JPH05299118A - Nonaque0us solvent for electrolyte of battery - Google Patents
Nonaque0us solvent for electrolyte of batteryInfo
- Publication number
- JPH05299118A JPH05299118A JP4103141A JP10314192A JPH05299118A JP H05299118 A JPH05299118 A JP H05299118A JP 4103141 A JP4103141 A JP 4103141A JP 10314192 A JP10314192 A JP 10314192A JP H05299118 A JPH05299118 A JP H05299118A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- solvent
- aqueous solvent
- electrolytic solution
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 36
- 239000003792 electrolyte Substances 0.000 title claims abstract description 11
- 239000003125 aqueous solvent Substances 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- -1 carbonic acid ester compound Chemical class 0.000 claims abstract description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 claims abstract description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 30
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 26
- 229910052744 lithium Inorganic materials 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 9
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000007774 positive electrode material Substances 0.000 claims description 4
- 229910000733 Li alloy Inorganic materials 0.000 claims description 3
- 239000001989 lithium alloy Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 229910001416 lithium ion Inorganic materials 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 abstract description 10
- 238000007599 discharging Methods 0.000 description 6
- 238000004770 highest occupied molecular orbital Methods 0.000 description 6
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000007600 charging Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229940021013 electrolyte solution Drugs 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【目的】 PCまたはこれに相当する化合物からなる電
解液用非水溶媒の粘度低下用希釈剤としての機能に加
え、その構造自体が酸化され難い構造であって、二次電
池においてはサイクル特性を向上させ、また一次電池の
電解液溶媒としても好適な電池の電解液用非水溶媒を提
供する。
【構成】 次の構造式で表わされ:
(式中R1 ,R2 は同じでも異なっていてもよく、炭素
数が1以上の飽和炭化水素を示す)からなる炭酸エステ
ル化合物を、他の非水溶媒に混合して用いるものであ
る。PCまたはこれに相当する物理化学的特性を有する
化合物の粘度低下のための機能を重視すると、前記
R1 ,R2 の炭素数が3以下であることが望ましいが、
第3の希釈剤の添加により粘度低下を達成できれば、こ
の限りではない。(57) [Summary] [Purpose] In addition to the function as a viscosity-reducing diluent of a non-aqueous solvent for electrolytes consisting of PC or a compound equivalent thereto, the structure itself is a structure that is difficult to oxidize, and Provided is a non-aqueous solvent for a battery electrolyte, which improves cycle characteristics in the battery and is also suitable as an electrolyte solvent for a primary battery. [Structure] Represented by the following structural formula: (In the formula, R 1 and R 2 may be the same or different and each represents a saturated hydrocarbon having 1 or more carbon atoms), and the carbonic acid ester compound is mixed with another non-aqueous solvent and used. When the function for reducing the viscosity of PC or a compound having physicochemical properties corresponding to PC is emphasized, it is desirable that the number of carbon atoms of R 1 and R 2 is 3 or less,
It is not limited to this as long as the viscosity can be reduced by adding the third diluent.
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム二次電池など
の非水電解液二次電池,あるいはリチウム一次電池に用
いられる電解液用非水溶媒に関し、特にプロピレンカー
ボネート(略号PC:以下PCと略称する)あるいはこ
れに相当する化合物と混合されて粘度を低減させるため
の希釈剤として好適な非水溶媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery, or a non-aqueous solvent for an electrolyte used in a lithium primary battery, and more particularly to propylene carbonate (abbreviation PC: PC hereinafter). (Abbreviated) or a compound equivalent thereto, and a non-aqueous solvent suitable as a diluent for reducing the viscosity.
【0002】[0002]
【従来の技術】非水電解液二次電池として、正極活物質
にMnO2 ,V2 O5 ,MoO3 ,V6 O13,Ti
S2 ,MoS2 等の金属酸化物もしくは遷移金属酸化物
あるいは硫化物を用い、負極として金属リチウムあるい
はその合金、例えばウッド合金やリチウム−アルミニウ
ム合金を用いた二次電池が公知である。2. Description of the Related Art As a non-aqueous electrolyte secondary battery, MnO 2 , V 2 O 5 , MoO 3 , V 6 O 13 and Ti are used as positive electrode active materials.
Secondary batteries using metal oxides or transition metal oxides or sulfides such as S 2 and MoS 2 and metal lithium or an alloy thereof such as a wood alloy or a lithium-aluminum alloy as a negative electrode are known.
【0003】この種の電池にあっては、近年高エネルギ
ー密度化を達成するために、より高電圧を発生する材料
が種々検討されており、例えば一般式:Lix My O2
(MはCoまたはNi,x は0.8以下,y はほぼ1)
で示されるイオン導電体で構成される二次電池が特公昭
63−59507号公報に開示されている。[0003] In the cell of this type, in order to achieve the recent high energy density, and material generating a higher voltage is studied, for example, the general formula: Li x M y O 2
(M is Co or Ni, x is 0.8 or less, y is almost 1)
A secondary battery composed of an ionic conductor shown by is disclosed in JP-B-63-59507.
【0004】この活物質を用いて、負極をLi,電解液
をLiBF4 (1M)/PCとして構成された電池の開
路電圧は、4V以上にも達する。また、実際の作動電圧
範囲は、3.4〜4.6V程度が可能である。Using this active material, the open circuit voltage of a battery constructed with Li as the negative electrode and LiBF 4 (1M) / PC as the electrolyte reaches 4 V or more. Further, the actual operating voltage range can be about 3.4 to 4.6V.
【0005】このような高い電池電圧特性を有する電池
は、高エネルギー密度電池として、近年めざましい発達
を遂げている各種電子機器のための電源として好適であ
り、機器の軽量化,小形化,高機能化を一層促進する。A battery having such a high battery voltage characteristic is suitable as a high energy density battery as a power source for various electronic devices which have been remarkably developed in recent years, and it is lightweight, compact, and highly functional. Further promote
【0006】また、従来より前述のPCのほかに、非水
電解液電池用溶媒として種々の溶媒が検討されており、
その中でもγ−ブチロラクトン(略号:γ−BL、以下
同じ),エチレンカーボネート(EC),スルホラン
(SL),1,3−ジオキソラン(DO),1,2−ジ
メトキシエタン(DME),2−メチルテトラヒドロフ
ラン(2−MeTHF),ジエチルカーボネート(DE
C)などが、特に有用な溶媒として、単独でまたは混合
して用いられてきた。In addition to the above-mentioned PC, various solvents have been studied as a solvent for non-aqueous electrolyte batteries.
Among them, γ-butyrolactone (abbreviation: γ-BL, the same applies hereinafter), ethylene carbonate (EC), sulfolane (SL), 1,3-dioxolane (DO), 1,2-dimethoxyethane (DME), 2-methyltetrahydrofuran. (2-MeTHF), diethyl carbonate (DE
C) and the like have been used alone or as a mixture as particularly useful solvents.
【0007】しかし、これらの電解液を用いた二次電池
系においては、負極の充放電効率の低さが大きな問題で
ある。正極の充放電効率については、サイクル初期に利
用率が低下する現象があるが、やがて充放電効率はほぼ
100%近い数字になる。However, in the secondary battery system using these electrolytes, the low charge / discharge efficiency of the negative electrode is a serious problem. Regarding the charge and discharge efficiency of the positive electrode, there is a phenomenon that the utilization rate decreases at the beginning of the cycle, but eventually the charge and discharge efficiency reaches a value close to 100%.
【0008】一方、負極に関しては、充放電効率が金属
リチウムで最高97%であり、リチウム合金を用いても
最高99%である。このことは、正負極の容量が同じで
あるとすれば、1サイクル当り2〜3%負極容量が低下
することになり、深い深度の充放電を繰返せば、数十回
のサイクル寿命を示すに留まる。On the other hand, regarding the negative electrode, the charge / discharge efficiency is up to 97% for metallic lithium, and up to 99% even if a lithium alloy is used. This means that if the positive and negative electrode capacities are the same, the negative electrode capacity decreases by 2 to 3% per cycle, and if the charge and discharge at a deep depth is repeated, a cycle life of several tens of times is exhibited. Stay in.
【0009】この主な原因は、充放電時において移動す
るリチウムが非常に活性で、溶媒を分解してしまい、こ
の結果リチウムが電気化学的に不活性な化合物に変化す
るためであると考えられている。It is considered that the main reason for this is that the lithium that moves during charging and discharging is very active and decomposes the solvent, resulting in the conversion of lithium into an electrochemically inactive compound. ing.
【0010】また、詳細な機構は明らかではないが、溶
媒を構成する成分がリチウムと反応してできる、リチウ
ム表面のある種の膜の性状(物理的性状,イオン電導
性,電子電導性等)が、溶媒とリチウムとが反応して還
元される機構、あるいはリチウムの充放電効率に及ぼす
溶媒の影響に密接に関連すると考えられている。Although the detailed mechanism is not clear, the properties of a certain film on the surface of lithium (physical properties, ionic conductivity, electronic conductivity, etc.) formed by the reaction of the components constituting the solvent with lithium. Is closely related to the mechanism of the reaction between the solvent and lithium for reduction, or the effect of the solvent on the charge / discharge efficiency of lithium.
【0011】なお、リチウム一次電池では充電の問題を
考慮する必要はないが、放電時の活性なリチウムの存在
による溶媒劣化のために、電池性能の低下を招くことが
問題となる。In the lithium primary battery, it is not necessary to consider the charging problem, but there is a problem in that the battery performance is deteriorated due to the deterioration of the solvent due to the presence of active lithium during discharging.
【0012】ところで、非水電解液二次電池用溶媒とし
て工業的にもっとも多く用いられているPCは、高い作
動電圧の領域で使用した場合、前述する充放電効率低下
の問題のほかに、それ自体の粘度が大きいため、導電性
が低い問題もある。つまり粘度が高いとイオンの動きが
遅くなり、その分電池性能に影響を与える。By the way, PC, which is industrially most often used as a solvent for non-aqueous electrolyte secondary batteries, has a problem in that when it is used in a high operating voltage range, it causes the above-mentioned decrease in charge and discharge efficiency. There is also a problem that conductivity is low because the viscosity of itself is large. That is, when the viscosity is high, the movement of ions becomes slower, and the battery performance is affected accordingly.
【0013】つまり、電解液の導電性を高めるには、電
解液中を移動するイオンの動きが速くなければならず、
溶媒の粘度が高いとこの点において不利になる。PC単
独の場合、25℃における粘度は2.53cPとかなり高
い値を示すが、通常は1cP程度の粘度が望ましい。That is, in order to increase the conductivity of the electrolytic solution, the movement of the ions moving in the electrolytic solution must be fast,
The high viscosity of the solvent is disadvantageous in this respect. In the case of PC alone, the viscosity at 25 ° C. is 2.53 cP, which is a considerably high value, but normally a viscosity of about 1 cP is desirable.
【0014】したがって、このPCに対しては、従来か
ら粘度低下のための希釈用の溶媒として、前述の電解液
用溶媒の中からDO,DME,THF等のエーテル類が
特に多く用いられ、容量比1:1程度混合させること
で、望ましい粘度まで低下させることが行われてきた。Therefore, for this PC, ethers such as DO, DME, THF, etc. have been particularly often used as the solvent for diluting for decreasing the viscosity from the above-mentioned solvent for the electrolytic solution, and the capacity has been increased. It has been practiced to lower the desired viscosity by mixing in a ratio of about 1: 1.
【0015】[0015]
【発明が解決しようとする課題】しかしながら、一般に
電解液が正極活物質と反応しないためには、電解液の酸
化電位が高くなければならないとされているが、前記の
溶媒は粘度が低いものの、酸化され易い物質である。な
お、有機化合物の還元電位とLUMO(最低空軌道)エ
ネルギーとの間には相関関係があり、LUMOエネルギ
ーが高い程還元電位が低い、すなわち還元され難いこと
を意味する。また溶媒の酸化電位はHOMO(最高被占
軌道)エネルギーに対応しており、HOMOエネルギー
が低いほど酸化し難い。したがって、これらの計算結果
により酸化還元され易さが判別される。However, it is generally said that the oxidation potential of the electrolytic solution must be high in order that the electrolytic solution does not react with the positive electrode active material. Although the above-mentioned solvent has a low viscosity, It is a substance that is easily oxidized. Note that there is a correlation between the reduction potential of the organic compound and the LUMO (lowest unoccupied molecular orbital) energy, and the higher the LUMO energy, the lower the reduction potential, that is, the more difficult it is to reduce. The oxidation potential of the solvent corresponds to the HOMO (highest occupied molecular orbital) energy, and the lower the HOMO energy, the more difficult it is to oxidize. Therefore, the ease of redox is determined from these calculation results.
【0016】PCおよび前記希釈用溶媒のLUMOエネ
ルギーとHOMOエネルギーとを計算すると、次の表1
のようになる。The LUMO and HOMO energies of PC and the solvent for dilution are calculated as shown in Table 1 below.
become that way.
【0017】[0017]
【表1】 つまり、これらの溶媒は、PCの粘度を下げる希釈剤と
しての機能のほかに、前述の理由から、酸化され難い物
質であることが要求される。[Table 1] That is, these solvents are required to be substances that are difficult to oxidize for the above-mentioned reason, in addition to the function as a diluent that lowers the viscosity of PC.
【0018】しかし、実際には前記の溶媒はいずれも還
元され難いものの、酸化され易い物質であり、これらの
混合溶媒からなる電解液を用いた二次電池では、PC単
独の場合よりも、さらに充放電効率低下の問題が顕著に
なっていた。また一次電池においても、作動電圧が高い
領域では、同じ理由から性能低下を招いていた。However, in reality, all of the above-mentioned solvents are substances that are easily reduced, but are easily oxidized, and in a secondary battery using an electrolytic solution composed of a mixed solvent of these solvents, more than in the case of PC alone. The problem of a decrease in charge / discharge efficiency has become prominent. Further, also in the primary battery, in the region where the operating voltage is high, the performance is deteriorated for the same reason.
【0019】本発明は前記問題を解決するものであり、
その目的は、PCまたはこれに相当する化合物からなる
電解液用非水溶媒の粘度低下用希釈剤としての機能に加
え、その構造自体が酸化され難い構造であって、二次電
池においてはサイクル特性を向上させ、また一次電池の
電解液溶媒としても好適な電池の電解液用非水溶媒を提
供することにある。The present invention solves the above problems,
Its purpose is not only to function as a diluent for reducing the viscosity of a non-aqueous solvent for an electrolytic solution composed of PC or a compound equivalent thereto, but also to have a structure in which the structure itself is difficult to oxidize, and a cycle characteristic in a secondary battery. And to provide a non-aqueous solvent for a battery electrolyte, which is also suitable as an electrolyte solvent for a primary battery.
【0020】[0020]
【課題を解決するための手段】前記目的を達成するため
に本発明は、次の構造式で表わされ: (式中R1 ,R2 は同じでも異なっていてもよく、炭素
数が1以上の飽和炭化水素を示す)からなる炭酸エステ
ル化合物を、他の非水溶媒と混合して用いるものであ
る。To achieve the above object, the present invention is represented by the following structural formula: (In the formula, R 1 and R 2 may be the same or different and each represents a saturated hydrocarbon having 1 or more carbon atoms), and the carbonic acid ester compound is mixed with another non-aqueous solvent and used.
【0021】なお、PCまたはこれに相当する物理化学
的特性を有する化合物の粘度低下のための機能を重視す
ると、前記R1 ,R2 の炭素数が3以下であることが望
ましい。しかし、第3の希釈剤の添加により粘度低下を
達成できれば、この限りではない。When the function for reducing the viscosity of PC or a compound having physicochemical properties corresponding to PC is emphasized, it is desirable that the carbon number of R 1 and R 2 be 3 or less. However, it is not limited to this as long as the viscosity can be reduced by adding the third diluent.
【0022】本発明の炭酸エステル化合物は、特にPC
の希釈剤として用いられ、またPCのみでなく、他のP
Cに相当する物理化学的特性を有する化合物にも混合し
て用いることが可能であるが、混合することにより、電
池用非水溶媒として全般的に好ましい特性に調整される
化合物を選ぶことが必要である。The carbonic acid ester compound of the present invention is particularly suitable for PC.
It is used as a diluent for not only PC but also other P
It is possible to mix and use a compound having a physicochemical property corresponding to C, but it is necessary to select a compound which is adjusted to have generally preferable properties as a non-aqueous solvent for a battery by mixing. Is.
【0023】また、本発明の電解液用非水溶媒は、正極
活物質に金属酸化物あるいは硫化物などを用い、負極に
金属リチウムあるいはリチウム合金あるいはリチウムイ
オンを吸蔵,放出する炭素質材料を用いた非水電解液二
次電池の電解液用非水溶媒として用いられるほか、リチ
ウム一次電池の電解液用非水溶媒として用いることがで
きる。The non-aqueous solvent for an electrolytic solution of the present invention uses a metal oxide or a sulfide as a positive electrode active material, and a negative electrode made of metallic lithium or lithium alloy or a carbonaceous material which absorbs and releases lithium ions. In addition to being used as a non-aqueous solvent for an electrolytic solution of a non-aqueous electrolytic solution secondary battery, it can be used as a non-aqueous solvent for an electrolytic solution of a lithium primary battery.
【0024】[0024]
【作用】前記の構成を有する炭酸エステル化合物は粘度
が低く、酸化電位も従来のものに比べて高い。それゆ
え、これら炭酸エステル化合物とPCまたはこれに相当
する化合物との混合溶媒を用いた電解液の粘度はPC単
体よりも低下し、また以上の混合溶媒を用いたリチウム
二次電池の充放電サイクル特性は、同一条件のPCと従
来の希釈用溶媒との混合液を用いたものに比べて顕著に
向上する。また、一次電池においても特性の向上が図ら
れる。The carbonic acid ester compound having the above structure has a low viscosity and an oxidation potential higher than that of the conventional one. Therefore, the viscosity of an electrolytic solution using a mixed solvent of these carbonate compounds and PC or a compound equivalent thereto is lower than that of PC alone, and a charge / discharge cycle of a lithium secondary battery using the above mixed solvent. The characteristics are remarkably improved as compared with those using a mixed solution of PC under the same conditions and a conventional diluting solvent. Further, the characteristics of the primary battery can be improved.
【0025】[0025]
【実施例】次に、本発明の実施例について説明する。た
だし本発明は以下に述べる実施例のみに限定されるもの
ではない。EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to the examples described below.
【0026】実施例1.前述の構造式において、R1 ,
R2 を以下の表2の〜に示すように種々変えたエス
テル化合物を合成し、これら化合物〜と、PCおよ
び従来用いられていた希釈用溶媒のLUMO(最低空軌
道)エネルギーとHOMO(最高被占軌道)エネルギー
とを算出するとともに、室温25℃における粘度を測定
した。Example 1. In the above structural formula, R 1 ,
Ester compounds in which R 2 was variously changed as shown in Table 2 below were synthesized, and LUMO (lowest unoccupied molecular orbital) energy and HOMO (highest maximum coverage) of PC and the conventionally used diluent solvent were synthesized. The orbital energy) and the viscosity at room temperature of 25 ° C. were measured.
【0027】[0027]
【表2】 なお、表中*DはCH(CH3 )2 を示す。[Table 2] In the table, * D represents CH (CH 3 ) 2 .
【0028】表2からも明らかなように、本発明に係る
化合物のHOMOエネルギーは、従来用いられている希
釈用溶媒よりも、酸化され難い物質であることを示して
いる。粘度も希釈用溶媒として好適な値を示している。As is clear from Table 2, the HOMO energy of the compound according to the present invention is a substance that is less likely to be oxidized than the conventionally used diluent solvent. The viscosity also shows a value suitable as a solvent for dilution.
【0029】なお、図1に,,とPCの混合比率
(容積比率)と粘度との関係を示す。通常好ましい溶媒
粘度は1.0〜1.2cPの範囲であるから、容積比で5
0:50が好ましい混合割合となり、配合比の管理も簡
単に行えることを確認した。FIG. 1 shows the relationship between the mixing ratio (volume ratio) of, and PC and the viscosity. Usually, the preferable solvent viscosity is in the range of 1.0 to 1.2 cP, so that the volume ratio is 5
It was confirmed that 0:50 was a preferable mixing ratio and that the mixing ratio could be easily controlled.
【0030】実施例2.(リチウム二次電池への適用
例) 次に、実施例1.で得られた〜の溶媒とPCとを混
合した非水電解液と、PCと従来の非水溶媒であるDM
E,DOとを混合した比較用の非水電解液とを用いてそ
れぞれコイン形2016タイプの二次電池を組立て、そ
れぞれのサイクル特性を調べた。Example 2. (Example of Application to Lithium Secondary Battery) Next, Example 1. The non-aqueous electrolytic solution obtained by mixing the solvent obtained in 1) with PC and DM, which is a conventional non-aqueous solvent, with PC.
A coin type 2016 type secondary battery was assembled using a non-aqueous electrolyte for comparison in which E and DO were mixed, and the cycle characteristics of each were examined.
【0031】なお、非水電解液の溶媒の配合は、次の表
3に示すように、本発明を含む8種類の組合せであり、
溶質は全てLiPF6 1mol /lによった。The composition of the solvent of the non-aqueous electrolyte is, as shown in Table 3 below, eight kinds of combinations including the present invention,
All the solutes were LiPF 6 1 mol / l.
【0032】[0032]
【表3】 また、非水電解液を除く電池の仕様は次の通りである。
正極として、LiMnO2 と、導電材としてのカーボン
粉末と、バインダであるテフロン粉末とを重量比で10
0:10:4の割合で混合し、その混合物をペレット状
に加圧成形した後熱処理して水分を除去して用いた。負
極としてはリチウム−アルミニウム合金を用いた。リチ
ウムとアルミニウムとの比率は原子モル比で1:1であ
る。セパレータとしてはポリプロピレン製微孔フィルム
(厚さ0.025mm)を用いた。正極は直径15mm,高
さ0.47mmの円形ペレットであり、負極は直径15.
4mm,高さ0.9mmの円形ペレットである。この電池の
公称容量は20mAh である。[Table 3] The specifications of the battery excluding the non-aqueous electrolyte are as follows.
As a positive electrode, LiMnO 2 , carbon powder as a conductive material, and Teflon powder as a binder were used in a weight ratio of 10.
The mixture was mixed at a ratio of 0: 10: 4, and the mixture was pressure-molded into pellets and then heat-treated to remove water and used. A lithium-aluminum alloy was used as the negative electrode. The atomic ratio of lithium to aluminum is 1: 1. A polypropylene microporous film (thickness 0.025 mm) was used as the separator. The positive electrode is a circular pellet having a diameter of 15 mm and a height of 0.47 mm, and the negative electrode has a diameter of 15.
It is a circular pellet with a height of 4 mm and a height of 0.9 mm. The nominal capacity of this battery is 20 mAh.
【0033】次に、前記の8種類の電解液を使用した二
次電池の充放電サイクル特性を調べたところ、図2の結
果を得た。試験条件は、充電電流1mA,放電電流は2mA
の定電流充放電とした。放電終止電圧は2.0V,充電
電圧は3.4Vを上限とした。図は、初度の放電容量を
100とした場合の電解液組成の違いによるサイクル毎
の容量の変化を示している。図2に示す結果から明らか
なように、本発明の非水溶媒を含む電解液を用いた電池
では、サイクル特性が顕著に向上する。また、このこと
は、本発明の溶媒が従来用いられている希釈用溶媒に比
べて分解され難く、また電解液の導電性が増加したこと
を示唆するものである。Next, when the charge / discharge cycle characteristics of the secondary battery using the above eight kinds of electrolytic solutions were examined, the results shown in FIG. 2 were obtained. The test conditions are 1 mA for charging current and 2 mA for discharging current.
Constant current charging and discharging. The discharge end voltage was 2.0 V and the charge voltage was 3.4 V. The figure shows the change in capacity for each cycle due to the difference in the composition of the electrolyte solution when the initial discharge capacity is 100. As is clear from the results shown in FIG. 2, the cycle characteristics are remarkably improved in the battery using the electrolytic solution containing the non-aqueous solvent of the present invention. Further, this suggests that the solvent of the present invention is less likely to be decomposed than the conventionally used diluent solvent and that the conductivity of the electrolytic solution is increased.
【0034】実施例3.(テストセルにおける評価試
験) 実施例2.におけるNo.1〜8の非水電解液を用い
て、図3に示すテストセルを組立てた。正極1として、
LiCoO2 と、導電材としてのカーボン粉末と、バイ
ンダであるテフロン粉末とを重量比で100:10:6
の割合で混合し、その混合物を圧延してシート状にし集
電体2のチタン製ネットに圧着した。また、負極3はピ
ッチ系炭素繊維を焼成することによって得られる炭素質
粉末とバインダとしてのEPDM(エチレンプロピレン
ジエンモノマー)を100:7になるよう混合して圧延
してシート状とし、集電体4のNiネットに圧着した。
寸法は、正極,負極ともに10×10mmの正方形で、正
極の厚みは0.25mm、負極の厚みは0.40mmであ
る。Example 3. (Evaluation test in test cell) Example 2. No. The test cell shown in FIG. 3 was assembled using the nonaqueous electrolytic solutions 1 to 8. As the positive electrode 1,
The weight ratio of LiCoO 2 , carbon powder as a conductive material, and Teflon powder as a binder was 100: 10: 6.
The mixture was rolled into a sheet shape and pressed onto the titanium net of the current collector 2. Further, the negative electrode 3 is made by mixing carbonaceous powder obtained by firing pitch-based carbon fiber and EPDM (ethylene propylene diene monomer) as a binder to 100: 7 and rolling to form a sheet. It was crimped to the Ni net of No. 4.
The size of each of the positive electrode and the negative electrode is a square of 10 × 10 mm, the thickness of the positive electrode is 0.25 mm, and the thickness of the negative electrode is 0.40 mm.
【0035】なお、正極の充填理論容量は8.2mAh 、
負極は7mAh である。正極の理論容量を大きくしてある
のは、最初の充電後、次の放電に関与できるリチウム量
が充電容量よりも減じてしまうからであり、これは最初
の充放電サイクルに限って、充電されたリチウムが炭素
質負極中に一定量取り込まれ、次回のサイクルからは放
電できないことによる。The theoretical filling capacity of the positive electrode is 8.2 mAh,
The negative electrode is 7 mAh. The reason for increasing the theoretical capacity of the positive electrode is that after the first charge, the amount of lithium that can be involved in the next discharge is less than the charge capacity, and this is limited to the first charge / discharge cycle. This is because a certain amount of lithium is taken into the carbonaceous negative electrode and it cannot be discharged from the next cycle.
【0036】次に、前記8種類の電解液を使用したテス
トセルの充放電サイクル特性を調べたところ、図4の結
果を得た。試験条件は、充電電流1mA,放電電流は2mA
の定電流充放電とした。放電終止電圧は2.8V,充電
電圧は4.2Vを上限とした。図は、初度の放電容量を
100とした場合の電解液組成の違いによるサイクル毎
の容量の変化を示している。図4に示す結果から明らか
なように、本発明の電解液を用いた電池ではサイクル特
性が顕著に向上し、実施例2.と同様の効果が得られる
ことを確認した。特にこの電池系の場合、電池電圧が4
Vを越え平均作動電圧も3.6Vと従来の電池より高
い。したがって、従来のNo.7,8の電解液を用いた
電池では、特性の劣化が大きく認められる。これはDM
E,DOが酸化され、溶媒が一部分解する結果であると
考えられる。Next, the charge / discharge cycle characteristics of the test cell using the above eight kinds of electrolytes were examined, and the results shown in FIG. 4 were obtained. The test conditions are 1 mA for charging current and 2 mA for discharging current.
Constant current charging and discharging. The discharge end voltage was 2.8 V and the charge voltage was 4.2 V as the upper limit. The figure shows the change in capacity for each cycle due to the difference in the composition of the electrolyte solution when the initial discharge capacity is 100. As is clear from the results shown in FIG. 4, the battery using the electrolytic solution of the present invention has markedly improved cycle characteristics. It was confirmed that the same effect as was obtained. Especially in the case of this battery system, the battery voltage is 4
The average operating voltage, which exceeds V, is 3.6 V, which is higher than that of the conventional battery. Therefore, the conventional No. In the batteries using the electrolyte solutions of Nos. 7 and 8, the deterioration of the characteristics is significantly recognized. This is DM
It is considered that this is a result of the fact that E and DO are oxidized and the solvent is partially decomposed.
【0037】実施例4.(リチウム一次電池への適用
例) 実施例2.におけるNo.1〜8の非水電解液を用い
て、単三形のいわゆるインサイドアウト形リチウム一次
電池を組立てた。Example 4. (Example of Application to Lithium Primary Battery) Example 2. No. AA so-called inside-out type lithium primary batteries were assembled using the non-aqueous electrolyte solutions 1 to 8.
【0038】正極として、LiMnO2 と、導電材とし
てのカーボン粉末と、バインダであるテフロン粉末とを
重量比で100:10:4の割合で混合し、その混合物
を加圧成形した後熱処理して水分を除去して用いた。負
極としてはリチウムシートを用いた。セパレータとして
は厚さ0.2mmのポリプロピレン不織布を用いた。正極
は外径13.7mm,長さ40mm,内径9mmの中空円筒状
に形成され、容器兼用の正極に接続を保つように収容さ
れる。負極は厚さ1.1mm,幅40mm,長さ24mmのリ
チウムシートを円筒状に形成し、セパレータを介して正
極の内側に向かい合わせて嵌合される。この電池の公称
容量は1.9Ahである。As a positive electrode, LiMnO 2 , carbon powder as a conductive material, and Teflon powder as a binder were mixed in a weight ratio of 100: 10: 4, and the mixture was pressure-molded and then heat-treated. The water was removed before use. A lithium sheet was used as the negative electrode. As the separator, a polypropylene non-woven fabric having a thickness of 0.2 mm was used. The positive electrode is formed in the shape of a hollow cylinder having an outer diameter of 13.7 mm, a length of 40 mm, and an inner diameter of 9 mm, and is housed so as to keep the connection with the positive electrode also serving as a container. The negative electrode is formed by forming a lithium sheet having a thickness of 1.1 mm, a width of 40 mm and a length of 24 mm into a cylindrical shape, and is fitted to face the inside of the positive electrode via a separator. The nominal capacity of this battery is 1.9 Ah.
【0039】次に、前記の8種類の電解液を使用した一
次電池の放電特性を調べたところ、図5の結果を得た。
なお、試験条件は温度20℃、放電電流1mAである。Next, the discharge characteristics of the primary battery using the above eight kinds of electrolytic solutions were examined, and the results shown in FIG. 5 were obtained.
The test conditions are a temperature of 20 ° C. and a discharge current of 1 mA.
【0040】この実施例では、図5に示す結果から明ら
かなように、本発明の非水溶媒を含む電解液を用いた場
合には特性が顕著に向上する。また、このことは、本発
明の溶媒がリチウムと長期に亘って接触しても劣化し難
く、安定性を保つことを示唆するものである。In this example, as is clear from the results shown in FIG. 5, the characteristics are remarkably improved when the electrolytic solution containing the non-aqueous solvent of the present invention is used. Further, this suggests that the solvent of the present invention does not easily deteriorate even if it is brought into contact with lithium for a long period of time, and maintains stability.
【0041】[0041]
【発明の効果】以上各実施例によって詳細に説明したよ
うに、本発明による炭酸エステル化合物をPCあるいは
これに相当する化合物の希釈用溶媒構成物質として用い
ることにより、二次電池においては放電特性および充放
電サイクル特性を著しく改善することができ、電解液の
溶媒構成物質として有用である。INDUSTRIAL APPLICABILITY As described in detail in each of the above examples, by using the carbonate compound according to the present invention as a solvent constituent for diluting PC or a compound equivalent to PC, discharge characteristics and The charge / discharge cycle characteristics can be remarkably improved and it is useful as a solvent constituent substance of an electrolytic solution.
【0042】また、一次電池に適用した場合にも放電特
性を向上させることができる利点がある。Also, there is an advantage that the discharge characteristics can be improved when applied to a primary battery.
【図1】実施例1.におけるPCと本発明溶媒との混合
比と粘度との関係を示すグラフである。FIG. 1 Example 1. 6 is a graph showing the relationship between the mixing ratio of PC and the solvent of the present invention and viscosity in FIG.
【図2】実施例2.における充放電サイクル特性を比較
したグラフである。[Fig. 2] Example 2. 5 is a graph comparing charge / discharge cycle characteristics in FIG.
【図3】実施例3.におけるテストセルの模式図であ
る。FIG. 3 Example 3. 3 is a schematic diagram of a test cell in FIG.
【図4】実施例3.における充放電サイクル特性を比較
したグラフである。FIG. 4 is a third example. 5 is a graph comparing charge / discharge cycle characteristics in FIG.
【図5】実施例4.における放電特性を比較したグラフ
である。FIG. 5: Example 4. 5 is a graph comparing the discharge characteristics in FIG.
【符号の説明】 1 正極 2,4 集電体 3 負極[Explanation of symbols] 1 positive electrode 2,4 current collector 3 negative electrode
Claims (5)
数が1以上の飽和炭化水素を示す)からなる炭酸エステ
ル化合物を、他の非水溶媒と混合して用いることを特徴
とする電池の電解液用非水溶媒。1. Represented by the following structural formula: (Wherein R 1 and R 2 may be the same or different and each represents a saturated hydrocarbon having 1 or more carbon atoms), and the carbonic acid ester compound is used in a mixture with another non-aqueous solvent. Non-aqueous solvent for electrolyte of battery.
ことを特徴とする請求項1に記載の電池の電解液用非水
溶媒。 2. The non-aqueous solvent for an electrolytic solution of a battery according to claim 1 , wherein the carbon numbers of R 1 and R 2 are 3 or less.
の非水溶媒がプロピレンカーボネートあるいはこれに相
当する物理化学的特性を備えた化合物である請求項1ま
たは請求項2に記載の電池の電解液用非水溶媒。3. The electrolytic solution for a battery according to claim 1, wherein the other non-aqueous solvent mixed with the carbonic acid ester compound is propylene carbonate or a compound having physicochemical properties corresponding to propylene carbonate. Non-aqueous solvent.
化物などを用い、負極として金属リチウムあるいはリチ
ウム合金あるいはリチウムイオンを吸蔵,放出すること
が可能な炭素質材料を用いた非水電解液二次電池の電解
液用非水溶媒として用いられることを特徴とする請求項
1から請求項3までのいずれかに記載の電池の電解液用
非水溶媒。4. A non-aqueous electrolyte secondary using a metal oxide, a sulfide or the like as a positive electrode active material and a metallic lithium or lithium alloy or a carbonaceous material capable of absorbing and releasing lithium ions as a negative electrode. It is used as a non-aqueous solvent for an electrolytic solution of a battery, and the non-aqueous solvent for an electrolytic solution of a battery according to any one of claims 1 to 3.
して用いられることを特徴とする請求項1から請求項3
までのいずれかに記載の電池の電解液用非水溶媒。5. The method according to any one of claims 1 to 3, which is used as a non-aqueous solvent for an electrolytic solution of a lithium primary battery.
A nonaqueous solvent for an electrolytic solution of a battery according to any one of 1 to 4 above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4103141A JPH05299118A (en) | 1992-04-22 | 1992-04-22 | Nonaque0us solvent for electrolyte of battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4103141A JPH05299118A (en) | 1992-04-22 | 1992-04-22 | Nonaque0us solvent for electrolyte of battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05299118A true JPH05299118A (en) | 1993-11-12 |
Family
ID=14346253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4103141A Pending JPH05299118A (en) | 1992-04-22 | 1992-04-22 | Nonaque0us solvent for electrolyte of battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05299118A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5922494A (en) * | 1997-04-14 | 1999-07-13 | Valence Technology, Inc. | Stabilized electrolyte for electrochemical cells and batteries |
US5962720A (en) * | 1997-05-29 | 1999-10-05 | Wilson Greatbatch Ltd. | Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells |
JP2006012806A (en) * | 2004-06-21 | 2006-01-12 | Samsung Sdi Co Ltd | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same |
-
1992
- 1992-04-22 JP JP4103141A patent/JPH05299118A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5922494A (en) * | 1997-04-14 | 1999-07-13 | Valence Technology, Inc. | Stabilized electrolyte for electrochemical cells and batteries |
US5962720A (en) * | 1997-05-29 | 1999-10-05 | Wilson Greatbatch Ltd. | Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells |
US6057062A (en) * | 1997-05-29 | 2000-05-02 | Wilson Greatbatch Ltd. | Method for preparing nonaqueous electrolytes for alkali ion electrochemical cells containing unsymmetric organic carbonates |
JP2006012806A (en) * | 2004-06-21 | 2006-01-12 | Samsung Sdi Co Ltd | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same |
JP4527605B2 (en) * | 2004-06-21 | 2010-08-18 | 三星エスディアイ株式会社 | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7087349B2 (en) | Organic electrolytic solution and lithium secondary battery employing the same | |
JP3617447B2 (en) | Lithium secondary battery | |
US4737424A (en) | Secondary lithium battery | |
JPH1027626A (en) | Lithium secondary battery | |
EP0548449B1 (en) | Nonaqueous electrolyte secondary batteries | |
JP3287376B2 (en) | Lithium secondary battery and method of manufacturing the same | |
EP0806804A1 (en) | Fluorinated carbonate electrolytes for use in a lithium secondary battery | |
KR100379979B1 (en) | Nonaqueous electrolyte secondary battery | |
JPH07335261A (en) | Lithium secondary battery | |
JPH0745304A (en) | Organic electrolyte secondary battery | |
JP3050885B2 (en) | Non-aqueous solvent secondary battery and method of manufacturing the same | |
JPH0744042B2 (en) | Electrolyte for lithium secondary battery | |
JP2924329B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002175836A (en) | Nonaqueous electrolyte battery | |
JPH05299118A (en) | Nonaque0us solvent for electrolyte of battery | |
JP3451601B2 (en) | Lithium battery | |
JP2000090970A (en) | Lithium secondary battery | |
JP3119928B2 (en) | Non-aqueous solvent for battery electrolyte | |
JPH05335033A (en) | Non-aqueous solvent for battery electrolyte | |
JPH05307974A (en) | Organic electrolyte secondary battery | |
JP2528183B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP3128230B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2991758B2 (en) | Non-aqueous electrolyte for lithium secondary batteries | |
JPH01274359A (en) | Nonaqueous electrolyte secondary battery | |
JP3494400B2 (en) | Lithium secondary battery |