactor 2 → reactor 3 → capacitor 4, that is, along the route A to the polarity shown in FIG. In the second capacitor 5,
It is charged to the polarity shown in FIG. 2 through the reactor 2, the first reactor 3, the second capacitor 5, and the second reactor 6, that is, along the route B. Since the second reactor 6 has a much smaller inductance value than the reactor 2, the charging voltage of the second capacitor 5 is substantially the same as the charging voltage E of the first capacitor 4. A first switch 7 is, for example, a thyristor here. A second switch 8 is a magnetic switch such as a saturable reactor. Reference numeral 9 denotes a load, which corresponds to a laser discharge part or the like. When the thyristor 7 is ignited here, the charge of the first capacitor 4 is inverted through the first reactor 3, and the polarities of the first capacitor 4 and the second capacitor 5 become the same. Therefore, the combined series voltage of the voltages of the first capacitor 4 and the second capacitor 5 is approximately 2E, and therefore the name of doubled voltage is used. The magnetic switch 8 has approximately 2E
Is applied to the magnetic switch 8, which is a saturable reactor, into a saturated conductive state, and the electric charges of the first capacitor 4 and the second capacitor 5 are consumed through the magnetic switch 8 in a load 9, for example, a laser discharge unit. It

【0003】[0003]

【発明が解決しようとする課題】以上の説明において、
第1のコンデンサ4の電荷をスイッチ7を通して反転し
たとき、ほぼ電圧がEになると説明したが、厳密には反
転中に第1のリアクトル3や第1のスイッチ7のロスに
よって第1のコンデンサ4の電圧はEより小さくなる。
よって第1のコンデンサ4と第2のコンデンサ5の容量
は等しいので、電圧が低い分第1のコンデンサ4の電荷
量Q4は第2のコンデンサ5の電荷量Q5に比べて小さ
い。つまりQ4<Q5である。ところが磁気スイッチ8
が導通して負荷9に流れる電流は第1のコンデンサ4,
第2のコンデンサ5に共通であるので、第1のコンデン
サ4の電荷が無くなっても電荷量の多い第2のコンデン
サ5には電荷が残って残留電荷が発生する。残留電荷に
よって引き起こされる不具合の一例として、負荷9のレ
―ザ放電部で正規の放電に引続き第2のコンデンサ5の
残留電荷が放電されるが、そのときの電圧は残留電荷に
よるため電圧が低くア―クが発生し、引続くレ―ザ光発
生のための正規の放電を妨害するという不具合がある。
或いは又、ア―クが発生する程の電圧が残留電荷になけ
れば残留電荷が繰り返し蓄積されて、電圧上昇のすえ過
電圧破壊を起こす不具合もある。従って、本発明の目的
は、この有害な残留電荷が発生しない倍電圧パルス電源
を提供することにある。
SUMMARY OF THE INVENTION In the above description,
Although it has been described that the voltage becomes almost E when the charge of the first capacitor 4 is inverted through the switch 7, strictly speaking, the loss of the first reactor 3 and the first switch 7 during the inversion causes the first capacitor 4 to lose its voltage. Is smaller than E.
Therefore, since the capacitances of the first capacitor 4 and the second capacitor 5 are equal, the charge amount Q4 of the first capacitor 4 is smaller than the charge amount Q5 of the second capacitor 5 because the voltage is low. That is, Q4 <Q5. However, the magnetic switch 8
Is conducted and the current flowing to the load 9 is the first capacitor 4,
Since it is common to the second capacitor 5, even if the charge of the first capacitor 4 is lost, the charge remains in the second capacitor 5 having a large amount of charge and residual charge is generated. As an example of the problem caused by the residual charge, the residual discharge of the second capacitor 5 is discharged following the regular discharge in the laser discharge part of the load 9, but the voltage at that time is low due to the residual charge. There is a problem that an arc is generated, which interferes with the regular discharge for the subsequent generation of laser light.
Alternatively, if the residual charge does not have a voltage enough to generate an arc, the residual charge may be repeatedly accumulated, leading to overvoltage breakdown even when the voltage rises. Therefore, an object of the present invention is to provide a voltage doubler pulsed power supply in which this harmful residual charge is not generated.

【0004】[0004]

【課題を解決するための手段】前記目的は、直列接続さ
れた第1のコンデンサと第2のコンデンサから成る直列
回路と、前記第1のコンデンサと第2のコンデンサの直
列接続点に一端が接続され他端が充電電源の正極側に接
続される第1のリアクトルと、アノ―ドが前記第1のリ
アクトルの他端に接続されカソ―ドが前記充電電源の負
極側に接続される第1のスイッチと、前記第1のコンデ
ンサと第2のコンデンサの直列回路に並列接続される第
2のリアクトルと、該第2のリアクトルに並列接続され
る磁気スイッチと負荷との直列回路から成る倍電圧パル
ス電源において、前第1のコンデンサ容量が前記第2の
コンデンサ容量より大なるように選定することによって
達成出来る。
The object is to connect a series circuit including a first capacitor and a second capacitor connected in series, and one end of which is connected to a series connection point of the first capacitor and the second capacitor. A first reactor whose other end is connected to the positive side of the charging power source, and a first node whose anode is connected to the other end of the first reactor and whose cathode is connected to the negative side of the charging power source. Voltage, a second reactor connected in parallel with the series circuit of the first capacitor and the second capacitor, and a series circuit of a magnetic switch and a load connected in parallel with the second reactor. In the pulse power supply, this can be achieved by selecting the capacitance of the first capacitor to be larger than that of the second capacitor.

【0005】[0005]

【作用】前記の不具合を発生させている原因は、第1の
コンデンサ4と第2のコンデンサ5の電荷量が異るため
に発生するのであるから、第1のコンデンサ4の電荷を
反転させた時、第1のコンデンサ4の電荷量と第2のコ
ンデンサ5の電荷量が等しくなるように最初から充電し
ておけば良い。反転時の反転回路ここではスイッチ7と
第1のリアクトル3と第1のコンデンサ4の合成抵抗を
R(t) 及び反転電流をi(t) とおけば、 (C1 E2 −R(t) ・I(t) 2 )/2=(C2 E2 )/2……(1) ただし、第1のコンデンサ4の容量をC1 ,第2のコン
デンサ5の容量をC2 とする。当然のことであるがC1
>C2 である。第1のコンデンサ4の容量C1 と第2の
コンデンサ5の容量C2 を式(1) を満たすようにしてお
けば充電時、 第1のコンデンサ4のエネルギ=C1 ・E2 /2 第2のコンデンサ5のエネルギ=C2 ・E2 /2 である。C1 >C2 なので、当然のことであるが、C1
・E2 /2>C2 ・E2 /2である。次に、第1のコン
デンサ4の電荷を反転させると反転中、R(t) ・i(t)
2 のエネルギが失われるので反転後 第1のデンサ4のエネルギ=(C1 ・E2 /2)−R
(t) ・i(t) 2 第2のコンデンサ5のエネルギ=C2 ・E2 /2 となる。
[Function] The first cause of the above-mentioned problems is the first.
Because the charge amounts of the capacitor 4 and the second capacitor 5 are different
Therefore, the charge of the first capacitor 4 is
When inverted, the charge amount of the first capacitor 4 and the second capacitor
Charge the capacitor 5 from the beginning so that the charges are equal.
You can leave it. Inversion circuit for inversion In this case, switch 7
The combined resistance of the first reactor 3 and the first capacitor 4
If R (t) and the reversal current are i (t), then (C1 E2 -R (t) -I (t)2 ) / 2 = (C2 E2 ) / 2 (1) However, the capacitance of the first capacitor 4 is C1, the second capacitor is
The capacity of the capacitor 5 is C2. Naturally C1
> C2. The capacitance C1 of the first capacitor 4
Make sure that the capacitance C2 of the capacitor 5 satisfies the formula (1).
Energy of the first capacitor 4 = C1.E during fluff charging2 / 2 energy of the second capacitor 5 = C2.E2 It is / 2. Since C1> C2, it is natural that C1
・ E2 / 2> C2 · E2 / 2. Next, the first con
When the charge of the capacitor 4 is reversed, R (t) • i (t)
2 Energy is lost, so after the reversal, the energy of the first capacitor 4 = (C1.E2 / 2) -R
(t) ・ i (t)2  Energy of the second capacitor 5 = C2.E2 It becomes / 2.

【0006】式(1) の関係より反転後は第1のコンデン
サ4の蓄積電荷エネルギと第2のコンデンサ5の蓄積電
荷エネルギは等しいので、スイッチ8が導通して負荷9
に第1のコンデンサ4と第2のコンデンサ5の電荷が放
電される時放電電流が共通で、蓄積電荷同じなので第1
のコンデンサ4には電荷は残留しない。
From the relationship of the equation (1), since the stored charge energy of the first capacitor 4 and the stored charge energy of the second capacitor 5 are equal after the reversal, the switch 8 becomes conductive and the load 9
When the electric charges of the first capacitor 4 and the second capacitor 5 are discharged, the discharge current is common and the accumulated charge is the same, so
No electric charge remains in the capacitor 4 of FIG.

【0007】[0007]

【実施例】次に、図1を参照して本発明の一実施例を説
明する。本発明は図2に示す従来ののもと構成は同一で
あるが、従来技術と異るところは、従来技術では第1の
コンデンサ4の容量C1 と第2のコンデンサ5の容量C
2 は等しいものであったが本実施例では、第1のコンデ
ンサ4の容量C1 は第2のコンデンサ5の容量C2より
大きく、その差は式(1) を満足する値である。まず第1
のコンデンサ4,第2のコンデンサ5に対する充電は図
2の従来と同じように第1のコンデンサ4はル―トAを
通して充電され第2のコンデンサ5はル―トBを通して
充電される。その充電エネルギは、 第1のコンデンサ4のエネルギ=C1 ・E2 /2 第2のコンデンサ5のエネルギ=C2 ・E2 /2 となる。従来技術では、 C1 ・E2 /2=C2 ・E2 /2 であったが、本発明では、C1 >C2 なので、 C1 ・E2 /2>C2 ・E2 /2 である。厳密には、 (C1 ・E2 /2)−R(t) ・i(t) 2 =C2 ・E2 /2 となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIG. The present invention has the same original configuration as that shown in FIG. 2, but is different from the prior art in that the capacitance C1 of the first capacitor 4 and the capacitance C2 of the second capacitor 5 are different in the conventional technique.
In the present embodiment, the capacitance C1 of the first capacitor 4 is larger than the capacitance C2 of the second capacitor 5, and the difference is a value satisfying the equation (1). First of all
The first capacitor 4 is charged through the route A and the second capacitor 5 is charged through the route B as in the conventional case of FIG. Its charging energy, the energy = C1 · E 2 of the first capacitor 4 / 2 the second of the energy of the capacitor 5 = C2 · E 2 It becomes / 2. In the prior art, C1 · E 2 / 2 = C2 · E 2 / Was 2, but, in the present invention, C1> C2 So, C1 · E 2 / 2> C2 · E 2 It is / 2. Strictly speaking, (C1 · E 2 / 2) -R (t) * i (t) 2 = C2 · E 2 It becomes / 2.

【0008】次にスイッチ7を導通させ、第1のコンデ
ンサ4の電荷を第1のリアクトル3スイッチ7を通って
反転させるが、その時R(t) ・i(t) 2 のエネルギが失
われる。よって反転後は、 第1のコンデンサ4のエネルギ=(C1 ・E2 /2)−
R(t) ・i(t) 2 第2のコンデンサ5のエネルギ=C2 ・E2 /2 である。式(1) より第1のコンデンサ4のエネルギと第
2のコンデンサ5のエネルギとは等しくなる。
Next, the switch 7 is turned on to turn on the first capacitor.
The electric charge of the sensor 4 through the first reactor 3 switch 7
Invert, but at that time R (t) · i (t)2 Lost energy
Be seen. Therefore, after reversal, the energy of the first capacitor 4 = (C1 · E2 / 2)-
R (t) ・ i (t)2  Energy of the second capacitor 5 = C2.E2 It is / 2. From the equation (1), the energy of the first capacitor 4 and the
The energy of the capacitor 5 of 2 becomes equal.

【0009】次にスイッチ8が導通して負荷9例えばレ
―ザ放電部に向かって第1のコンデンサ4と第2のコン
デンサ5の電荷は放電される。この時第1のコンデンサ
4と第2のコンデンサ5は直列接続なので放電電流は共
通で、第1のコンデンサ4と第2のコンデンサ5の蓄積
エネルギは等しいので従来技術と異り第1のコンデンサ
4に電荷が残ることは無い。
Then, the switch 8 is turned on and the electric charge of the first capacitor 4 and the second capacitor 5 is discharged toward the load 9, for example, the laser discharge portion. At this time, since the first capacitor 4 and the second capacitor 5 are connected in series, the discharge current is common, and the stored energy of the first capacitor 4 and the second capacitor 5 is equal, which is different from the conventional technique. There is no charge left in the.

【0010】[0010]

【発明の効果】以上説明のように本発明によれば、倍電
圧パルス電源を構成するコンデンサの片方に電荷が残留
すると不具合を解消することができる。
As described above, according to the present invention, it is possible to solve the problem that electric charge remains in one of the capacitors constituting the double voltage pulse power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す倍電圧パルス電源の回
路図。
FIG. 1 is a circuit diagram of a double voltage pulse power supply showing an embodiment of the present invention.

【図2】従来の倍電圧パルス電源の回路図である。FIG. 2 is a circuit diagram of a conventional double voltage pulse power supply.

【符号の説明】[Explanation of symbols]

1…充電電源、2…リアクトル、3…第1のリアクト
ル、4…第1のコンデンサ、5…第2のコンデンサ、6
…第2のリアクトル、7…半導体スイッチング素子、8
…可飽和リアクトル、9…負荷、
DESCRIPTION OF SYMBOLS 1 ... Charging power source, 2 ... Reactor, 3 ... First reactor, 4 ... First capacitor, 5 ... Second capacitor, 6
... second reactor, 7 ... semiconductor switching element, 8
... saturable reactor, 9 ... load,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直列接続された第1のコンデンサと
第2のコンデンサから成る直列回路と、前記第1のコン
デンサと第2のコンデンサの直列接続点に一端が接続さ
れ他端が充電電源の正極側に接続される第1のリアクト
ルと、アノ―ドが前記第1のリアクトルの他端に接続さ
れカソ―ドが前記充電電源の負極側に接続される第1の
スイッチと、前記第1のコンデンサと第2のコンデンサ
の直列回路に並列接続される第2のリアクトルと、該第
2のリアクトルに並列接続される磁気スイッチと負荷と
の直列回路から成る倍電圧パルス電源において、前第1
のコンデンサ容量が前記第2のコンデンサ容量より大な
ることを特徴とした倍電圧パルス電源。
1. A series circuit including a first capacitor and a second capacitor connected in series, one end of which is connected to a series connection point of the first capacitor and the second capacitor and the other end of which is a positive electrode of a charging power source. A first reactor connected to the charging side, a first switch having an anode connected to the other end of the first reactor, and a cathode connected to the negative side of the charging power source; A double voltage pulse power supply comprising a second reactor connected in parallel to a series circuit of a capacitor and a second capacitor, and a series circuit of a magnetic switch and a load connected in parallel to the second reactor, wherein
The double-voltage pulse power supply is characterized in that the capacity of the capacitor is larger than the capacity of the second capacitor.
JP10629392A 1992-04-24 1992-04-24 Double voltage pulse power supply Pending JPH05304784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10629392A JPH05304784A (en) 1992-04-24 1992-04-24 Double voltage pulse power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10629392A JPH05304784A (en) 1992-04-24 1992-04-24 Double voltage pulse power supply

Publications (1)

Publication Number Publication Date
JPH05304784A true JPH05304784A (en) 1993-11-16

Family

ID=14430009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10629392A Pending JPH05304784A (en) 1992-04-24 1992-04-24 Double voltage pulse power supply

Country Status (1)

Country Link
JP (1) JPH05304784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179005A (en) * 2021-05-25 2021-07-27 长安大学 Double-pulse power supply and working method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179005A (en) * 2021-05-25 2021-07-27 长安大学 Double-pulse power supply and working method thereof
CN113179005B (en) * 2021-05-25 2023-08-01 长安大学 Double-pulse power supply and working method thereof

Similar Documents

Publication Publication Date Title
JP4133086B2 (en) Static eliminator
JPH05304784A (en) Double voltage pulse power supply
JPS62249493A (en) Eximer laser device provideo with automatic preliminary ionization
JPS6268687A (en) Spot welding machine
JP2996706B2 (en) Pulse laser oscillation device
JP2636330B2 (en) Snubber circuit
JPS5997782A (en) Electrostatic accumulation type resistance welding machine
SU813725A1 (en) Pulse voltage generator
SU547914A1 (en) Device for charging the battery with asymmetric current
SU1445879A1 (en) Apparatus for stabilizing a.c. arc
SU930603A1 (en) Square-wave pulse generator
JP2971100B2 (en) Inverter device for ozone generation
JPH0654554A (en) Voltage control circuit
JPS62152189A (en) Gas laser oscillator
JPS6330052Y2 (en)
JPS5825623Y2 (en) Pulse generation circuit
SU1756068A1 (en) Resistance welding machine
SU1499472A1 (en) D.c. gate
SU849481A1 (en) Pulse modulator
SU938376A1 (en) Pulse generator
SU978330A2 (en) High-voltage pulse source
SU1450086A1 (en) Voltage pulse generator
JPS5915516Y2 (en) gas laser equipment
JPH08195518A (en) Laser oscillator
JPH05327088A (en) Gas laser oscillator