[go: up one dir, main page]

JPH0530049B2 - - Google Patents

Info

Publication number
JPH0530049B2
JPH0530049B2 JP58231743A JP23174383A JPH0530049B2 JP H0530049 B2 JPH0530049 B2 JP H0530049B2 JP 58231743 A JP58231743 A JP 58231743A JP 23174383 A JP23174383 A JP 23174383A JP H0530049 B2 JPH0530049 B2 JP H0530049B2
Authority
JP
Japan
Prior art keywords
binder
manufacturing
electrolytic capacitor
anode material
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58231743A
Other languages
Japanese (ja)
Other versions
JPS60123018A (en
Inventor
Yasutomo Funakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23174383A priority Critical patent/JPS60123018A/en
Publication of JPS60123018A publication Critical patent/JPS60123018A/en
Publication of JPH0530049B2 publication Critical patent/JPH0530049B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は焼結型電解蓄電器の製造方法に関する
ものである。 従来例の構成とその問題点 一般に焼結型電解蓄電器は粉末状の陽極材料と
バインダーとから成る成形材料を金型中に投入
し、高圧を加え加圧成形し成形体を得、しかる
後、焼結、誘電体層の形成、陰極部の形成、等の
工程を経て得られていた。しかし、これらの従来
の粉末金工法では成形金型、成形条件等を精密に
コントロールしなければ成形体に割れ、密度ムラ
等が発生し製品歩留りの低下を来たす原因となつ
ていた。 これらの欠点を改良するため、材料組成、成形
金型、成形条件等に多くの工夫がなされ有機高分
子材料をバインダーとする成形方法が考案され
た。しかし、有機高分子材料をバインダーとして
用い成形後、一般的な条件下での脱バインダー、
焼結といつた工程を経て来た物は脱バインダー
時、空気による酸化で変色し、特にタンタルを用
いたコンデンサー等の焼結体の場合、漏れ電流が
高くなる原因となり不都合を生じることがある。 このような問題点を解決すべく鋭意研究の結果
有機高分子材料、滑剤、水等を含む結合剤の脱バ
インダー条件をコントロールすることによりこれ
らの問題を解決出来ることを発見したのでその詳
細を以下に述べる。 発明の目的 本発明は従来の有機バインダーを用いた成形体
が熱〜酸素雰囲気中での脱バインダー時に起こる
酸化現象を解消し、安価で高品質な焼結型電解蓄
電器の製造方法を提供するものである。 発明の構成 本願発明の構成は、濃度2%の水溶液状態にお
ける粘度が3000〜5000cpsとなるメチルセルロー
スと、滑剤及び水とからなる結合剤と、蓄電器用
粉体陽極材料との混練物を所定の形状に加工する
工程と、前記所定の形状に加工された混練物を、
不活性ガス雰囲気中で、かつ、前記結合剤の空気
中での熱分解温度以上の温度で加熱し、前記結合
剤を分解、除去する工程と、前記結合剤除去後の
粉体陽極材料を焼結する工程とから成るものであ
る。 実施例の説明 実施例 1〜8 コンデンサー用タンタル粉末83wt%、20℃に
おける2%メチルセルロース水溶液の粘度が3000
〜5000cpsのメチルセルロース2.5wt%、グリセリ
ン2.5wt%、水12wt%を添加し混練物を得た。こ
の混練物を用いて直径0.9mmの押出し成形体を得
た。この成形体を所定の長さに切断し、直径0.2
mmのタンタル線を差し込み、タンタル線の付いた
成形体を得た。成形体を表−1に示す条件で熱分
解(セルロースの空気中での熱分解温度は290〜
350℃であつた)及び、600℃で焼結を行ない、
後、一般のタンタルコンデンサーの製造工程を経
て製品を得た。この製品の特性測定結果を表−2
に示す。(表−2中の10〜12は測定できず。)
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a sintered electrolytic capacitor. Conventional Structure and Problems Generally, in a sintered electrolytic capacitor, a molding material consisting of a powdered anode material and a binder is put into a mold, high pressure is applied and pressure molded to obtain a molded body, and then, It was obtained through processes such as sintering, forming a dielectric layer, and forming a cathode part. However, in these conventional powder metal construction methods, unless the molding die, molding conditions, etc. are precisely controlled, the molded product may crack, density unevenness, etc. may occur, leading to a decrease in product yield. In order to improve these drawbacks, many improvements have been made to the material composition, molding mold, molding conditions, etc., and a molding method using an organic polymeric material as a binder has been devised. However, after molding using an organic polymer material as a binder, debinding under normal conditions,
Items that have gone through a process such as sintering may change color due to oxidation in the air when the binder is removed, and especially in the case of sintered bodies such as capacitors that use tantalum, leakage current may increase and cause problems. . As a result of intensive research to solve these problems, we discovered that these problems can be solved by controlling the debinding conditions of the binder containing organic polymer materials, lubricants, water, etc.The details are as follows. I will explain. Purpose of the Invention The present invention provides a method for manufacturing an inexpensive and high-quality sintered electrolytic capacitor by eliminating the oxidation phenomenon that occurs when a molded body using a conventional organic binder is debinding in a heat to oxygen atmosphere. It is. Structure of the Invention The structure of the present invention is to form a kneaded product of methyl cellulose having a viscosity of 3000 to 5000 cps in an aqueous solution state with a concentration of 2%, a binder consisting of a lubricant and water, and a powder anode material for a capacitor into a predetermined shape. a step of processing the kneaded material into the predetermined shape,
heating in an inert gas atmosphere at a temperature higher than the thermal decomposition temperature of the binder in air to decompose and remove the binder; and sintering the powder anode material after the binder has been removed. It consists of a process of tying. Description of Examples Examples 1 to 8 Tantalum powder for capacitor 83wt%, viscosity of 2% methylcellulose aqueous solution at 20°C is 3000
A kneaded product was obtained by adding ~5000 cps of 2.5 wt% methylcellulose, 2.5 wt% glycerin, and 12 wt% water. Using this kneaded product, an extrusion molded product with a diameter of 0.9 mm was obtained. This molded body was cut into a predetermined length, and the diameter was 0.2 mm.
mm tantalum wire was inserted to obtain a molded body with tantalum wire attached. The molded body was thermally decomposed under the conditions shown in Table 1 (the thermal decomposition temperature of cellulose in air is 290~
Sintering was carried out at 350℃) and 600℃,
Afterwards, the product was obtained through a general tantalum capacitor manufacturing process. Table 2 shows the characteristics measurement results of this product.
Shown below. (10 to 12 in Table 2 cannot be measured.)

【表】【table】

【表】【table】

【表】 参考例 1 コンデンサー用タンタル粉末、シヨウノウ、添
加剤等から成る粉末成形用組成物を従来の一般的
なタンタルコンデンサーの製造法で得たタンタル
コンデンサーの特性値を表− に示す。
[Table] Reference Example 1 Table 1 shows the characteristic values of a tantalum capacitor obtained by a conventional general tantalum capacitor production method using a powder molding composition consisting of tantalum powder for capacitors, know-how, additives, etc.

【表】 発明の効果 本発明によると表−2、表−3の結果からもあ
きらかな様に不活性ガスであるアルゴン、ヘリウ
ム等の雰囲気中で熱分解を行なうことにより空気
中熱分解のものより優れた特性値を示した。又、
熱分解温度は高い方が更に優れた結果を示した。
すなわち、不活性ガス雰囲気中で熱分解すること
により、空気中の酸素不純物等の影響による不均
一層の形成がなく純砕なタンタルの状態であるこ
と、又、熱分解温度が高温側で優れているのは、
有機物の分解が促進され、有害な分解残査として
の炭化物の形成が阻害されるためであり、この結
果として、漏れ電流、損失係数であるtanδの小さ
い焼結型蓄電器が得られることとなる。 又、熱分解温度は用いた結合剤の空気中での分
解温度以上の高温側で行なうことが良い結果が得
られるが、最も好ましいのは約2倍以上であつ
た。 また、セルロースを結合剤として用いているた
め、保湿性も良く、長期に亘つて優れた加工性を
維持するため、安定した品質の製品を得ることが
できる。
[Table] Effects of the Invention According to the present invention, as is clear from the results in Tables 2 and 3, pyrolysis in air can be achieved by performing pyrolysis in an atmosphere of inert gas such as argon or helium. It showed better characteristic values. or,
The higher the thermal decomposition temperature, the better the results.
In other words, by thermal decomposition in an inert gas atmosphere, there is no formation of uneven layers due to the influence of oxygen impurities in the air, and the state is pure crushed tantalum, and the thermal decomposition temperature is excellent at high temperatures. What we have is
This is because the decomposition of organic matter is promoted and the formation of carbides as harmful decomposition residues is inhibited, and as a result, a sintered capacitor with a small leakage current and loss coefficient tan δ can be obtained. Good results can be obtained by setting the thermal decomposition temperature to a temperature higher than the decomposition temperature of the binder used in air, but the most preferable temperature is about twice or more. In addition, since cellulose is used as a binder, it has good moisture retention and maintains excellent processability over a long period of time, making it possible to obtain products of stable quality.

Claims (1)

【特許請求の範囲】 1 濃度2%の水溶液状態における粘度が3000〜
5000cpsとなるメチルセルロースと、滑剤及び水
とから成る結合剤と、蓄電器用粉体陽極材料との
混練物を所定の形状に加工する工程と、前記所定
の形状に加工された混練物を不活性ガス雰囲気中
で、かつ、前記結合剤の空気中での熱分解温度以
上の温度で加熱し、前記結合剤を分解、除去する
工程と、前記結合剤除去後の粉体陽極材料を焼結
する工程とから成る焼結型電解蓄電器の製造方
法。 2 結合剤を分解・除去する温度が、前記結合剤
の空気中での熱分解温度の2倍以上である特許請
求の範囲第1項記載の焼結型電解蓄電器の製造方
法。 3 蓄電器用粉体陽極材料がタンタルである特許
請求の範囲第1項に記載の焼結型電解蓄電器の製
造方法。 4 不活性ガスはアルゴン、あるいはヘリウムの
ガスである特許請求の範囲第1項に記載の焼結型
電解蓄電器の製造方法。
[Claims] 1. The viscosity in the state of an aqueous solution with a concentration of 2% is 3000 or more.
A process of processing a kneaded product of 5000 cps of methyl cellulose, a binder consisting of a lubricant and water, and a powder anode material for a capacitor into a predetermined shape, and a step of processing the kneaded product processed into a predetermined shape into an inert gas. A step of heating in an atmosphere at a temperature higher than the thermal decomposition temperature of the binder in air to decompose and remove the binder, and a step of sintering the powder anode material after the binder has been removed. A method for manufacturing a sintered electrolytic capacitor comprising: 2. The method for manufacturing a sintered electrolytic capacitor according to claim 1, wherein the temperature at which the binder is decomposed and removed is at least twice the thermal decomposition temperature of the binder in air. 3. The method for manufacturing a sintered electrolytic capacitor according to claim 1, wherein the powder anode material for the capacitor is tantalum. 4. The method for manufacturing a sintered electrolytic capacitor according to claim 1, wherein the inert gas is argon or helium gas.
JP23174383A 1983-12-08 1983-12-08 Method of producing sintered electrolytic condenser Granted JPS60123018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23174383A JPS60123018A (en) 1983-12-08 1983-12-08 Method of producing sintered electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23174383A JPS60123018A (en) 1983-12-08 1983-12-08 Method of producing sintered electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS60123018A JPS60123018A (en) 1985-07-01
JPH0530049B2 true JPH0530049B2 (en) 1993-05-07

Family

ID=16928342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23174383A Granted JPS60123018A (en) 1983-12-08 1983-12-08 Method of producing sintered electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60123018A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913302A (en) * 1972-03-27 1974-02-05
JPS5321019A (en) * 1976-08-09 1978-02-27 Sprague Electric Co Method of producing porous tantalum pellets
JPS5683022A (en) * 1979-12-10 1981-07-07 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for electrolytic condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913302A (en) * 1972-03-27 1974-02-05
JPS5321019A (en) * 1976-08-09 1978-02-27 Sprague Electric Co Method of producing porous tantalum pellets
JPS5683022A (en) * 1979-12-10 1981-07-07 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for electrolytic condenser

Also Published As

Publication number Publication date
JPS60123018A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
JP2013524006A5 (en)
DE60303027T2 (en) METHOD FOR PRODUCING A FORM BODY FROM POROUS TITANIUM MATERIAL
JPH0897096A (en) Tantalum powder and electrolytic capacitor employing it
JP2013524006A (en) Method for producing molded product of aluminum alloy
US4424179A (en) Method of manufacturing a sintered silicon carbide ceramic part
JPH0530049B2 (en)
KR100725209B1 (en) Titanium Powder Injection Molded Manufacturing Method and Titanium Coating Method
JPH01239056A (en) Alumina pipe and its production
JP4638675B2 (en) Niobium wire, production method thereof and use of niobium wire
JPS60130818A (en) Method of producing anode for sintered electrolytic condenser
US3201236A (en) Method of making metal bodies incorporated with non-metallic refractory material andproduct thereof
US2960726A (en) Process for fabricating electrodes
JPH0678814A (en) Production of metallic ring
JPS61123123A (en) Manufacture of sintered type electrolytic battery
JPS6190411A (en) Composition for sintered type electrolytic battery
US3513229A (en) Method for pressing thin walled boron nitride articles utilizing a liquid nitrogen pretreatment
JPS5926653B2 (en) How to form cemented carbide
JP3788929B2 (en) Method for sintering metal powder compact
JPH01110907A (en) Method for forming ceramic coil spring
JPS60116121A (en) Method of producing anode of sintered electrolytic condenser
JPWO2013190885A1 (en) Solid electrolytic capacitor anode body
US20030179522A1 (en) Niobium powder and solid electrolytic capacitor using the same
JPS60116122A (en) Method of producing anode of sintered electrolytic condenser
CN116844869A (en) Heat treatment method for reducing equivalent series resistance of solid electrolyte tantalum capacitor