JPH05302893A - Spectral characteristics measuring device for trace liquid samples - Google Patents
Spectral characteristics measuring device for trace liquid samplesInfo
- Publication number
- JPH05302893A JPH05302893A JP17016092A JP17016092A JPH05302893A JP H05302893 A JPH05302893 A JP H05302893A JP 17016092 A JP17016092 A JP 17016092A JP 17016092 A JP17016092 A JP 17016092A JP H05302893 A JPH05302893 A JP H05302893A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- sample
- thin tube
- tube
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0346—Capillary cells; Microcells
Landscapes
- Sampling And Sample Adjustment (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、可視・紫外領域等で試
料の分光特性を測定する分光光度計において、極めて微
量のサンプル液を測定する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring an extremely small amount of sample liquid in a spectrophotometer for measuring the spectral characteristics of a sample in the visible / ultraviolet region or the like.
【0002】[0002]
【従来の技術】可視・紫外分光光度計は、分析化学分野
で各種用途に広く用いられる分析機器である。その応用
分野は多岐にわたるが、一般には液体である試料の分光
透過特性を、試料の濃度と比例関係にある吸光度の単位
で測定し、試料を定性的又は定量的に分析することを主
目的とする場合が多い。近年のいわゆるバイオテクノロ
ジー関連技術の進歩に伴い、生化学分析の分野におい
て、分光光度計が果たす役割が、従来の他分野と同様に
高まってきた。そこで、蛋白質やDNA等の分析をはじ
めとする生化学分野における分光分析に必要な課題とし
て、測定する試料として、量が極めて少なく貴重且つ高
価であるものが増加し、極微小量の試料液によって、定
性的又は定量的な分析をしなければならないと云うこと
が起きてきた。特に、DNA関連の分析においては、総
試料量が数百μl以下の場合が多く、更に、この試料を
各種分析装置や次段階の研究用に分散するため、分光光
度計の測定に供される量は、数μlから多くても数十μ
l以下である場合が大半となっている。従来、このよう
に微小量の液体の吸光度を測定するための手段として
は、光束絞りや集光光学系によって、測定分析での光束
寸法を可能な限り小さくした分光光度計、または、その
付属装置とこの測定部に微小液体試料を担持するための
特別な試料容器との組合わせが用いられてきた。2. Description of the Related Art A visible / ultraviolet spectrophotometer is an analytical instrument widely used for various purposes in the field of analytical chemistry. Although its application fields are diverse, the main purpose is to measure the spectral transmission characteristics of a sample, which is generally a liquid, in the unit of absorbance, which is proportional to the concentration of the sample, and to analyze the sample qualitatively or quantitatively. I often do it. With the progress of so-called biotechnology-related technologies in recent years, the role played by a spectrophotometer in the field of biochemical analysis has increased, as in other conventional fields. Therefore, as a problem required for spectroscopic analysis in the field of biochemistry including analysis of proteins and DNA, the number of samples to be measured is extremely small, valuable, and expensive, and a very small amount of sample liquid is used. It has happened that qualitative or quantitative analysis must be done. In particular, in the case of DNA-related analysis, the total sample volume is often several hundred μl or less, and this sample is used for measurement by a spectrophotometer because it is dispersed for various analyzers and research in the next stage. Volumes from a few μl to at most tens of μ
In most cases, it is 1 or less. Conventionally, as a means for measuring the absorbance of such a minute amount of liquid, a spectrophotometer in which the dimension of the luminous flux in the measurement analysis is made as small as possible by a luminous flux diaphragm or a condensing optical system, or an accessory device thereof. And a special sample container for carrying a microfluidic sample on this measuring part has been used.
【0003】従来用いられてきた特別な試料容器として
は、幾つかのタイプのものが知られているが、その中で
現在広く用いられているのは、通常の分光分析に使用さ
れる光路長10mmの角形セルの形状を基本として、そ
の内容積を小さくするため光路幅や光路高さを縮小した
特別な角形セルを用いる方法や、石英ガラス製の細管に
毛細管現象によって試料を導入し、その中心軸が分光光
度計の測定光軸と垂直をなすように分光光度計の測定部
に支持し且つシリンバリカルレンズ等の集光手段を併用
する方法等が知られていた。また、これらの容器を分光
光度計の試料測定部に支持固定する手段としては、通常
用いられる10mm角セル用ホルダを基本とし、これを
改良したもの、あるいは板バネ等により細管を位置決め
固定するものなどが知られていた。As the special sample container which has been conventionally used, several types are known. Among them, the most widely used one is the optical path length used for ordinary spectroscopic analysis. A method of using a special prismatic cell whose optical path width and optical path height are reduced in order to reduce the internal volume based on the shape of a 10 mm prismatic cell, or a sample is introduced into a quartz glass capillary tube by a capillary phenomenon, A method has been known in which a central axis is supported by a measuring portion of a spectrophotometer so that it is perpendicular to a measurement optical axis of the spectrophotometer, and a condensing means such as a cylindrical lens is used together. Further, as a means for supporting and fixing these containers to the sample measuring part of the spectrophotometer, a commonly used holder for a 10 mm square cell is basically used and improved, or a means for positioning and fixing a thin tube by a leaf spring or the like. Was known.
【0004】これら従来の技術には、それぞれ以下に示
すような問題点があった。先ず、第1の従来例である角
形セルの微小量セルについて説明する。図8に従来の角
形微小量用セルの一般的な概略構造を示す。この角形微
小量用セル21は底面(図8Aのa×b)を通常の分光
分析用10mm角形セルと同一形状とした上で、試料を
入れる部分の体積が極力小さくなるような構造としたも
のである。底面形状を通常の角形セルと同じにするの
は、このセルを通常の角形セル用セルホルダに保持させ
得るようにするためである。図8の例では、試料を入れ
る部分、即ち、測定部22は寸法=高さh×光路幅w
(図8B参照)で光路長d(図8A参照)の部分であ
る。この部分の上部に形成されたテーパ部23は、ピペ
ッタ,注射器等による試料の導入,排出を容易に行える
ようにするため設けられたものである。なお、図8B
は、図8AにおけるGーG断面を示し、更に、図8Cは
図8Bにサンプル液3を注入した状態を示す。従来、こ
の角形微小量用セル21を用いて微量液体の測定を行う
場合には、ピペッタ等によって測定部22に試料を注入
後、分光光度計の測定部に設けられた通常の角形セルを
保持させるセルホルダに、この角形微小量用セル21を
固定し、測定光Kを適当な形状の光束絞り5によって、
光束が測定部22のみに照射されるよう制限したうえで
測定をしていた。この場合、光束絞り5によって制限さ
れた光束の大きさは、分光光度計の他の部分、例えば、
光源分光器,測光系,検出器等で要求される光学的性能
を満足する必要から、ある限度以上には小さくすること
ができず、その限界は通常の分光光度計では、1mm×
1mm又はφ1mm程度である。従って、この大きさの
光束で試料を照明することになる。更に、角形微小量用
セル21の脱着による位置再生精度等を考慮すると、角
形微小量用セル21の測定部22の寸法は、およそw=
2mm,h=2〜2.5mm程度が下限となっていた。
更に、この角形微小量用セル21にサンプル液3を注入
した場合、液面は表面張力によって平面とはならず、一
般に図8Cに示すような凹面を形成するため、液面が平
面になると仮定した場合よりも多くのサンプル量を必要
としていた。Each of these conventional techniques has the following problems. First, a minute amount cell of a rectangular cell which is the first conventional example will be described. FIG. 8 shows a general schematic structure of a conventional prismatic minute amount cell. The square minute amount cell 21 has a bottom surface (a × b in FIG. 8A) having the same shape as that of a normal 10 mm square cell for spectroscopic analysis, and has a structure in which the volume of the portion into which the sample is put is minimized. Is. The bottom shape is the same as that of a normal prismatic cell so that the cell can be held by a regular cell holder for prismatic cells. In the example of FIG. 8, the portion into which the sample is put, that is, the measurement unit 22 has a dimension = height h × optical path width w
(See FIG. 8B), which corresponds to the optical path length d (see FIG. 8A). The taper portion 23 formed on the upper portion of this portion is provided so that the sample can be easily introduced and discharged by a pipette, a syringe or the like. Note that FIG. 8B
Shows a cross section taken along line GG in FIG. 8A, and FIG. 8C shows a state in which the sample liquid 3 is injected into FIG. 8B. Conventionally, when a small amount of liquid is measured using this prismatic minute amount cell 21, after the sample is injected into the measuring unit 22 by a pipette or the like, the ordinary rectangular cell provided in the measuring unit of the spectrophotometer is held. The prism small amount cell 21 is fixed to the cell holder to be measured, and the measuring light K is adjusted by the luminous flux diaphragm 5 having an appropriate shape.
The measurement was performed after limiting the luminous flux to the measurement unit 22 only. In this case, the size of the light beam limited by the light beam diaphragm 5 is determined by another part of the spectrophotometer, for example,
Since it is necessary to satisfy the optical performance required for a light source spectroscope, a photometric system, a detector, etc., it cannot be made smaller than a certain limit, and the limit is 1 mm × for a normal spectrophotometer.
It is about 1 mm or φ1 mm. Therefore, the sample is illuminated with the light flux of this magnitude. Further, in consideration of the position reproduction accuracy due to the attachment and detachment of the square minute amount cell 21, the dimension of the measuring portion 22 of the square minute amount cell 21 is approximately w =
The lower limit was about 2 mm and h = 2 to 2.5 mm.
Furthermore, when the sample liquid 3 is injected into the rectangular minute amount cell 21, the liquid surface does not become a flat surface due to surface tension, and generally a concave surface as shown in FIG. 8C is formed, so that the liquid surface is assumed to be a flat surface. It required more sample volume than it did.
【0005】これら光学的制約及び液面形状による制約
から、仮にセルの光路長dをd=10mmとした場合、
測定に最低必要な液量はおよそ50μlを下限とし、こ
れ以下の液量での測定は極めて困難であった。また、こ
の角形微小量用セル21は、サンプル液の注入に便利な
ようにテーパ部23が形成されているものの、いったん
注入したサンプル液3の回収やセルの洗浄は、液を入れ
るスペースが狭いため極めて困難であった。更に、生化
学分野で要求される紫外域での測定を可能とするため、
セルは石英ガラスの組合わせ融着加工品である場合が一
般的であるが、素材が高価であり且つ加工が難しいた
め、セルの価格が極めて高いと云う欠点を有していた。
このセルを応用して、更に必要な液量を減らす方法とし
て、光路長dを小さくする方法が考えられるが、例え
ば、サンプル量を5μlとするためには、d=1mmと
しなければならず、液の注入口面積が大幅に減るため
に、サンプルの注入・回収及びセルの洗浄が、上記d=
10mmの場合に比べて更に困難になり、実用的な方法
とは云えなかった。また、サンプルの回収・セルの洗浄
の手間を省くため、セルを使い捨てとする方法も考えら
れるが、上記のようにセル自身が極めて高価なものであ
ること、サンプルを回収できない場合には、その液量は
数μl以下まで少なくすることが要求されること等か
ら、これも又実用的には殆ど不可能であった。Due to these optical restrictions and restrictions due to the liquid surface shape, if the optical path length d of the cell is d = 10 mm,
The minimum amount of liquid required for measurement was about 50 μl as a lower limit, and measurement with a liquid amount less than this was extremely difficult. In addition, although the rectangular minute amount cell 21 has the taper portion 23 formed so as to be convenient for injecting the sample liquid, the space for inserting the liquid is small when the once injected sample liquid 3 is collected and the cell is washed. Therefore, it was extremely difficult. Furthermore, in order to enable measurement in the ultraviolet region required in the biochemistry field,
The cell is generally a fused fusion processed product of quartz glass, but it has a drawback that the cost of the cell is extremely high because the material is expensive and the processing is difficult.
As a method of further reducing the required liquid amount by applying this cell, a method of reducing the optical path length d can be considered. For example, in order to set the sample amount to 5 μl, d = 1 mm must be set, Since the area of the liquid injection port is greatly reduced, the sample injection / recovery and cell cleaning can be performed by d =
It was more difficult than the case of 10 mm, and it was not a practical method. Also, in order to save the trouble of collecting the sample and cleaning the cell, a method of disposing the cell may be considered, but as described above, if the cell itself is extremely expensive, if the sample cannot be collected, Since it is required to reduce the liquid volume to several μl or less, this was also practically impossible.
【0006】次に、第2の従来例である石英細管を利用
した方法を図10に示す。この方法は石英ガラス製の細
管31にサンプル液3を毛細管現象を利用して吸引し、
これを分光光度計の測定部に管軸を測定光軸と直交させ
て設置し、併せて図10Aで示したシリンドリカルレン
ズ32等による集光光学系を付加して、測定する方法で
ある。この方法によれば、上記角形セルでの問題点であ
るサンプル液の導入は、毛細管現象を利用することによ
り、比較的容易に行うことができる。また、石英細管か
らのサンプル液の回収や細管の洗浄も空気圧等を利用す
ることにより容易に行うことが出来る。しかしながら、
本方法の場合、一般に円柱形状である石英細管31とそ
の内部に保持されたサンプル液3とが一種のシリンドリ
カルレンズとして働らくため、細管31に入出射する光
束形状を分光光度計の他の部分に合わせて整形するため
のシリンドリカルレンズ32またはこれと同等の光学系
が必ず必要であると云う問題点がある。例えば、サンプ
ル量を5μlとし、サンプルの液面高さを3mmとする
ためには、石英細管の内径は約10.4mmでなければ
ならず、曲率半径約0.7mmの極めて強いシリンドリ
カルレンズが測定光路中に設置されたものとして、これ
を補正する光学系を付加しなければならないと云う問題
が起きる。また、石英細管31は内外面とも分光透過測
定に充分耐えるだけの光学的性能即ち表面粗度,形状精
度等を持たせるために、材質に紫外域でも透過率を有す
る高価な石英ガラスを必要とすることと併せて材料費,
加工費が高価なものとなると云う問題があった。更に、
細管外壁が大きな曲率をもつ面であることから、石英ガ
ラスの管壁を測定光が通過するのを防ぐことは極めて困
難であり、サンプル透過光と管壁透過光とを合わせて測
定するようになるため、吸光度測定の精度が低くなると
いう問題点があった。Next, FIG. 10 shows a method using a quartz tube which is a second conventional example. In this method, the sample liquid 3 is sucked into the thin tube 31 made of quartz glass by utilizing the capillary phenomenon.
This is a method in which the tube axis is installed in the measuring section of the spectrophotometer so that the tube axis is orthogonal to the measuring optical axis, and the condensing optical system such as the cylindrical lens 32 shown in FIG. According to this method, the introduction of the sample solution, which is a problem in the prismatic cell, can be performed relatively easily by utilizing the capillary phenomenon. Further, the sample liquid can be easily recovered from the quartz thin tube and the thin tube can be washed by using air pressure or the like. However,
In the case of this method, generally, the quartz thin tube 31 having a cylindrical shape and the sample liquid 3 held therein act as a kind of cylindrical lens, so that the shape of the light flux entering and exiting the thin tube 31 is determined by other portions of the spectrophotometer. There is a problem that the cylindrical lens 32 or an optical system equivalent to this is always required for shaping in accordance with the above. For example, in order to make the sample volume 5 μl and the sample liquid level height 3 mm, the inner diameter of the quartz capillary should be about 10.4 mm, and an extremely strong cylindrical lens with a radius of curvature of about 0.7 mm should be measured. There is a problem in that an optical system for correcting this, if installed in the optical path, must be added. Further, the quartz thin tube 31 needs an expensive quartz glass having a transmittance even in the ultraviolet region in order to have optical performance enough to endure the spectral transmission measurement on both the inner and outer surfaces, that is, surface roughness, shape accuracy and the like. Material costs,
There is a problem that the processing cost becomes expensive. Furthermore,
Since the outer wall of the thin tube is a surface with a large curvature, it is extremely difficult to prevent the measurement light from passing through the quartz glass tube wall, and it is necessary to measure the sample transmitted light and the tube wall transmitted light together. Therefore, there is a problem that the accuracy of the absorbance measurement is lowered.
【0007】また、これら従来の容器を分光光度計の測
定部に固定する手段についても次のような問題点があっ
た。図9に角形微量セル用セルホルダの従来例を示す。
図8と同様にサンプル液3を注入した角形微小量用セル
21をセルホルダ24に挿入し、板バネ17によって固
定するものである。セルホルダ25はベース板26に固
定されており、取付穴26Aによって分光光度計の試料
測定部に固定されている。27はネジ等を利用したセル
高さ調整機構であり、図9の矢印E方向に調整して、セ
ルの挿入深さを可変とするものである。この機構は前記
のようにサンプル量が極めて少なく、測定すべき液の部
分が、光束が通過する光束絞り5よりもわずかに大きい
程度である場合が多いため、絞り28の開口から測定部
22のみに光束が照明されるような高さ方向の位置に、
角形微小量用セル21を調整するためのものである。こ
のセルホルダ24は、セル21が極めて小形であるた
め、位置決め用板バネ25を余り強力にすると、セル2
1の脱着が困難となり、また、板バネ25を弱くする
と、セル21を脱着した場合の位置再現性が悪くなると
云う問題を有している。また、注入したサンプル液量に
あわせて、調整機構27によって高さをあわせなければ
ならず、更に、調整機構部分にガタがあるときは、同様
にセル21の脱着時の再現性が悪いと云う問題点があっ
た。更には、小形のセルを精度よく位置決め固定し、か
つ、調整機構を必要とするため、全体の構成が複雑であ
り、コストの高いものになっていた。Further, the means for fixing these conventional containers to the measuring portion of the spectrophotometer has the following problems. FIG. 9 shows a conventional example of a cell holder for a square micro cell.
Similar to FIG. 8, the rectangular minute amount cell 21 into which the sample liquid 3 is injected is inserted into the cell holder 24 and fixed by the leaf spring 17. The cell holder 25 is fixed to the base plate 26, and is fixed to the sample measuring section of the spectrophotometer by a mounting hole 26A. Reference numeral 27 is a cell height adjusting mechanism using a screw or the like, which adjusts in the direction of arrow E in FIG. 9 to make the insertion depth of the cell variable. As described above, in this mechanism, the sample amount is extremely small and the liquid portion to be measured is often slightly larger than the light beam diaphragm 5 through which the light beam passes. At a position in the height direction where the luminous flux is illuminated,
This is for adjusting the square minute amount cell 21. In this cell holder 24, since the cell 21 is extremely small, if the positioning leaf spring 25 is made too strong, the cell 2
1 becomes difficult to attach and detach, and weakening the leaf spring 25 causes a problem that the position reproducibility when the cell 21 is attached and detached becomes poor. In addition, the height must be adjusted by the adjusting mechanism 27 in accordance with the injected sample liquid amount, and further, when there is looseness in the adjusting mechanism portion, it is said that the reproducibility when the cell 21 is detached is also poor. There was a problem. Furthermore, since a small cell is accurately positioned and fixed and an adjustment mechanism is required, the overall configuration is complicated and the cost is high.
【0008】図11に、第2の従来例である石英細管用
ホルダを示す。図11に示すようにサンプル液3を吸入
した細管31をホルダ33のV溝33Aに合わせて挿入
し、ホルダ33に取付けられた押えバネ24によって固
定するものである。分光光度計への取付けは、図9と同
様にベース板26の取付穴26Aを介して行う。32は
図10に示したのと同じ細管によるレンズ効果を補正す
るためのシリンドリカルレンズである。このホルダ33
によれば、細管長を測定部より長くすることにより、脱
着の便宜を図ることが可能であり、また、V溝33Aを
利用した位置決めの機構により、細管31を測定光軸上
に正確に位置決めすることができる。前記の角形微量セ
ル21に比べてサンプル液3の細管への導入が容易であ
ることから、液面高さは光束絞り35に比べて余裕を持
たせることができ、高さ方向の調整機構を不要とするこ
とができる。以上のような利点を持つ方法であるが、そ
の反面、この構造には次のような欠点があった。細管3
1は一般に薄肉小径の石英管であり、取扱いが難しく脱
着時に破損する恐れがあること、また、前記のように、
細管のレンズ効果を補正するため、高価な非球面素子で
あるシリンドリカルレンズ32を必要とすること、細管
31をその相対的に寸法の大きな軸方向に正確に位置決
め固定するためV溝部、押圧バネ機構等に高精度の加工
を必要とすること等がある。FIG. 11 shows a second conventional example of a quartz capillary holder. As shown in FIG. 11, the thin tube 31 into which the sample liquid 3 has been sucked is inserted into the V groove 33A of the holder 33, and is fixed by the holding spring 24 attached to the holder 33. The attachment to the spectrophotometer is performed through the attachment hole 26A of the base plate 26 as in FIG. Reference numeral 32 is a cylindrical lens for correcting the lens effect due to the same thin tube as shown in FIG. This holder 33
According to this, it is possible to facilitate the attachment and detachment by making the thin tube longer than the measuring portion, and the positioning mechanism using the V groove 33A accurately positions the thin tube 31 on the measurement optical axis. can do. Since it is easier to introduce the sample liquid 3 into the thin tube as compared with the above-mentioned square micro-cell 21, the liquid level can have a margin as compared with the light flux diaphragm 35, and a height adjustment mechanism can be provided. It can be unnecessary. Although this method has the above advantages, on the other hand, this structure has the following drawbacks. Thin tube 3
1 is generally a thin-walled small-diameter quartz tube, which is difficult to handle and may be damaged during desorption, and as described above,
In order to correct the lens effect of the thin tube, a cylindrical lens 32 which is an expensive aspherical element is required, and in order to accurately position and fix the thin tube 31 in the axial direction of its relatively large dimension, a V groove portion and a pressing spring mechanism are provided. Etc. require high-precision processing.
【0009】[0009]
【発明が解決しようとする課題】本発明は、可視・紫外
領域での試料の分光特性を測定する分光光度計におい
て、液体である被測定試料の量が極めて微量である場合
に、セル材料として高価なものを用いず、特別な補助光
学系の必要もなしに、その分光特性を測定することがで
きるようにすることを目的とする。DISCLOSURE OF THE INVENTION The present invention relates to a spectrophotometer for measuring the spectral characteristics of a sample in the visible / ultraviolet region, which is used as a cell material when the amount of the liquid sample to be measured is extremely small. It is an object of the present invention to be able to measure its spectral characteristics without using an expensive one and without requiring a special auxiliary optical system.
【0010】[0010]
【課題を解決するための手段】細管の一端から毛細管現
象又は吸引手段によって被測定液を吸引,保持させ、こ
の状態で上記被測定液を保持している部分を含むように
上記細管の吸引側端から適当な長さで細管を切断し、被
測定液を内部に保持した上記細管の切断部分をその中心
軸が測定光軸と平行になるように分光光度計の測定部に
支持固定して、微量液体試料の分光特性の測定するよう
にした。A liquid to be measured is sucked and held from one end of the thin pipe by a capillary phenomenon or suction means, and the suction side of the thin pipe includes a portion holding the liquid to be measured in this state. Cut a thin tube with an appropriate length from the end, and support and fix the cut part of the thin tube holding the liquid to be measured inside the measuring part of the spectrophotometer so that its central axis is parallel to the measurement optical axis. The measurement of the spectral characteristics of a small amount of liquid sample was performed.
【0011】[0011]
【作用】本発明は、細管に毛細管現象或は吸引手段によ
ってサンプル液を吸引させることで、細管内部にサンプ
ル液を注入し、サンプル液が充填されている細管部分を
切断し、その切断された細管断片を、その中心軸が測定
光軸と平行になるように測定部に設置している。従っ
て、サンプル液の径は細管の内径によって決めることが
でき、細管を細くすることは幾らでも可能であるが、上
記のように、分光光度計の測定部における光束寸法に
は、それ以上小さくすることが実用上極めて困難な限界
が存在しており、これを今仮にφ1mmとする。細管断
片4を分光光度計測定部に支持する場合の位置精度,位
置再現性等から多少の余裕を見て、細管1の内径をφ2
mmとし、光路長d=1mmとした場合、細管断片中に
保持されるサンプル液3の量は、およそ3μlとなる。
内径がφ2mm程度であれば、サンプルの性状にもよる
が、通常の液体であれば、毛細管現象によって高さ1m
m程度までの吸引は充分に可能である。また、本発明の
場合、測定光が透過するのは、光束寸法を充分に制限
し、細管径を適当に選べば、サンプル液のみであり、試
料液の前後にセルの壁がなく、従って、仮に紫外域の測
定を必要とする場合であっても、細管には透過特性や表
面粗度等の光学的特性を一切必要とせず、極端な場合に
は、不透明の材料でつくることも可能であるから、各種
の安価な材質や製造法を適宜選択して製作することがで
きる。具体的には、ガラス成形品やスチレン,アクリル
等の硬質プラスチックの射出または押出し成形品等が好
適である。しかし、場合によっては、細管に光学特性が
要求されないから、ステンレス等の金属やセラミック等
を用いることも可能である。また、測定光束が試料の周
囲のセル壁を通らないようにすることも、容易であるか
ら、純粋に試料透過光のみを測定することができる。必
要な試料量が上記のように極めて少ないこと及び細管1
を安価に製造することが可能であることから、試料を回
収する必要がない場合には、細管断片4ごとこれを廃棄
することが可能である。また、回収が必要な場合には、
空気圧等によって、細管断片4からサンプル液3を回収
し、細管断片4のみ廃棄すればよく、従来の角形微小量
用セル等で問題になった容器の洗浄の手間が不要とな
る。この場合にも、細管1の断片4以外の残部は、その
長さが実用に耐えるあいだは、前記のように、繰返して
使用することが可能である。According to the present invention, the sample liquid is injected into the thin tube by sucking the sample liquid into the thin tube by the capillary phenomenon or the suction means, and the thin tube portion filled with the sample liquid is cut and cut. The thin tube piece is installed in the measurement unit so that its central axis is parallel to the measurement optical axis. Therefore, the diameter of the sample solution can be determined by the inner diameter of the thin tube, and it is possible to make the thin tube as thin as possible, but as described above, the light flux size in the measurement section of the spectrophotometer should be made smaller. However, there is a practically extremely difficult limit, and this is temporarily set to φ1 mm. The inner diameter of the thin tube 1 is set to φ2 with some allowance for the position accuracy and position reproducibility when supporting the thin tube fragment 4 on the spectrophotometer measuring section.
In the case of mm and the optical path length d = 1 mm, the amount of the sample liquid 3 retained in the capillary fragments is about 3 μl.
If the inner diameter is about 2 mm, it depends on the properties of the sample, but if it is an ordinary liquid, the height is 1 m due to the capillary phenomenon.
Suction up to about m is possible. Further, in the case of the present invention, the measurement light is transmitted only by the sample liquid if the luminous flux size is sufficiently limited and the capillary diameter is appropriately selected, and there is no cell wall before and after the sample liquid, Even if it is necessary to measure the ultraviolet range, the thin tube does not need any optical characteristics such as transmission characteristics and surface roughness, and in extreme cases, it can be made of opaque material. Therefore, various inexpensive materials and manufacturing methods can be appropriately selected and manufactured. Specifically, glass molded products and injection or extrusion molded products of hard plastics such as styrene and acrylic are suitable. However, in some cases, the thin tube is not required to have optical characteristics, and thus it is possible to use metal such as stainless steel or ceramic. It is also easy to prevent the measurement light flux from passing through the cell wall around the sample, so that only the sample transmitted light can be measured purely. The required sample amount is extremely small as described above and the thin tube 1
Since it is possible to manufacture the sample at a low cost, it is possible to discard this together with the capillary fragments 4 when it is not necessary to collect the sample. If collection is required,
The sample liquid 3 may be collected from the thin tube fragment 4 by air pressure or the like, and only the thin tube fragment 4 may be discarded, which eliminates the trouble of washing the container, which has been a problem in the conventional square minute amount cell or the like. Also in this case, the rest of the thin tube 1 other than the fragments 4 can be repeatedly used as described above as long as its length is practical.
【0012】[0012]
【実施例】図1に本発明の一実施例を示す。まず、反応
装置等によって合成されたサンプル液3を入れたサンプ
ル容器2の液面に、図1Aに示すように、細管1の一端
をわずかに浸け、毛細管現象を利用して、サンプル液3
を細管1中に導入する。この時真空ポンプやスポイト,
シリンジ等の吸引手段を併用してもよい。図2のよう
に、細管1の後端を太くしておいて、ゴム球8を付け、
細管自身を駒込ピペットのようにしてもよい。サンプル
液は、細管全体にわたって充填される必要はなく、サン
プル液の吸光度にもよるが、0.5〜1mm程度の高さ
まで吸引されれば充分である。この状態で液面から細管
1を離しても、サンプル液3は表面張力により細管1中
に保持される。次に、図1Bに示すように、細管1を端
面から一定の長さhにおいて切断する。長さhは、液の
充填状態によって適宜決定すればよく、例えば、細管端
面と細管内の液面高さとの中間の位置となるように決め
ればよい。細管1を所定の長さで切断する方法として、
図2のように、細管1に所定間隔d(図1Bのhと等し
い)で外周に刻線6を設け、この刻線6で測定用の細管
断片4を容易に折り取れるようにしている。刻線間の間
隔dは液の特性,管径等に合わせて所定の測定光路長と
なるように選べばよく、又、細管1の材質としては、測
定光が細管1に照射されないので、細管の材質や製法に
光学的な制約を受けることがなく、従って、適当に破壊
脆性の低い材料即ち細管断片4が折り取り易い材料、例
えば、ガラス,硬質プラスチック等で細管を製作するこ
とにより、細管1の刻線6で折り取ることが容易とな
る。更に、細管残部は、次回の測定用として、その全長
Lが充分使用に耐えるあいだは、使用することができ
る。細管内径Dはサンプル液の性状や測定液量に合わせ
て、予め適宜選択決定しておけばよい。FIG. 1 shows an embodiment of the present invention. First, as shown in FIG. 1A, one end of the thin tube 1 is slightly dipped into the liquid surface of the sample container 2 containing the sample liquid 3 synthesized by a reaction device or the like, and the capillary phenomenon is utilized to make the sample liquid 3
Is introduced into the capillary 1. Vacuum pump and dropper,
You may use suction means, such as a syringe, together. As shown in FIG. 2, make the rear end of the thin tube 1 thick and attach a rubber ball 8 to it.
The thin tube itself may be made like a Komagome pipette. The sample solution does not need to be filled over the entire thin tube, and it is sufficient to suck the sample solution to a height of about 0.5 to 1 mm, although it depends on the absorbance of the sample solution. Even if the thin tube 1 is separated from the liquid surface in this state, the sample liquid 3 is retained in the thin tube 1 by the surface tension. Next, as shown in FIG. 1B, the thin tube 1 is cut from the end surface at a constant length h. The length h may be appropriately determined depending on the filling state of the liquid, and may be determined, for example, at an intermediate position between the end surface of the thin tube and the height of the liquid surface in the thin tube. As a method of cutting the thin tube 1 into a predetermined length,
As shown in FIG. 2, the thin tube 1 is provided with marking lines 6 on the outer periphery at a predetermined interval d (equal to h in FIG. 1B) so that the measuring thin tube fragments 4 can be easily broken off. The distance d between the engraved lines may be selected so as to have a predetermined measurement optical path length according to the characteristics of the liquid, the tube diameter, etc. Further, as the material of the thin tube 1, the thin tube 1 is not irradiated with the measuring light. There is no optical restriction on the material and the manufacturing method of the thin tube, and therefore, the thin tube is made of a material having a low fracture brittleness, that is, a material in which the thin tube fragment 4 is easily broken, such as glass or hard plastic. It becomes easy to fold off with the score line 6 of 1. Further, the remaining portion of the thin tube can be used for the next measurement as long as the entire length L thereof can be used sufficiently. The thin tube inner diameter D may be appropriately selected and determined in advance according to the properties of the sample liquid and the amount of the measured liquid.
【0013】図3は上述した本発明の試料セルを所定位
置にセットするための治具の一例を示す。この治具は底
面形状が10mm×10mmの角形で、分光光度計の通
常のセルをセットするセルホルダに適合された形であ
る。上面にV溝7が形成され、上述した試料セルをこの
V溝上に置けば、自動的にセル4の軸が分光光度計の測
定光の光軸と一致する。FIG. 3 shows an example of a jig for setting the above-described sample cell of the present invention at a predetermined position. This jig has a rectangular bottom shape of 10 mm × 10 mm, and has a shape adapted to a cell holder for setting a normal cell of a spectrophotometer. When the V-groove 7 is formed on the upper surface and the sample cell described above is placed on the V-groove, the axis of the cell 4 automatically coincides with the optical axis of the measurement light of the spectrophotometer.
【0014】図4は、測定の際、細管を治具に固定する
細管固定具で、刻線の入った細管から試料を吸入した部
分を折り取るための道具も兼ねたものの一例を示す。図
2に示したような細管1に、図1A又は図2のような方
法によってサンプル液3を吸入した上、固定具下部材1
1のV溝11Aに合わせて置く、V溝11Aは、細管の
刻線間隔dとほぼ等しい長さを有し、その後方には、折
取り用空間11Bが形成されている。固定具上部材12
を下部材11の上に重ねる。上部材12にも下部材11
と同様にV溝部12Aが形成されており、その長さは1
1Aと同様にdにほぼ等しく、後方には下部材11と同
様に折取り用空間12Bが形成されている。細管1は二
つのV溝11A,12Aに挟まれることによって位置決
めされる。上下部材11,12は固定ネジ13によって
固定される。14は折取り具であり、その中心には貫通
孔14Aが設けられており、その孔径は細管1の外径に
比べてわずかに大きく設定されている。固定具上下部材
11,12によって固定される細管1に予め折取り具1
4を差し込んでおく。このV溝11A,12Aに細管1
を差込んだ状態における細管軸中心断面図を図5に示
す。FIG. 4 shows an example of a capillary fixing device for fixing the capillary to a jig during measurement, which also serves as a tool for breaking off the portion where the sample is sucked from the marked capillary. The sample liquid 3 is sucked into the thin tube 1 as shown in FIG. 2 by the method as shown in FIG. 1A or FIG.
The V-groove 11A, which is placed in accordance with one V-groove 11A, has a length substantially equal to the interval d of the thin tube, and a breaking space 11B is formed behind it. Fixture upper member 12
Is overlaid on the lower member 11. Upper member 12 and lower member 11
V groove 12A is formed in the same manner as the above, and its length is 1
Similar to 1A, it is almost equal to d, and a breaking space 12B is formed at the rear side like the lower member 11. The thin tube 1 is positioned by being sandwiched between the two V-shaped grooves 11A and 12A. The upper and lower members 11 and 12 are fixed by fixing screws 13. Reference numeral 14 denotes a breaking tool, which has a through hole 14A at its center, and the hole diameter is set to be slightly larger than the outer diameter of the thin tube 1. The breaking tool 1 is previously attached to the thin tube 1 fixed by the fixing tool upper and lower members 11 and 12.
Insert 4. The thin tube 1 is placed in these V grooves 11A and 12A
FIG. 5 shows a cross-sectional view of the center of the thin tube in the state in which is inserted.
【0015】図5において、折取り具14は、内部に細
管1を保持して、固定具上下部材11,12によって形
成された折取り用空間11B,12Bに挿入される。細
管1は、その先端部の刻線6から先が、固定部材11,
12によって固定されている。この状態で折取り具14
を図5矢印方向に動かすことにより、細管1を所定寸法
dだけ折取って固定具上下部材11,12の中に残し、
他の部分を取り去ることができる。3は細管1に吸引さ
れたサンプル液である。この固定方法によれば、軸対称
な円筒管の短い断片を、その軸が所定位置となるよう固
定すればよいから、直方体形状の角セルを固定する場
合、また、細管のある程度の長さのある断片をその軸が
光軸に対して垂直となるように位置決めする場合などの
従来例に比べて、より簡単な構造で精度の高い位置決め
固定が可能である。こうして切断した液が充填された細
管断片4を図1Cに示す。この細管断片4を、図1Dに
示すように、分光光度計の測定部にその中心軸が測定光
軸と平行になるように支持し、必要に応じて光束寸法を
制限する光束絞り5を併用してサンプル液3の吸光度を
測定する。In FIG. 5, the breaking tool 14 holds the thin tube 1 inside and is inserted into the breaking spaces 11B and 12B formed by the fixing tool upper and lower members 11 and 12, respectively. The thin tube 1 has a fixing member 11 from the end of the engraved line 6 at the tip thereof,
It is fixed by 12. Breaking tool 14 in this state
5 in the direction of the arrow in FIG. 5 to break the thin tube 1 by a predetermined dimension d and leave it in the fixture upper and lower members 11, 12.
Other parts can be removed. Reference numeral 3 is a sample liquid sucked into the thin tube 1. According to this fixing method, a short piece of an axially symmetric cylindrical tube may be fixed so that its axis is located at a predetermined position. Therefore, when fixing a rectangular parallelepiped rectangular cell, a small length of a narrow tube is fixed. Compared with the conventional example in which a certain piece is positioned so that its axis is perpendicular to the optical axis, the positioning and fixing can be performed with a simpler structure and with higher accuracy. The thin tube fragment 4 filled with the liquid thus cut is shown in FIG. 1C. As shown in FIG. 1D, the thin tube piece 4 is supported in the measurement part of the spectrophotometer so that its central axis is parallel to the measurement optical axis, and a light flux stop 5 for limiting the light flux size is used together. Then, the absorbance of the sample liquid 3 is measured.
【0016】この場合の分光光度計側の固定部材の一例
を図6に示す。折取られ固定された細管断片4は、固定
具上下部材11,12ごと分光光度計の測定部に取付け
る。分光光度計測定部には、固定具ホルダ15が取付穴
15Aを介して取付けられており、ホルダ15の板バネ
16で、前記細管断片4を保持した固定具組合わせ品A
を位置決め固定する。17は光束絞りである。この例で
は、従来例の角セルの場合と類似の方法で、固定具組合
わせ品Aを固定しているが、角セルの場合と異なり、固
定具組合わせ品Aには形状や材質の制約がないから、例
えば、位置決めピンや位置決め用ミゾの形成、ネジ等の
締結部品による固定等により角セルホルダの場合に比べ
て位置精度や脱着の再現性を容易に向上させることがで
きる。FIG. 6 shows an example of a fixing member on the spectrophotometer side in this case. The broken and fixed thin tube piece 4 is attached to the measuring part of the spectrophotometer together with the fixture upper and lower members 11 and 12. A fixture holder 15 is attached to the spectrophotometer measuring portion through a mounting hole 15A, and a fixture combination product A holding the thin tube fragments 4 by a leaf spring 16 of the holder 15.
Position and fix. Reference numeral 17 is a light beam diaphragm. In this example, the fixture combination product A is fixed by a method similar to the case of the square cell of the conventional example, but unlike the case of the square cell, the fixture combination product A has restrictions in shape and material. Therefore, the positioning accuracy and the reproducibility of attachment / detachment can be easily improved as compared with the case of the square cell holder by, for example, forming a positioning pin or a positioning groove, fixing with a fastening component such as a screw, and the like.
【0017】図7に位置決めピンとネジを用いた場合の
固定具及び固定具ホルダを示す。固定具組合わせ品A’
には、位置決め用穴18が形成されており、不図示の分
光光度計に取付けられたベース板19上に固定された位
置決めピン20に嵌合させることにより、固定具組合わ
せ品A’を位置決めする。更に、固定を確実にするため
固定ネジ13’で固定具組合わせ品を固定する。この方
法によれば、固定具の位置決め固定を正確且つ容易に行
うことができる。図5に示した方法で折取られた細管残
部は、先端に残ったサンプル液を吹き出し等の方法によ
り回収又は廃棄したり、液残部を含む部分を更に切断し
て廃棄することにより、残りの部分をその長さが使用に
耐える間繰り返して使用することができる。FIG. 7 shows a fixture and a fixture holder when using positioning pins and screws. Fixture combination product A '
Has a positioning hole 18 formed therein, and is positioned with a positioning pin 20 fixed on a base plate 19 attached to a spectrophotometer (not shown) to position the fixture assembly A ′. To do. Further, in order to secure the fixing, the fixing tool combination is fixed with the fixing screw 13 '. According to this method, positioning and fixing of the fixture can be accurately and easily performed. The remaining portion of the thin tube broken off by the method shown in FIG. 5 is collected or discarded by a method such as blowing off the sample liquid remaining at the tip, or the portion including the liquid remaining portion is further cut and discarded to leave the remaining portion. The part can be used repeatedly while its length withstands use.
【0018】図1Eは測定状態の細管断片4の断面を示
す図である。細管断片4中のサンプル液3は表面張力に
よって、曲面を形成するが、細管1径を適当に選択すれ
ば、上記従来例に示した角形微量セルで問題となるほど
の極端な曲面とはならず、液面が曲率を持つことによっ
て、サンプル液3がレンズとして働く効果も、測定に問
題がない程度に軽減することができる。また、仮に液面
のなす曲面によるレンズ効果を補正するための光学系を
付加する場合であっても、曲面は光軸に関して軸対称で
あるから、補正光学系も高価なシリンドリカルレンズ等
の非球面素子を用いることなく安価な球面レンズのみで
構成することが可能である。この測定法の場合、測定光
がサンプル液3を通過する長さ即ち光路長は、図1Eに
示すような長さdとなる。この光路長dは、毛細管現象
による試料の吸入及び細管の切断と云う手段を用いるた
め、正確に再現するのは困難である。しかしながら、例
えば、吸光度スペクトルの概要を知るような定性的分析
には、この程度のバラツキは、実用上大きな問題とはな
らず、また、定量的な分析を行う場合であっても、例え
ば、2波長或はそれ以上の波長で吸光度を測定し、その
結果から、光路長誤差を補正する演算を行えば、正確な
定量を行うことができる。FIG. 1E is a view showing a cross section of the capillary segment 4 in the measuring state. The sample liquid 3 in the thin tube fragment 4 forms a curved surface due to the surface tension, but if the diameter of the thin tube 1 is appropriately selected, it does not become an extremely curved surface that becomes a problem in the prismatic minute cell shown in the above conventional example. Since the liquid surface has a curvature, the effect of the sample liquid 3 acting as a lens can be reduced to the extent that there is no problem in measurement. Even if an optical system for correcting the lens effect due to the curved surface formed by the liquid surface is added, since the curved surface is axisymmetric with respect to the optical axis, the correction optical system is also an aspherical surface such as an expensive cylindrical lens. It is possible to use only an inexpensive spherical lens without using any element. In the case of this measuring method, the length of the measuring light passing through the sample liquid 3, that is, the optical path length is the length d as shown in FIG. 1E. It is difficult to accurately reproduce this optical path length d because means for inhaling the sample by capillary action and cutting the capillary are used. However, for example, in a qualitative analysis in which an outline of an absorbance spectrum is known, such a variation does not pose a serious problem in practical use, and even when performing a quantitative analysis, Accurate quantification can be performed by measuring the absorbance at a wavelength of a wavelength or longer and performing a calculation to correct the optical path length error from the result.
【0019】[0019]
【発明の効果】本発明によれば、従来技術のもっていた
液量の限界,サンプルの注入・回収やセルの洗浄が困難
であること等の問題点が解消され、極めて微小量の液体
の吸光度を測定することが可能となり、且つ、その液体
を入れる容器も安価に製作できるものとすることができ
るから、使い捨ても可能で測定準備の手間が少なくな
り、測定能力が向上した。EFFECTS OF THE INVENTION According to the present invention, problems such as the limit of liquid amount, difficulty in sample injection / recovery and cell cleaning, which were present in the prior art, are solved, and the absorbance of an extremely minute amount of liquid is eliminated. Can be measured, and the container for containing the liquid can be manufactured at low cost. Therefore, the container can be disposable, the preparation for the measurement is reduced, and the measurement capability is improved.
【図1】本発明の一実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.
【図2】上記実施例における細管の一例の側面図FIG. 2 is a side view of an example of the thin tube in the above embodiment.
【図3】上記実施例における細管セット治具の一例の斜
視図FIG. 3 is a perspective view of an example of a thin tube setting jig in the above embodiment.
【図4】上記実施例における細管固定部材の一例の斜視
図FIG. 4 is a perspective view of an example of a thin tube fixing member in the above embodiment.
【図5】上記実施例における細管固定部材の一例の断面
図FIG. 5 is a cross-sectional view of an example of the thin tube fixing member in the above embodiment.
【図6】上記実施例における細管の固定方法の一例の斜
視図FIG. 6 is a perspective view of an example of a method of fixing a thin tube in the above embodiment.
【図7】上記実施例における細管の固定方法の別例の斜
視図FIG. 7 is a perspective view of another example of the method of fixing a thin tube in the above embodiment.
【図8】第1従来例の説明図FIG. 8 is an explanatory diagram of a first conventional example.
【図9】第1従来例のホルダの一例の斜視図FIG. 9 is a perspective view of an example of a holder of a first conventional example.
【図10】第2従来例の説明図FIG. 10 is an explanatory diagram of a second conventional example.
【図11】第2従来例のホルダの一例の斜視図FIG. 11 is a perspective view of an example of a holder of a second conventional example.
1 細管 2 サンプル容器 3 サンプル液 4 細管断片 5 光束絞り 1 Capillary tube 2 Sample container 3 Sample liquid 4 Capillary tube fragment 5 Luminous diaphragm
Claims (2)
よって被測定液を吸引,保持させ、この状態で上記被測
定液を保持している部分を含むように上記細管の吸引側
端から細管を切断し、被測定液を内部に保持した上記細
管の切断部分をその中心軸が測定光軸と一致するように
分光光度計の測定部に支持固定して、測定光を透過させ
ることを特徴とする微量液体試料の分光特性測定法。1. A capillarity or suction means for sucking and holding a liquid to be measured from one end of the thin pipe, and in this state, the thin pipe is attached from the suction side end of the thin pipe so as to include a portion holding the liquid to be measured. It is characterized in that it is cut and supported and fixed to the measurement part of the spectrophotometer so that the central axis of the cut part of the thin tube holding the liquid to be measured inside coincides with the measurement optical axis. Method for measuring spectral characteristics of trace liquid samples.
と、被測定液を内部に保持した上記細管の先端部を位置
決め固定する固定手段と、該細管の先端部を刻線で折取
る手段とを備えたことを特徴とする微量液体試料測定用
装置。2. A thin tube having grooved lines or grooves formed at a predetermined interval, a fixing means for positioning and fixing the tip of the thin tube holding a liquid to be measured therein, and a tip of the thin tube with a scored line. An apparatus for measuring a small amount of a liquid sample, which is provided with a breaking means.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-79071 | 1992-02-29 | ||
JP7907192 | 1992-02-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05302893A true JPH05302893A (en) | 1993-11-16 |
JP3136574B2 JP3136574B2 (en) | 2001-02-19 |
Family
ID=13679658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04170160A Expired - Fee Related JP3136574B2 (en) | 1992-02-29 | 1992-06-04 | Spectral characteristics measuring device for trace liquid samples |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3136574B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001330556A (en) * | 2000-05-24 | 2001-11-30 | Shizuoka Seiki Co Ltd | Sample cell with built-in function of measuring temperature and measuring method by grain analyser using it |
WO2004086010A1 (en) * | 2003-03-24 | 2004-10-07 | Hitachi Software Engineering Co., Ltd. | Absorbance reader, absorbance reader control method, and absorbance calculation program |
JP2007285847A (en) * | 2006-04-17 | 2007-11-01 | Hitachi High-Tech Manufacturing & Service Corp | Spectrophotometer |
JP2008051747A (en) * | 2006-08-28 | 2008-03-06 | Jasco Corp | Liquid sample measurement method |
WO2008044329A1 (en) | 2006-10-06 | 2008-04-17 | Shimadzu Corporation | Spectrophotometer |
US7576855B2 (en) | 2005-05-19 | 2009-08-18 | Shimadzu Corporation | Spectrophotometric method and apparatus |
JP2012513031A (en) * | 2008-12-18 | 2012-06-07 | バイオビジラント システムズ,インコーポレイテッド | Compact detector for simultaneous detection of particle size and fluorescence |
JP2014066592A (en) * | 2012-09-26 | 2014-04-17 | Hitachi High-Technologies Corp | Automatic analyzer |
JP2020051915A (en) * | 2018-09-27 | 2020-04-02 | ウシオ電機株式会社 | Optical measuring device and optical measuring method |
JP2020095004A (en) * | 2018-12-06 | 2020-06-18 | 株式会社シン・コーポレイション | Capillary breaker and micro sampler |
JPWO2019181803A1 (en) * | 2018-03-20 | 2021-04-08 | 住友電気工業株式会社 | Fine particle measuring device |
CN113237705A (en) * | 2021-06-29 | 2021-08-10 | 盈开生物科技(上海)有限公司 | Trace sample adding system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013155A (en) | 1989-09-26 | 1991-05-07 | Chemetrics, Inc. | Portable spectrophotometric instrument having vial holder and light integrator |
-
1992
- 1992-06-04 JP JP04170160A patent/JP3136574B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001330556A (en) * | 2000-05-24 | 2001-11-30 | Shizuoka Seiki Co Ltd | Sample cell with built-in function of measuring temperature and measuring method by grain analyser using it |
US7362433B2 (en) | 2003-03-24 | 2008-04-22 | Hitachi Software Engineering Co., Ltd. | Absorbance reader apparatus, absorbance reader control method, and absorbance calculation program |
WO2004086010A1 (en) * | 2003-03-24 | 2004-10-07 | Hitachi Software Engineering Co., Ltd. | Absorbance reader, absorbance reader control method, and absorbance calculation program |
JPWO2004086010A1 (en) * | 2003-03-24 | 2006-06-29 | 日立ソフトウエアエンジニアリング株式会社 | Absorbance reader, absorbance reader control method, and absorbance calculation program |
US7576855B2 (en) | 2005-05-19 | 2009-08-18 | Shimadzu Corporation | Spectrophotometric method and apparatus |
JP2007285847A (en) * | 2006-04-17 | 2007-11-01 | Hitachi High-Tech Manufacturing & Service Corp | Spectrophotometer |
JP2008051747A (en) * | 2006-08-28 | 2008-03-06 | Jasco Corp | Liquid sample measurement method |
WO2008044329A1 (en) | 2006-10-06 | 2008-04-17 | Shimadzu Corporation | Spectrophotometer |
US8049884B2 (en) | 2006-10-06 | 2011-11-01 | Shimadzu Corporation | Spectrophotometer |
JP2012513031A (en) * | 2008-12-18 | 2012-06-07 | バイオビジラント システムズ,インコーポレイテッド | Compact detector for simultaneous detection of particle size and fluorescence |
JP2014066592A (en) * | 2012-09-26 | 2014-04-17 | Hitachi High-Technologies Corp | Automatic analyzer |
JPWO2019181803A1 (en) * | 2018-03-20 | 2021-04-08 | 住友電気工業株式会社 | Fine particle measuring device |
JP2020051915A (en) * | 2018-09-27 | 2020-04-02 | ウシオ電機株式会社 | Optical measuring device and optical measuring method |
JP2020095004A (en) * | 2018-12-06 | 2020-06-18 | 株式会社シン・コーポレイション | Capillary breaker and micro sampler |
CN113237705A (en) * | 2021-06-29 | 2021-08-10 | 盈开生物科技(上海)有限公司 | Trace sample adding system |
Also Published As
Publication number | Publication date |
---|---|
JP3136574B2 (en) | 2001-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1111732C (en) | Capillary microcuvette | |
JP5726064B2 (en) | Optical inspection method for cuvettes, inserts, adapters and small amounts of liquid | |
JP3136574B2 (en) | Spectral characteristics measuring device for trace liquid samples | |
EP0163826B1 (en) | Apparatus for removing liquid from the outer surface of a pipette tube | |
US5599503A (en) | Detector cell | |
EP2071317A1 (en) | Spectrophotometer | |
US20070041876A1 (en) | Apparatus for liquid sample handling | |
US5766957A (en) | Spectrophotometric techniques | |
US20020154299A1 (en) | Liquid photometer using surface tension to contain sample | |
US20080253933A1 (en) | Liquid Photometry | |
JP2012504767A (en) | Dual sample mode spectrophotometer | |
EP0408181A2 (en) | An adaptor for holding a micropipette | |
JP5568070B2 (en) | Micro cuvette assembly and method of using the same | |
CN110520719B (en) | Disposable multi-channel bioanalysis cartridge and capillary electrophoresis system for bioanalysis using the same | |
JPH03500453A (en) | immunoanalyzer | |
US7142305B2 (en) | Microchemical system | |
JP2014524582A (en) | Cuvette | |
Kirk et al. | Capillary absorption cells in spectrophotometry | |
US20070081159A1 (en) | Apparatus and methods for evaluating an optical property of a liquid sample | |
US9494510B2 (en) | Cuvette system | |
US4152939A (en) | Micro-sampling device | |
CN113495136B (en) | Test piece for testing biological sample quality and method for testing biological sample quality detector | |
KR100455661B1 (en) | Lab on a chip for the analysis of amine compound | |
JP2000121552A (en) | Spr sensor cell and immunoreaction measuring device using the same | |
CN206613510U (en) | Pipette tip device and measurement system thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20081208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20091208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20091208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20101208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20111208 |
|
LAPS | Cancellation because of no payment of annual fees |