[go: up one dir, main page]

JPH0530134B2 - - Google Patents

Info

Publication number
JPH0530134B2
JPH0530134B2 JP18881884A JP18881884A JPH0530134B2 JP H0530134 B2 JPH0530134 B2 JP H0530134B2 JP 18881884 A JP18881884 A JP 18881884A JP 18881884 A JP18881884 A JP 18881884A JP H0530134 B2 JPH0530134 B2 JP H0530134B2
Authority
JP
Japan
Prior art keywords
current
circuit
phase
overcurrent
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18881884A
Other languages
Japanese (ja)
Other versions
JPS6169327A (en
Inventor
Akira Tanimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP18881884A priority Critical patent/JPS6169327A/en
Publication of JPS6169327A publication Critical patent/JPS6169327A/en
Publication of JPH0530134B2 publication Critical patent/JPH0530134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は主回路の地絡電流及び過電流の双方を
検出する回路しや断器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a circuit breaker that detects both ground fault current and overcurrent in a main circuit.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、主回路の地絡電流及び過電流の双方
を検出する回路しや断器としては第3図及び第4
図に示すようなものが考えられている。
Conventionally, circuit breakers that detect both ground fault current and overcurrent in the main circuit are shown in Figures 3 and 4.
Something like the one shown in the figure is being considered.

第3図において、1は三相交流電源からの三相
交流電力を負荷に供給するための三相の主回路、
2,3及び4は主回路1の各相に介在されたしや
断器接点、5,6及び7は主回路1の各相に配設
されて過電流を検出するための変流器、8は変流
器5,6及び7の三相トータルベクトル電流を検
出する補助変流器、9,10,11及び12は全
波整流回路、13及び14は検出抵抗、15は地
絡電流検出回路、16は過電流検出回路、17は
地絡電流検出回路15からの地絡電流引外し信号
及び過電流引外し信号が与えられる引外し信号回
路であり、この引外し信号回路17は地絡電流引
外し信号及び過電流引外し信号が与えられると
夫々引外しコイル18に通電して前記しや断器接
点2,3及び4を開放させるようになつている。
In Fig. 3, 1 is a three-phase main circuit for supplying three-phase AC power from a three-phase AC power source to a load;
Reference numerals 2, 3, and 4 are breaker contacts interposed in each phase of the main circuit 1; 5, 6, and 7 are current transformers arranged in each phase of the main circuit 1 for detecting overcurrent; 8 is an auxiliary current transformer that detects the three-phase total vector current of current transformers 5, 6, and 7, 9, 10, 11, and 12 are full-wave rectifier circuits, 13 and 14 are detection resistors, and 15 is a ground fault current detection 16 is an overcurrent detection circuit; 17 is a tripping signal circuit to which a grounding current tripping signal and an overcurrent tripping signal from the grounding current detection circuit 15 are given; When a current tripping signal and an overcurrent tripping signal are applied, the tripping coils 18 are energized to open the shield breaker contacts 2, 3, and 4, respectively.

又、第4図において、19,20及び21は主
回路1の各相に配設されて過電流を検出するため
の変流器、22,23及び24は変流器19,2
0及び21の二次側に接続された補助変圧器、2
5は変流器19,20及び21の二次側に補助変
流器22,23及び24の一次側を介して接続さ
れてその中性線電流により地絡電流を検出するた
めの補助変圧器、26,27,28及び29は全
波整流回路、30及び31は検出抵抗、32は地
絡電流及び過電流を検出して引外しコイル18に
通電する静止形引外し回路である。
Further, in FIG. 4, 19, 20 and 21 are current transformers arranged in each phase of the main circuit 1 to detect overcurrent, and 22, 23 and 24 are current transformers 19, 2.
Auxiliary transformer connected to secondary side of 0 and 21, 2
Reference numeral 5 denotes an auxiliary transformer connected to the secondary sides of current transformers 19, 20 and 21 via the primary sides of auxiliary current transformers 22, 23 and 24, and for detecting ground fault current based on its neutral line current. , 26, 27, 28, and 29 are full-wave rectifier circuits, 30 and 31 are detection resistors, and 32 is a static type tripping circuit that detects ground fault current and overcurrent and energizes the tripping coil 18.

このような第3図及び第4図に示す従来の回路
しや断器において、地絡電流によりしや断器接点
を開放(トリツプ)させる地絡電流設定値は、回
路しや断器の最大定格電流の0.2〜1.0倍の間に選
定され、又、地絡電流での動作時間は0.1〜0.5秒
の間に選定されるのが一般的である。一方、過電
流領域では、回路しや断器の最大定格電流の約10
倍までは反時限特性を有し、最大定格電流の15〜
20倍では瞬時にトリツプさせるのが一般的であ
る。従つて、このように地絡電流と過電流との動
作特性を満足させるためには、変流器として、最
大定格電流の0.2倍で引外しコイルを動作させる
ための直流電源の確立が必要であること、最大定
格電流の少なくとも10倍までは二次出力が一次側
たる主回路電流に直線的に比例しなければならな
いこと、の特性が要求される。ところが、このよ
うな特性を満足させるためには変流器の二次側負
荷を小さくする必要があるが、このためには、第
3図の回路しや断器においては、変流器5,6及
び7の鉄心容量を大としなければならず変流器
5,6及び7の外形寸法が大きくなり、又、第4
図の回路しや断器においては、補助変圧器22,
23及び24を設けなければならず、いずれにし
ても全体として大形化し取付スペースが大となる
不具合があつた。
In the conventional circuit breakers shown in Figures 3 and 4, the ground fault current setting value that causes the ground fault current to open (trip) the break contact is the maximum value of the circuit breakers. Generally, it is selected between 0.2 and 1.0 times the rated current, and the operating time at ground fault current is selected between 0.1 and 0.5 seconds. On the other hand, in the overcurrent region, approximately 10% of the maximum rated current of the circuit disconnector
Up to 15 times the maximum rated current, with anti-time characteristic
At 20x, it is common to trip instantly. Therefore, in order to satisfy the operating characteristics of ground fault current and overcurrent, it is necessary to establish a DC power source as a current transformer to operate the tripping coil at 0.2 times the maximum rated current. The secondary output must be linearly proportional to the primary main circuit current up to at least 10 times the maximum rated current. However, in order to satisfy such characteristics, it is necessary to reduce the secondary side load of the current transformer, and for this purpose, in the circuit and disconnector shown in Fig. 3, the current transformer 5, The core capacity of current transformers 5, 6, and 7 must be increased, and the external dimensions of current transformers 5, 6, and 7 become large.
In the circuit breaker shown in the figure, the auxiliary transformer 22,
23 and 24 had to be provided, and in any case, there was a problem that the overall size was increased and the installation space became large.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、そ
の目的は、主回路の地絡電流及び過電流の動作特
性を満足させながらも、小形化を図り得、取付け
スペースを小ならしめ得る回路しや断器を提供す
るにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a circuit that can be made smaller and requires less installation space while satisfying the operating characteristics of the main circuit's ground fault current and overcurrent. and provide disconnectors.

〔発明の概要〕[Summary of the invention]

本発明は、主回路の各相に負荷電流を検出する
変流器を配設し、これらの変流器の二次出力を整
流して直流電源を得る直流電源回路を設け、前記
変流器の二次側の中性線に地絡電流を検出する零
相変流器を配設し、前記主回路の各相に過電流を
検出するための検出手段を配設し、そして、前記
零相変流器の検出する地絡電流及び検出手段の検
出する過電流が夫々の設定値以上で夫々の設定時
間以上となつた時に引外しコイルを駆動させて主
回路の各相に介在されたしや断器接点を開放させ
る静止形引外し回路を設ける構成に特徴を有し、
直流電源回路からの直流電源を引外しコイル及び
静止形引外し回路に供給せんとするものである。
The present invention provides a DC power supply circuit in which a current transformer for detecting load current is disposed in each phase of a main circuit, and a DC power supply circuit is provided to obtain a DC power supply by rectifying the secondary output of these current transformers. A zero-phase current transformer for detecting ground fault current is disposed in the neutral wire on the secondary side of the When the ground fault current detected by the phase current transformer and the overcurrent detected by the detection means exceed their respective set values and exceed their respective set times, the tripping coil is driven to intervene in each phase of the main circuit. It is characterized by a configuration with a static trip circuit that opens the breaker contact.
The DC power supply from the DC power supply circuit is intended to be supplied to the tripping coil and the static type tripping circuit.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の第1の実施例につき第1図を参照
しながら説明する。
A first embodiment of the present invention will be described below with reference to FIG.

33は三相交流電源からの三相交流電力を三相
交流モータ等の負荷に供給する主回路であり、そ
の各R,S及びT相導体33R,33S及び33
Tにはしや断器接点34,35及び36が介在さ
れている。そして、各R,S及びT相導体33
R,33S及び33Tには負荷電流を検出するた
めの交流器37,38及び39が配設されてい
る。40は8個のダイオード401〜408をブリ
ツジ接続してなる全波整流回路であり、その交流
入力端子たるダイオード401,405の共通接続
点、ダイオード402,406の共通接続点及びダ
イオード403,407の共通接続点には前記交流
器37,38及び39の各二次コイルの一端が接
続されており、又、各二次コイルの他端は共通に
接続されてその共通接続線たる中性線41はダイ
オード404,408の共通接続点に接続されてい
る。42は前記全波整流回路40の直流出力端子
に接続された安定化電源回路であり、これはその
全波整流回路40とともに直流電源回路43を構
成するようになつている。44は前記変流器3
7,38及び39の二次側の中性線41に配設さ
れた零相変流器であり、その二次コイルの両端は
地絡電流検出回路45の入力端子に接続されてい
る。この地絡電流検出回路45には前記安定化電
源回路42からの安定化直流電源が供給されるよ
うになつており、そして、この地絡電流検出回路
45は、零相変換器44の検出電流(地絡電流)
が所定の地絡電流設定値以上になり設定時間以上
となつた時に地絡電流引外し信号S45を出力する。
46,47及び48は前記主回路33の各R,S
及びT相導体33R,33S及び33Tに配設さ
れた過電流を検出するための検出手段たる変流
器、49は8個のダイオード491〜498をブリ
ツジ接続してなる全波整流回路であり、前記変流
器46,47及び48の各二次コイルの一端は交
流入力端子たるダイオード491,495の共通接
続点、ダイオード492,496の共通接続点及び
タイオード493,497の共通接続点に接続され
ており、又、各二次コイルの他端は共通に接続さ
れてその共通接続点はダイオード494,498
共通接続点に接続されている。50は入力端子が
全波整流回路49の直流出力端子に接続された過
電流検出回路であり、これは、全波整流路49の
直流電流即ち変流器46,47及び48の検出電
流(過電流)が所定の過電流設定値以上で設定時
間以上となつた時に過電流引外し信号S50を出力
する。尚、この過電流検出回路50にも前記安定
化電源回路42からの安定化直流電源が供給され
るようになつている。51は前記安定化電源回路
42からの安定化直流電源が供給される引外し信
号回路であり、これは、入力端子に地絡電流引外
し信号S45及び過電流引外し信号S50が与えられる
と、前記安定化電源回路42からの安定化直流電
源より引外しコイル52に通電して駆動させ、以
て、しや断器接続点34,35及び36を開放
(トリツプ)動作させる。そして、以上の地絡電
流検出回路45、過電流検出回路50及び引外し
信号回路51は全体として静止形引外し回路53
を構成している。
33 is a main circuit that supplies three-phase AC power from a three-phase AC power supply to a load such as a three-phase AC motor, and its R, S and T phase conductors 33R, 33S and 33
T is provided with breaker contacts 34, 35 and 36. And each R, S and T phase conductor 33
AC generators 37, 38, and 39 for detecting load current are provided at R, 33S, and 33T. 40 is a full-wave rectifier circuit formed by bridge-connecting eight diodes 40 1 to 40 8 , and a common connection point of diodes 40 1 and 40 5 and a common connection point of diodes 40 2 and 40 6 are AC input terminals. One end of each of the secondary coils of the alternating current generators 37, 38 and 39 is connected to the common connection point of the diodes 40 3 and 40 7 , and the other ends of the secondary coils are connected in common. A neutral line 41 serving as a common connection line is connected to a common connection point of diodes 40 4 and 40 8 . 42 is a stabilized power supply circuit connected to the DC output terminal of the full-wave rectifier circuit 40, which together with the full-wave rectifier circuit 40 constitutes a DC power supply circuit 43. 44 is the current transformer 3
7, 38, and 39, and both ends of the secondary coils thereof are connected to input terminals of a ground fault current detection circuit 45. This ground fault current detection circuit 45 is supplied with a stabilized DC power from the stabilized power supply circuit 42, and this ground fault current detection circuit 45 receives the detected current of the zero-phase converter 44. (ground fault current)
When the current exceeds a predetermined ground fault current setting value and exceeds the set time, a ground fault current tripping signal S45 is output.
46, 47 and 48 are each R and S of the main circuit 33.
and a current transformer serving as a detection means for detecting overcurrent arranged on the T-phase conductors 33R, 33S, and 33T; 49 is a full-wave rectifier circuit formed by bridge-connecting eight diodes 49 1 to 49 8 ; One end of each secondary coil of the current transformers 46, 47 and 48 is an AC input terminal, which is a common connection point of diodes 49 1 and 49 5 , a common connection point of diodes 49 2 and 49 6 , and a common connection point of diodes 49 3 and 49. The other ends of the secondary coils are connected in common, and the common connection point is connected to the common connection point of diodes 49 4 and 49 8 . 50 is an overcurrent detection circuit whose input terminal is connected to the DC output terminal of the full-wave rectifier circuit 49; When the current (current) exceeds a predetermined overcurrent setting value and exceeds a set time, an overcurrent trip signal S50 is output. Incidentally, the overcurrent detection circuit 50 is also supplied with stabilized DC power from the stabilized power supply circuit 42. Reference numeral 51 denotes a tripping signal circuit to which stabilized DC power is supplied from the stabilized power supply circuit 42, and this has an input terminal supplied with an earth fault current tripping signal S 45 and an overcurrent tripping signal S 50 . Then, the tripping coil 52 is energized and driven by the stabilized DC power supply from the stabilized power supply circuit 42, thereby opening (tripping) the shield breaker connection points 34, 35, and 36. The above ground fault current detection circuit 45, overcurrent detection circuit 50, and tripping signal circuit 51 are combined into a static type tripping circuit 53.
It consists of

而して、上記構成とすれば、変流器37,38
及び39としては、地絡電流の最小設定値の90%
位で安定化電源回路42を確立させて引外しコイ
ル52を駆動させるようにしておけばよく、又、
主回路33の過電流に対して二次出力の比例特性
は必要としないので、小形のもので充分である。
更に、変流器46,47及び48としては、主回
路33に流れる過電流に対して回路しや断器の最
大定格電流の少なくとも10倍位までは二次出力が
直線的に比例して出るようにしておく必要がある
が、それほど高出力は必要としないので、鉄心面
積が小さくて済み、又、必要に応じてギヤツプ付
鉄心にて過電流の大なる領域での飽和を防ぐこと
ができ、従つて、小形のもので充分である。そし
て、零相変流器44としては、変流器37,38
及び39の二次側の中性線41から地絡電流を検
出する配置構成であるので、中性線41には瞬時
的でも最大数アンペアしか流れないことから、小
形のもので充分である。
Therefore, with the above configuration, current transformers 37 and 38
and 39 is 90% of the minimum setting value of earth fault current.
The stabilized power supply circuit 42 may be established at a certain point to drive the tripping coil 52;
Since a proportional characteristic of the secondary output with respect to the overcurrent of the main circuit 33 is not required, a small one is sufficient.
Furthermore, the current transformers 46, 47, and 48 output a secondary output linearly proportional to the overcurrent flowing in the main circuit 33 up to at least 10 times the maximum rated current of the circuit breaker. However, since very high output is not required, the core area can be small, and if necessary, saturation can be prevented in areas with large overcurrent by using a gapped core. , Therefore, a small one is sufficient. The zero-phase current transformer 44 includes current transformers 37 and 38.
Since the arrangement is such that the ground fault current is detected from the neutral wire 41 on the secondary side of 39, only a maximum of several amperes flows through the neutral wire 41 even momentarily, so a small one is sufficient.

このように本実施例によれば、引外しコイル5
2及び静止形引外し回路53への直流電源供給用
の変流器37,38及び39と、主回路33の過
電流検出用の変流器46,47及び48と、変流
器37,38及び39の二次側中性線41に配設
された地絡電流検出用の零相変流器44とを具備
する構成としたので、全体として小形化を図り
得、取付スペースを小とすることができるもので
あり、従つて、設計上の自由度を大とし得る利点
がある。
In this way, according to this embodiment, the tripping coil 5
Current transformers 37, 38 and 39 for supplying DC power to 2 and static trip circuit 53, current transformers 46, 47 and 48 for overcurrent detection of main circuit 33, and current transformers 37, 38 and a zero-phase current transformer 44 for ground fault current detection arranged in the secondary side neutral wire 41 of 39, so the overall size can be reduced and the installation space can be reduced. Therefore, it has the advantage of increasing the degree of freedom in design.

第2図は本発明の第2の実施例であり、第1図
と同一部分には同一符号を付して示し、以下異な
る部分のみ説明する。
FIG. 2 shows a second embodiment of the present invention, and the same parts as in FIG. 1 are denoted by the same reference numerals, and only the different parts will be explained below.

即ち、54,55及び56は主回路33の各
R,S及びT相導体33R,33S及び33Tに
配設された制御電流用の変流器であり、これらは
変流器37,38及び39と同一定格のものであ
る。57は8個のダイオード571〜578をブリ
ツジ接続してなる全波整流回路であり、その交流
入力端子たるダイオード571,575の共通接続
点、ダイオード572,576の共通接続点及びダ
イオード573,577の共通接続点には前記変流
器54,55及び56の各二次コイルの一端が接
続されており、又、各二次コイルの他端は共通に
接続されてその共通接続点はダイオード574
578の共通接続点に接続されている。58は制
御電流回路であり、その入力端子は前記全波整流
回路57の直流出力端子に接続されている。5
9,60及び61は前記主回路33のR,S及び
T相導体33R,33S及び33Tに配設された
検出手段たるホール素子であり、これらの電流端
子は直列に接続された上で前記制御電流回路58
の電流出力端子間に接続され、各出力端子は安定
化電源回路42から安定化直流電源が供給される
過電流検出回路62の入力端子に接続されてい
る。そして、この過電流検出回路62は地絡電流
検出回路45及び引外し信号回路51とともに静
止形引外し回路63を構成する。
That is, 54, 55 and 56 are current transformers for control current arranged in each R, S and T phase conductor 33R, 33S and 33T of the main circuit 33, and these are current transformers 37, 38 and 39. It has the same rating. 57 is a full-wave rectifier circuit formed by bridge-connecting eight diodes 57 1 to 57 8 , and the common connection point of diodes 57 1 and 57 5 and the common connection point of diodes 57 2 and 57 6 are AC input terminals. One end of each of the secondary coils of the current transformers 54, 55 and 56 is connected to the common connection point of the diodes 57 3 and 57 7 , and the other ends of each of the secondary coils are connected in common. The common connection point is the diode 57 4 ,
57 Connected to 8 common connection points. 58 is a control current circuit whose input terminal is connected to the DC output terminal of the full-wave rectifier circuit 57. 5
Reference numerals 9, 60 and 61 are Hall elements serving as detection means disposed on the R, S and T phase conductors 33R, 33S and 33T of the main circuit 33, and these current terminals are connected in series and Current circuit 58
, and each output terminal is connected to an input terminal of an overcurrent detection circuit 62 to which stabilized DC power is supplied from the stabilized power supply circuit 42 . This overcurrent detection circuit 62 constitutes a static type tripping circuit 63 together with the ground fault current detection circuit 45 and the tripping signal circuit 51.

而して、ホール素子59,60及び61はR,
S及びT相導体33R,33S及び33Tに流れ
る電流により生ずるフラツクスを検出することに
よりその電流に応じた検出電圧を発生するもので
あり、過電流検出回路62はその検出電圧が所定
の過電流設定値以上で設定時間以上になつた時に
過電流引外し信号S62を出力し引外し信号回路5
1の入力端子に与える。
Therefore, the Hall elements 59, 60 and 61 are R,
By detecting the flux generated by the current flowing through the S and T phase conductors 33R, 33S, and 33T, a detection voltage corresponding to the current is generated, and the overcurrent detection circuit 62 detects the detection voltage according to the predetermined overcurrent setting. When the value exceeds the set time, the overcurrent trip signal S 62 is output and the trip signal circuit 5
1 input terminal.

従つて、この第2の実施例によつても前記第1
の実施例同様の作用効果を得ることができる。
Therefore, even in this second embodiment, the first
The same effects as in the embodiment can be obtained.

尚、本発明は上記し且つ図面に示す実施例にの
み限定されるものではなく、要旨を逸脱しない範
囲内で適宜変形して実施し得ることは勿論であ
る。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can of course be implemented with appropriate modifications within the scope of the gist.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、主回路の負荷電
流を検出して直流電源を得るための変流器を設
け、この変流器の二次側中性線から地絡電流を検
出する零相変流器を設け、そして、前記主回路の
過電流を検出する検出手段を設けるようにしたの
で、全体として小形化を図り得、取付スペースを
小ならしめ得るという優れた効果を奏するもので
ある。
As explained above, the present invention includes a current transformer for detecting the load current of the main circuit to obtain DC power, and a zero-phase current transformer for detecting the ground fault current from the secondary side neutral wire of the current transformer. Since a current transformer is provided and a detection means for detecting overcurrent in the main circuit is provided, the device can be made smaller as a whole and has the excellent effect of reducing the installation space. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の夫々第1及び第2
の実施例を示す電気回路図であり、第3図及び第
4図は従来例を示す電気回路図である。 図面中、33は主回路、37〜39は変流器、
41は中性線、43は直流電源回路、44は零相
変流器、45は地絡電流検出回路、46〜49は
変流器(検出手段)、50は過電流検出回路、5
1は引外し信号回路、52は引外しコイル、53
は静止形引外し回路、59〜61はホール素子
(検出手段)、62は過電流検出回路、63は静止
形引外し回路を示す。
FIG. 1 and FIG. 2 show the first and second embodiments of the present invention, respectively.
FIG. 3 is an electric circuit diagram showing an embodiment of the present invention, and FIGS. 3 and 4 are electric circuit diagrams showing conventional examples. In the drawing, 33 is the main circuit, 37 to 39 are current transformers,
41 is a neutral wire, 43 is a DC power supply circuit, 44 is a zero-phase current transformer, 45 is a ground fault current detection circuit, 46 to 49 are current transformers (detection means), 50 is an overcurrent detection circuit, 5
1 is a trip signal circuit, 52 is a trip coil, 53
59-61 are Hall elements (detection means), 62 is an overcurrent detection circuit, and 63 is a static type tripping circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 主回路の各相に介在されたしや断器接点及び
このしや断器接点を開放させる引外しコイルと、
前記主回路の各相に配設され負荷電流を検出する
変流器と、これらの変流器の二次出力を整流して
直流電源を得る直流電源回路と、前記変流器の二
次側の中性線に配設されて地絡電流を検出する零
相変流器と、前記主回路の各相に配設された過電
流を検出するための検出手段と、前記零相変流器
の検出する地絡電流及び検出手段の検出する過電
流が夫々の設定値以上で夫々の設定時間以上にな
つた時に夫々前記引外しコイルを駆動させる静止
形引外し回路とを具備してなる回路しや断器。
1. A loop breaker contact interposed in each phase of the main circuit and a tripping coil for opening the loop breaker contact;
a current transformer arranged in each phase of the main circuit to detect the load current; a DC power supply circuit that rectifies the secondary outputs of these current transformers to obtain a DC power source; and a secondary side of the current transformer. a zero-phase current transformer disposed in the neutral line to detect ground fault current; a detection means disposed in each phase of the main circuit for detecting overcurrent; and the zero-phase current transformer A circuit comprising a static tripping circuit that drives the tripping coil when the ground fault current detected by the detection means and the overcurrent detected by the detection means exceed the respective set values and exceed the respective set times. Shiya disconnector.
JP18881884A 1984-09-11 1984-09-11 Circuit breaker Granted JPS6169327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18881884A JPS6169327A (en) 1984-09-11 1984-09-11 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18881884A JPS6169327A (en) 1984-09-11 1984-09-11 Circuit breaker

Publications (2)

Publication Number Publication Date
JPS6169327A JPS6169327A (en) 1986-04-09
JPH0530134B2 true JPH0530134B2 (en) 1993-05-07

Family

ID=16230351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18881884A Granted JPS6169327A (en) 1984-09-11 1984-09-11 Circuit breaker

Country Status (1)

Country Link
JP (1) JPS6169327A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506577B2 (en) * 1991-01-17 1996-06-12 日本航空電子工業株式会社 Wire guide for wire processing equipment

Also Published As

Publication number Publication date
JPS6169327A (en) 1986-04-09

Similar Documents

Publication Publication Date Title
US4425596A (en) Electric circuit breaker
US5276416A (en) Circuit breaker
JP4931754B2 (en) Earth leakage breaker
US5488303A (en) GFCI with auxiliary coil current blocking means and improved test button configuration
JPS5931283B2 (en) 2-pole grounding fault type circuit disconnector
US6714396B2 (en) Undervoltage tripping device
JPH0530134B2 (en)
JP7557768B2 (en) Power Conversion Equipment
KR102349343B1 (en) Switchboard having three phases open and netural line protecting function
US3296495A (en) Polyphase protective relay circuits
JPS63290122A (en) Overcurrent releasing device for breaker
KR100596357B1 (en) Leakage Current Detection Device
JP4111354B2 (en) Breaker with built-in current detection current transformer and distribution board
JP3231374B2 (en) Earth leakage breaker
JPH0422509Y2 (en)
JPS6327898Y2 (en)
JPH01128510A (en) Current transformer
JPH0322898Y2 (en)
JPS6320461Y2 (en)
JP2010040326A (en) Ground fault interrupter
JPS6245767B2 (en)
EP1183763B8 (en) An electrical machine winding ground-fault protection system
US1969542A (en) Electrical distribution system
SU1001297A1 (en) Device for protecting three-phase loads from short-circuiting currents and overload
RU2055434C1 (en) Current protective gear for three-phase electrical installation