JPH0530049B2 - - Google Patents
Info
- Publication number
- JPH0530049B2 JPH0530049B2 JP58231743A JP23174383A JPH0530049B2 JP H0530049 B2 JPH0530049 B2 JP H0530049B2 JP 58231743 A JP58231743 A JP 58231743A JP 23174383 A JP23174383 A JP 23174383A JP H0530049 B2 JPH0530049 B2 JP H0530049B2
- Authority
- JP
- Japan
- Prior art keywords
- binder
- manufacturing
- electrolytic capacitor
- anode material
- thermal decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011230 binding agent Substances 0.000 claims description 18
- 239000003990 capacitor Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 7
- 239000010405 anode material Substances 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 235000010981 methylcellulose Nutrition 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- -1 know-how Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
産業上の利用分野
本発明は焼結型電解蓄電器の製造方法に関する
ものである。
従来例の構成とその問題点
一般に焼結型電解蓄電器は粉末状の陽極材料と
バインダーとから成る成形材料を金型中に投入
し、高圧を加え加圧成形し成形体を得、しかる
後、焼結、誘電体層の形成、陰極部の形成、等の
工程を経て得られていた。しかし、これらの従来
の粉末金工法では成形金型、成形条件等を精密に
コントロールしなければ成形体に割れ、密度ムラ
等が発生し製品歩留りの低下を来たす原因となつ
ていた。
これらの欠点を改良するため、材料組成、成形
金型、成形条件等に多くの工夫がなされ有機高分
子材料をバインダーとする成形方法が考案され
た。しかし、有機高分子材料をバインダーとして
用い成形後、一般的な条件下での脱バインダー、
焼結といつた工程を経て来た物は脱バインダー
時、空気による酸化で変色し、特にタンタルを用
いたコンデンサー等の焼結体の場合、漏れ電流が
高くなる原因となり不都合を生じることがある。
このような問題点を解決すべく鋭意研究の結果
有機高分子材料、滑剤、水等を含む結合剤の脱バ
インダー条件をコントロールすることによりこれ
らの問題を解決出来ることを発見したのでその詳
細を以下に述べる。
発明の目的
本発明は従来の有機バインダーを用いた成形体
が熱〜酸素雰囲気中での脱バインダー時に起こる
酸化現象を解消し、安価で高品質な焼結型電解蓄
電器の製造方法を提供するものである。
発明の構成
本願発明の構成は、濃度2%の水溶液状態にお
ける粘度が3000〜5000cpsとなるメチルセルロー
スと、滑剤及び水とからなる結合剤と、蓄電器用
粉体陽極材料との混練物を所定の形状に加工する
工程と、前記所定の形状に加工された混練物を、
不活性ガス雰囲気中で、かつ、前記結合剤の空気
中での熱分解温度以上の温度で加熱し、前記結合
剤を分解、除去する工程と、前記結合剤除去後の
粉体陽極材料を焼結する工程とから成るものであ
る。
実施例の説明
実施例 1〜8
コンデンサー用タンタル粉末83wt%、20℃に
おける2%メチルセルロース水溶液の粘度が3000
〜5000cpsのメチルセルロース2.5wt%、グリセリ
ン2.5wt%、水12wt%を添加し混練物を得た。こ
の混練物を用いて直径0.9mmの押出し成形体を得
た。この成形体を所定の長さに切断し、直径0.2
mmのタンタル線を差し込み、タンタル線の付いた
成形体を得た。成形体を表−1に示す条件で熱分
解(セルロースの空気中での熱分解温度は290〜
350℃であつた)及び、600℃で焼結を行ない、
後、一般のタンタルコンデンサーの製造工程を経
て製品を得た。この製品の特性測定結果を表−2
に示す。(表−2中の10〜12は測定できず。)
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a sintered electrolytic capacitor. Conventional Structure and Problems Generally, in a sintered electrolytic capacitor, a molding material consisting of a powdered anode material and a binder is put into a mold, high pressure is applied and pressure molded to obtain a molded body, and then, It was obtained through processes such as sintering, forming a dielectric layer, and forming a cathode part. However, in these conventional powder metal construction methods, unless the molding die, molding conditions, etc. are precisely controlled, the molded product may crack, density unevenness, etc. may occur, leading to a decrease in product yield. In order to improve these drawbacks, many improvements have been made to the material composition, molding mold, molding conditions, etc., and a molding method using an organic polymeric material as a binder has been devised. However, after molding using an organic polymer material as a binder, debinding under normal conditions,
Items that have gone through a process such as sintering may change color due to oxidation in the air when the binder is removed, and especially in the case of sintered bodies such as capacitors that use tantalum, leakage current may increase and cause problems. . As a result of intensive research to solve these problems, we discovered that these problems can be solved by controlling the debinding conditions of the binder containing organic polymer materials, lubricants, water, etc.The details are as follows. I will explain. Purpose of the Invention The present invention provides a method for manufacturing an inexpensive and high-quality sintered electrolytic capacitor by eliminating the oxidation phenomenon that occurs when a molded body using a conventional organic binder is debinding in a heat to oxygen atmosphere. It is. Structure of the Invention The structure of the present invention is to form a kneaded product of methyl cellulose having a viscosity of 3000 to 5000 cps in an aqueous solution state with a concentration of 2%, a binder consisting of a lubricant and water, and a powder anode material for a capacitor into a predetermined shape. a step of processing the kneaded material into the predetermined shape,
heating in an inert gas atmosphere at a temperature higher than the thermal decomposition temperature of the binder in air to decompose and remove the binder; and sintering the powder anode material after the binder has been removed. It consists of a process of tying. Description of Examples Examples 1 to 8 Tantalum powder for capacitor 83wt%, viscosity of 2% methylcellulose aqueous solution at 20°C is 3000
A kneaded product was obtained by adding ~5000 cps of 2.5 wt% methylcellulose, 2.5 wt% glycerin, and 12 wt% water. Using this kneaded product, an extrusion molded product with a diameter of 0.9 mm was obtained. This molded body was cut into a predetermined length, and the diameter was 0.2 mm.
mm tantalum wire was inserted to obtain a molded body with tantalum wire attached. The molded body was thermally decomposed under the conditions shown in Table 1 (the thermal decomposition temperature of cellulose in air is 290~
Sintering was carried out at 350℃) and 600℃,
Afterwards, the product was obtained through a general tantalum capacitor manufacturing process. Table 2 shows the characteristics measurement results of this product.
Shown below. (10 to 12 in Table 2 cannot be measured.)
【表】【table】
【表】【table】
【表】
参考例 1
コンデンサー用タンタル粉末、シヨウノウ、添
加剤等から成る粉末成形用組成物を従来の一般的
なタンタルコンデンサーの製造法で得たタンタル
コンデンサーの特性値を表− に示す。[Table] Reference Example 1 Table 1 shows the characteristic values of a tantalum capacitor obtained by a conventional general tantalum capacitor production method using a powder molding composition consisting of tantalum powder for capacitors, know-how, additives, etc.
【表】
発明の効果
本発明によると表−2、表−3の結果からもあ
きらかな様に不活性ガスであるアルゴン、ヘリウ
ム等の雰囲気中で熱分解を行なうことにより空気
中熱分解のものより優れた特性値を示した。又、
熱分解温度は高い方が更に優れた結果を示した。
すなわち、不活性ガス雰囲気中で熱分解すること
により、空気中の酸素不純物等の影響による不均
一層の形成がなく純砕なタンタルの状態であるこ
と、又、熱分解温度が高温側で優れているのは、
有機物の分解が促進され、有害な分解残査として
の炭化物の形成が阻害されるためであり、この結
果として、漏れ電流、損失係数であるtanδの小さ
い焼結型蓄電器が得られることとなる。
又、熱分解温度は用いた結合剤の空気中での分
解温度以上の高温側で行なうことが良い結果が得
られるが、最も好ましいのは約2倍以上であつ
た。
また、セルロースを結合剤として用いているた
め、保湿性も良く、長期に亘つて優れた加工性を
維持するため、安定した品質の製品を得ることが
できる。[Table] Effects of the Invention According to the present invention, as is clear from the results in Tables 2 and 3, pyrolysis in air can be achieved by performing pyrolysis in an atmosphere of inert gas such as argon or helium. It showed better characteristic values. or,
The higher the thermal decomposition temperature, the better the results.
In other words, by thermal decomposition in an inert gas atmosphere, there is no formation of uneven layers due to the influence of oxygen impurities in the air, and the state is pure crushed tantalum, and the thermal decomposition temperature is excellent at high temperatures. What we have is
This is because the decomposition of organic matter is promoted and the formation of carbides as harmful decomposition residues is inhibited, and as a result, a sintered capacitor with a small leakage current and loss coefficient tan δ can be obtained. Good results can be obtained by setting the thermal decomposition temperature to a temperature higher than the decomposition temperature of the binder used in air, but the most preferable temperature is about twice or more. In addition, since cellulose is used as a binder, it has good moisture retention and maintains excellent processability over a long period of time, making it possible to obtain products of stable quality.
Claims (1)
5000cpsとなるメチルセルロースと、滑剤及び水
とから成る結合剤と、蓄電器用粉体陽極材料との
混練物を所定の形状に加工する工程と、前記所定
の形状に加工された混練物を不活性ガス雰囲気中
で、かつ、前記結合剤の空気中での熱分解温度以
上の温度で加熱し、前記結合剤を分解、除去する
工程と、前記結合剤除去後の粉体陽極材料を焼結
する工程とから成る焼結型電解蓄電器の製造方
法。 2 結合剤を分解・除去する温度が、前記結合剤
の空気中での熱分解温度の2倍以上である特許請
求の範囲第1項記載の焼結型電解蓄電器の製造方
法。 3 蓄電器用粉体陽極材料がタンタルである特許
請求の範囲第1項に記載の焼結型電解蓄電器の製
造方法。 4 不活性ガスはアルゴン、あるいはヘリウムの
ガスである特許請求の範囲第1項に記載の焼結型
電解蓄電器の製造方法。[Claims] 1. The viscosity in the state of an aqueous solution with a concentration of 2% is 3000 or more.
A process of processing a kneaded product of 5000 cps of methyl cellulose, a binder consisting of a lubricant and water, and a powder anode material for a capacitor into a predetermined shape, and a step of processing the kneaded product processed into a predetermined shape into an inert gas. A step of heating in an atmosphere at a temperature higher than the thermal decomposition temperature of the binder in air to decompose and remove the binder, and a step of sintering the powder anode material after the binder has been removed. A method for manufacturing a sintered electrolytic capacitor comprising: 2. The method for manufacturing a sintered electrolytic capacitor according to claim 1, wherein the temperature at which the binder is decomposed and removed is at least twice the thermal decomposition temperature of the binder in air. 3. The method for manufacturing a sintered electrolytic capacitor according to claim 1, wherein the powder anode material for the capacitor is tantalum. 4. The method for manufacturing a sintered electrolytic capacitor according to claim 1, wherein the inert gas is argon or helium gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23174383A JPS60123018A (en) | 1983-12-08 | 1983-12-08 | Method of producing sintered electrolytic condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23174383A JPS60123018A (en) | 1983-12-08 | 1983-12-08 | Method of producing sintered electrolytic condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60123018A JPS60123018A (en) | 1985-07-01 |
JPH0530049B2 true JPH0530049B2 (en) | 1993-05-07 |
Family
ID=16928342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23174383A Granted JPS60123018A (en) | 1983-12-08 | 1983-12-08 | Method of producing sintered electrolytic condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60123018A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913302A (en) * | 1972-03-27 | 1974-02-05 | ||
JPS5321019A (en) * | 1976-08-09 | 1978-02-27 | Sprague Electric Co | Method of producing porous tantalum pellets |
JPS5683022A (en) * | 1979-12-10 | 1981-07-07 | Matsushita Electric Ind Co Ltd | Method of manufacturing electrode for electrolytic condenser |
-
1983
- 1983-12-08 JP JP23174383A patent/JPS60123018A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913302A (en) * | 1972-03-27 | 1974-02-05 | ||
JPS5321019A (en) * | 1976-08-09 | 1978-02-27 | Sprague Electric Co | Method of producing porous tantalum pellets |
JPS5683022A (en) * | 1979-12-10 | 1981-07-07 | Matsushita Electric Ind Co Ltd | Method of manufacturing electrode for electrolytic condenser |
Also Published As
Publication number | Publication date |
---|---|
JPS60123018A (en) | 1985-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3434041B2 (en) | Tantalum powder and electrolytic capacitor using the same | |
JP2013524006A5 (en) | ||
DE60303027T2 (en) | METHOD FOR PRODUCING A FORM BODY FROM POROUS TITANIUM MATERIAL | |
JPH0897096A (en) | Tantalum powder and electrolytic capacitor employing it | |
JP2013524006A (en) | Method for producing molded product of aluminum alloy | |
US4424179A (en) | Method of manufacturing a sintered silicon carbide ceramic part | |
JPH0530049B2 (en) | ||
KR100725209B1 (en) | Titanium Powder Injection Molded Manufacturing Method and Titanium Coating Method | |
JPH01239056A (en) | Alumina pipe and its production | |
JP4638675B2 (en) | Niobium wire, production method thereof and use of niobium wire | |
JPS60130818A (en) | Method of producing anode for sintered electrolytic condenser | |
US3201236A (en) | Method of making metal bodies incorporated with non-metallic refractory material andproduct thereof | |
US2960726A (en) | Process for fabricating electrodes | |
JPH0678814A (en) | Production of metallic ring | |
JPS61123123A (en) | Manufacture of sintered type electrolytic battery | |
JPS6190411A (en) | Composition for sintered type electrolytic battery | |
US3513229A (en) | Method for pressing thin walled boron nitride articles utilizing a liquid nitrogen pretreatment | |
JPS5926653B2 (en) | How to form cemented carbide | |
JP3788929B2 (en) | Method for sintering metal powder compact | |
JPH01110907A (en) | Method for forming ceramic coil spring | |
JPS60116121A (en) | Method of producing anode of sintered electrolytic condenser | |
JPWO2013190885A1 (en) | Solid electrolytic capacitor anode body | |
US20030179522A1 (en) | Niobium powder and solid electrolytic capacitor using the same | |
JPS60116122A (en) | Method of producing anode of sintered electrolytic condenser | |
CN116844869A (en) | Heat treatment method for reducing equivalent series resistance of solid electrolyte tantalum capacitor |