JPH05296965A - Biosensor - Google Patents
BiosensorInfo
- Publication number
- JPH05296965A JPH05296965A JP4096863A JP9686392A JPH05296965A JP H05296965 A JPH05296965 A JP H05296965A JP 4096863 A JP4096863 A JP 4096863A JP 9686392 A JP9686392 A JP 9686392A JP H05296965 A JPH05296965 A JP H05296965A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- membrane
- flow cell
- biosensor
- electrode body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
(57)【要約】
【目的】バイオセンサに固定化微生物膜を取り付けた
後、酸素透過膜と固定化微生物膜の密着性が安定するま
での無駄時間を少なくする。
【構成】バイオセンサ検出部を、フローセルの中心部に
試料液流通部の近傍までOリングを介してねじ込みフロ
ーセルに固定した電極胴体部、この電極胴体部の中心を
通る電極棒、この電極棒先端で酸素透過膜と固定化膜と
を挟持しこれらを密着させるとともに試料液を流通させ
る網状体、酸素透過膜を電極胴体部の底面に密着固定さ
せるOリングを配置した構造とすることにより、固定化
微生物膜と酸素透過膜との間の密着性が極めて高くな
り、微生物膜の膨潤に伴なうセンサ出力の増加現象が抑
制され、固定化微生物膜を取り付けた後、短時間にセン
サ出力が安定し、時間の無駄が非常に少なく試料液の測
定を開始することができる。
(57) [Summary] [Purpose] After attaching the immobilized microbial membrane to the biosensor, reduce the dead time until the adhesion between the oxygen permeable membrane and the immobilized microbial membrane becomes stable. [Structure] An electrode body part in which a biosensor detection part is screwed into the center part of the flow cell up to the vicinity of the sample liquid flowing part via an O-ring and fixed to the flow cell, an electrode rod passing through the center of this electrode body part, and the tip of this electrode rod The oxygen permeable film and the immobilization film are sandwiched between the two, and they are in close contact with each other, and a net for allowing the sample liquid to circulate, and an O-ring for closely adhering and fixing the oxygen permeable film to the bottom surface of the electrode body are arranged to fix. The adhesion between the immobilized microbial membrane and the oxygen permeable membrane becomes extremely high, and the increase in the sensor output due to the swelling of the microbial membrane is suppressed. The measurement is stable, and the measurement of the sample liquid can be started with very little waste of time.
Description
【0001】[0001]
【産業上の利用分野】本発明は、酵素,微生物などを分
子識別素子(レセプタ)として、多孔性膜に固定化した
固定化膜によって、試料液の成分分析を行なうバイオセ
ンサの検出部に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection part of a biosensor for analyzing components of a sample liquid by means of an immobilization membrane in which an enzyme, a microorganism or the like is used as a molecular identification element (receptor) and immobilized on a porous membrane.
【0002】[0002]
【従来の技術】このバイオセンサは、試料液中の測定対
象物質を認識する分子識別素子として、酵素,微生物な
どの生体機能性物質を利用して、多孔性膜に固定化した
固定化膜と、電極を使用した電気化学的検出器とを組み
合わせて、試料液の成分分析を行なうものである。原理
的には、試料液を固定化膜に接触させ、これによって生
ずる生化学的反応による変化を、電極の出力電流として
検出し、この計測値を演算・制御部で信号処理して得ら
れる値を測定するものであり、微生物や酵素を変えるこ
とにより、測定対象物質を種々選べるという測定の選択
性に優れていることから、血液検査などの医療分野,食
品の品質管理などの発酵・食品工業計測や廃水処理など
の環境計測分野などに広く利用されている。2. Description of the Related Art This biosensor is a molecular identification element for recognizing a substance to be measured in a sample liquid, and an immobilization membrane immobilized on a porous membrane by utilizing a biofunctional substance such as an enzyme or a microorganism. In combination with an electrochemical detector using electrodes, the component analysis of the sample liquid is performed. In principle, the sample solution is brought into contact with the immobilization membrane, the change caused by the biochemical reaction caused by this is detected as the output current of the electrode, and the value obtained by performing signal processing on this measured value in the calculation / control unit It has a high selectivity in measurement because it can select various substances to be measured by changing microorganisms and enzymes. Therefore, it is used in the medical field such as blood tests and in the fermentation and food industry such as food quality control. It is widely used in environmental measurement fields such as measurement and wastewater treatment.
【0003】このようなバイオセンサの検出部の構造を
図3の模式断面図に示す。図3において、バイオセンサ
の検出部は主として固定化微生物膜1,酸素透過膜2,
隔膜型の溶存酸素電極3およびフローセル4とから構成
されている。溶存酸素電極3は、管状の電極胴体部3a
の上下に形成したねじ部でそれぞれ固定する管状の電極
上部体3bと電極下部体3c,電極胴体部3aの中心に
あって下端が電極胴体部3aの底部から突き出る電極棒
3d,および電極棒3dの上端に取り付けその一部が電
極上部体3bから外部に突出する鍔部3eと、鍔部3e
から引き出される信号線3fからなり、電極下部体3c
とフローセル4との間は、Oリング6を用いて固定して
ある。そして電極胴体部3aの下方で電極下部体3cの
内部に、スペーサー5とOリング6aを介して酸素透過
膜2が固定されて固定化微生物膜1に接触し、固定化微
生物膜1は中心部に液通路を有する電極胴体部3aの底
内面に固定される。The structure of the detecting portion of such a biosensor is shown in the schematic sectional view of FIG. In FIG. 3, the detection part of the biosensor is mainly the immobilized microbial membrane 1, the oxygen permeable membrane 2,
It is composed of a diaphragm type dissolved oxygen electrode 3 and a flow cell 4. The dissolved oxygen electrode 3 is a tubular electrode body 3a.
A tubular electrode upper body 3b and an electrode lower body 3c which are respectively fixed by screw portions formed above and below, an electrode rod 3d having a lower end protruding from the bottom of the electrode body portion 3a at the center of the electrode body portion 3a, and an electrode rod 3d. A flange part 3e attached to the upper end of the flange part of which protrudes from the upper electrode body 3b to the outside, and a flange part 3e.
It is composed of the signal line 3f drawn from the electrode lower body 3c
An O-ring 6 is used to fix between the flow cell 4 and the flow cell 4. The oxygen permeable membrane 2 is fixed to the inside of the lower electrode body 3c below the electrode body 3a through the spacer 5 and the O-ring 6a so as to come into contact with the immobilized microbial membrane 1, and the immobilized microbial membrane 1 is at the central portion. It is fixed to the inner surface of the bottom of the electrode body portion 3a having the liquid passage.
【0004】[0004]
【発明が解決しようとする課題】以上の構造を持つバイ
オセンサの検出部には次のような問題がある。即ち、図
3の構造では、スペーサー5は、電極棒3dを電極胴体
部3aより長くし、電解液がねじ部を伝わって漏れるの
を防ぐOリング6aを圧着するためにスペーサー5を用
いているが、固定化微生物膜1と酸素透過膜2、および
酸素透過膜2と電極胴体部3aの間(図2の矢印部分)
に隙間があるので、測定を開始すると微生物の増殖によ
って、固定化微生物膜1が図3のように膨潤し、これら
の隙間が密着していくにつれて、溶存酸素電極3の先端
と固定化微生物膜1との距離が次第に接近するため、セ
ンサの出力も徐々に増加しする。したがって、固定化微
生物膜1を取り付けた直後は、センサの出力が安定する
までは試料液を測定することができない。即ち、問題は
酸素透過膜2と電極棒3d間の密着性が安定になるまで
測定時間の無駄が生ずることである。The detection part of the biosensor having the above structure has the following problems. That is, in the structure of FIG. 3, the spacer 5 has the electrode rod 3d longer than the electrode body 3a, and the spacer 5 is used for crimping the O-ring 6a that prevents the electrolyte from leaking through the screw portion. Between the immobilized microbial membrane 1 and the oxygen permeable membrane 2 and between the oxygen permeable membrane 2 and the electrode body portion 3a (arrow portion in FIG. 2)
Since there is a gap in the gap, when the measurement is started, the immobilized microbial membrane 1 swells as shown in FIG. 3 due to the growth of microorganisms, and as these gaps come in close contact, the tip of the dissolved oxygen electrode 3 and the immobilized microbial membrane. Since the distance from 1 gradually approaches, the output of the sensor also gradually increases. Therefore, immediately after attaching the immobilized microbial membrane 1, the sample solution cannot be measured until the output of the sensor becomes stable. That is, the problem is that measurement time is wasted until the adhesion between the oxygen permeable membrane 2 and the electrode rod 3d becomes stable.
【0005】本発明は上述の点に鑑みてなされたもので
あり、その目的は固定化微生物膜を取り付けた後、時間
的な無駄が非常に少なく、試料液の測定を開始すること
ができる検出部を備えたバイオセンサを提供することに
ある。The present invention has been made in view of the above points, and an object thereof is to detect a sample solution that can be started with very little waste of time after attaching an immobilized microbial membrane. The present invention is to provide a biosensor having a part.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明のバイオセンサは、その検出部として、フ
ローセルの中心部に試料液流通部の近傍までOリングを
介してねじ込みフローセルに固定した電極胴体部、この
電極胴体部の中心を通ってねじ込み先端面が電極胴体部
の底面と同一平面を持つ電極棒、この電極棒先端で酸素
透過膜と固定化膜とを挟持しこれらを密着させ、フロー
セル内で一部が露出し試料液を流通させる網状体、酸素
透過膜を電極胴体部の底面に密着固定させるOリングを
配置した構造としたものである。In order to solve the above-mentioned problems, the biosensor of the present invention has, as its detection part, a flow cell screwed into the central part of the flow cell up to the vicinity of the sample liquid flow part via an O-ring. A fixed electrode body part, an electrode rod screwed through the center of the electrode body part and having a tip surface flush with the bottom surface of the electrode body part, and the oxygen permeable membrane and the immobilization membrane are sandwiched between the electrode rod tips and these It has a structure in which a mesh-like body which is brought into close contact with a part of which is exposed in the flow cell and through which the sample liquid circulates, and an O-ring which adheres and fixes the oxygen permeable film to the bottom surface of the electrode body portion are arranged.
【0007】[0007]
【作用】本発明のバイオセンサは、検出部を上記のよう
に構成したことにより、固定化微生物膜と酸素透過膜と
の間の密着性が極めて高く、微生物膜の膨潤に伴なって
センサ出力が増加する現象が抑制され、固定化微生物膜
を取り付けた後、短時間にセンサ出力が安定するので、
引き続き時間の無駄が非常に少なく試料液の測定を行な
うことができる。In the biosensor of the present invention, since the detecting portion is constructed as described above, the adhesion between the immobilized microbial membrane and the oxygen permeable membrane is extremely high, and the sensor output is accompanied by the swelling of the microbial membrane. Is suppressed, and the sensor output stabilizes in a short time after attaching the immobilized microbial membrane.
Subsequently, the waste of time is very small, and the measurement of the sample liquid can be performed.
【0008】[0008]
【実施例】以下本発明を実施例に基づき説明する。図1
は本発明のバイオセンサの検出部を示す模式断面図であ
り、図3と共通する部分に同一符号を用いてある。図1
の検出部の構成が図3と異なる点は、電極下部体3cは
フローセル4が兼用し、酸素透過膜2をOリング7によ
り溶存酸素電極3の電極胴体部3aに固定して、その下
に固定化微生物膜1を接触させ、固定化微生物膜1が上
下に湾曲しないように、即ち固定化微生物膜1が膨らま
ないように、さらにその下に網状体8を敷き、電極胴体
部3aとフローセル4をねじ部で固定することにより、
固定化微生物膜1の上下の隙間をなくし、電極胴体部3
aをOリング7aでフローセル4に密着させ、電極棒3
dは電極胴体部3aにねじ部で固定してあることであ
る。EXAMPLES The present invention will be described below based on examples. Figure 1
[FIG. 4] is a schematic cross-sectional view showing a detection portion of the biosensor of the present invention, and the same reference numerals are used for portions common to FIG. Figure 1
3 is different from that in FIG. 3 in that the lower electrode body 3c is also used as the flow cell 4, and the oxygen permeable membrane 2 is fixed to the electrode body portion 3a of the dissolved oxygen electrode 3 by the O-ring 7, and the lower portion thereof The fixed microbial membrane 1 is brought into contact with the fixed microbial membrane 1 so that the fixed microbial membrane 1 does not bend up and down, that is, the fixed microbial membrane 1 does not swell, and a mesh 8 is laid under the fixed microbial membrane 1 to form the electrode body 3a and the flow cell. By fixing 4 with the screw part,
The upper and lower gaps of the immobilized microbial membrane 1 are eliminated, and the electrode body 3
a is attached to the flow cell 4 with the O-ring 7a, and the electrode rod 3
Reference numeral d means that the electrode body portion 3a is fixed with a screw portion.
【0009】この構造では図3に示すスペーサ5を用い
ていないので、電極胴体部3aはOリング7aでフロー
セル4に密着させてあり、網状体8は、固定化微生物膜
1がフローセル4側に吸い込まれ、または膨潤により下
方にはみ出すのを防ぐために設けたものであるから、試
料液が通過することができる網目状を呈し、必要な強度
を持つものであればよいが、ここでは金属ネット(例え
ばステンレス鋼製)などを用いるのが適している。電極
棒3dを電極胴体部3aにねじ部で固定したのは、構造
を簡単にするためである。Since the spacer 5 shown in FIG. 3 is not used in this structure, the electrode body 3a is adhered to the flow cell 4 by the O-ring 7a, and the mesh 8 has the immobilized microbial membrane 1 on the flow cell 4 side. Since it is provided in order to prevent it from being sucked in or protruding downward due to swelling, it may have any mesh-like shape that allows the sample liquid to pass through and has the required strength. It is suitable to use, for example, stainless steel). The reason why the electrode rod 3d is fixed to the electrode body 3a with a screw is to simplify the structure.
【0010】以上により、本発明のバイオセンサの検出
部は、従来用いていたスペーサは不要となり、固定化微
生物膜1と酸素透過膜2との間に隙間を生ずることな
く、固定化微生物膜1は全面で拘束されて、金属ネット
8で固定化微生物膜1が湾曲するのを防ぎ、フローセル
4が電極下部体3cを兼用しているので、従来より構成
部品が少なくて済むなどの特徴を有する。As described above, in the detection part of the biosensor of the present invention, the conventionally used spacer is not required, and the immobilized microbial membrane 1 does not have a gap between the immobilized microbial membrane 1 and the oxygen permeable membrane 2. Is restrained on the entire surface, prevents the immobilized microbial membrane 1 from being bent by the metal net 8, and the flow cell 4 also serves as the lower electrode body 3c. .
【0011】図2はこの検出部を備えた本発明のバイオ
センサにおける固定化微生物膜交換時の出力の初期変動
を示す測定結果の線図であり、比較のために、従来のバ
イオセンサの測定結果も併記してある。図2の縦軸は、
最初の測定におけるセンサ出力を1としたときの相対出
力とし、横軸は経過時間を示し、○でプロットした曲線
が本発明、△でプロットした曲線が従来の場合を表わし
ている。図2の結果によれば、従来のバイオセンサの検
出部では、固定化微生物膜を取り付けた後、センサ出力
が現われるまでに約1日を要し、その後出力が安定する
までに約1日の計2日間が必要であったのに対し、本発
明のバイオセンサの検出部を用いるときは、固定化微生
物膜の取り付け後、約3時間でセンサ出力が安定し、微
生物膜を取り付けた後は、短時間のうちに試料液の測定
が可能となることがわかる。FIG. 2 is a diagram of the measurement results showing the initial fluctuation of the output when the immobilized microbial membrane is exchanged in the biosensor of the present invention equipped with this detection unit. For comparison, the measurement of the conventional biosensor was carried out. The results are also shown. The vertical axis of FIG. 2 is
The relative output when the sensor output in the first measurement is set to 1, the abscissa represents the elapsed time, the curve plotted with ◯ represents the present invention, and the curve plotted with Δ represents the conventional case. According to the result of FIG. 2, in the detection part of the conventional biosensor, after attaching the immobilized microbial membrane, it took about 1 day until the sensor output appeared, and then it took about 1 day until the output became stable. Whereas a total of 2 days was required, when the detection part of the biosensor of the present invention was used, the sensor output became stable in about 3 hours after mounting the immobilized microbial membrane, and after mounting the microbial membrane, It can be seen that the sample liquid can be measured in a short time.
【0012】[0012]
【発明の効果】バイオセンサには固定化微生物膜の寿命
があるので、定期的にこの膜の交換が必要であり、従
来、固定化微生物膜を交換した後、センサ出力が安定す
るまでは、試料液の測定が不可能であったが、このセン
サ出力安定までの時間は短い程、実用上効果的であるの
は当然である。これに対して本発明のバイオセンサは、
実施例で述べた如く、検出部の構成を改善し、固定化微
生物膜,酸素透過膜および溶存酸素電極の隙間を減少さ
せ、これらの密着性を高めたために、固定化微生物膜の
取り付け後、約3時間程度でセンサ出力が安定し、セン
サ出力安定後は直ちに試料液を測定することが可能とな
り、測定上の無駄時間が減少し、実用性の高いバイオセ
ンサを得ることができた。EFFECTS OF THE INVENTION Since a biosensor has a life of an immobilized microbial membrane, it is necessary to periodically replace this membrane. Conventionally, after the immobilized microbial membrane is replaced, until the sensor output becomes stable, Although it was impossible to measure the sample solution, it is natural that the shorter the time until the sensor output stabilizes, the more practical it is. On the other hand, the biosensor of the present invention,
As described in the examples, the structure of the detection unit was improved, the gap between the immobilized microbial membrane, the oxygen permeable membrane and the dissolved oxygen electrode was reduced, and the adhesion between them was improved. The sensor output became stable in about 3 hours, and it became possible to measure the sample liquid immediately after the sensor output became stable, the dead time in measurement was reduced, and a highly practical biosensor could be obtained.
【図1】本発明のバイオセンサの検出部の構造を示す模
式断面図FIG. 1 is a schematic cross-sectional view showing the structure of a detection unit of a biosensor of the present invention.
【図2】微生物膜交換時のセンサ出力の初期変動を示す
線図FIG. 2 is a diagram showing the initial fluctuation of the sensor output when replacing the microbial membrane.
【図3】従来のバイオセンサの検出部の構造を示す模式
断面図FIG. 3 is a schematic cross-sectional view showing a structure of a detection unit of a conventional biosensor.
1 固定化微生物膜 2 酸素透過膜3 溶存酸素電極 3a 電極胴体部 3b 電極上部体 3c 電極下部体 3d 電極棒 3e 鍔部 3f 信号線 4 フローセル 5 スペーサー 6 Oリング 6a Oリング 7 Oリング 7a Oリング 8 網状体1 Immobilized Microbial Membrane 2 Oxygen Permeation Membrane 3 Dissolved Oxygen Electrode 3a Electrode Body 3b Electrode Upper Body 3c Electrode Lower Body 3d Electrode Rod 3e Collar 3f Signal Line 4 Flow Cell 5 Spacer 6 O-ring 6a O-ring 7 O-ring 7a O-ring 8 reticulate body
Claims (3)
定化膜と、溶存酸素電極およびフローセルを組み合わせ
た検出部を有し、フローセルを流れる試料液を固定化膜
に接触させて生ずる生化学的反応を検出部の溶存酸素電
極の出力電流として検出することにより試料液の成分分
析を行なうバイオセンサであって、フローセルの中心部
に試料液流路の近傍までOリングを介してねじ込みフロ
ーセルに固定した電極胴体部、この電極胴体部の中心を
通ってねじ込み先端面が電極胴体部の底面と同一平面を
持つ電極棒、この電極棒先端で酸素透過膜と固定化膜と
を挟持しこれらを密着させ、フローセル内で一部が露出
し試料液を流通させる網状体、酸素透過膜を電極胴体部
の底面に密着固定させるOリングを配置した検出部を有
することを特徴とするバイオセンサ。1. An immobilization membrane in which a biofunctional substance is immobilized on a porous membrane, and a detection section in which a dissolved oxygen electrode and a flow cell are combined, and a sample solution flowing through the flow cell is brought into contact with the immobilization membrane. A biosensor for analyzing components of a sample solution by detecting a biochemical reaction as an output current of a dissolved oxygen electrode of a detection section, which is screwed into a central part of a flow cell to a vicinity of a sample solution channel through an O-ring. An electrode body fixed to the flow cell, an electrode rod screwed through the center of the electrode body and having a tip surface flush with the bottom surface of the electrode body, and an oxygen permeable membrane and an immobilization membrane sandwiched between the electrode rod tips. It is characterized in that it has a detection part in which a reticulate body, which is brought into close contact with each other and a part of which is exposed in the flow cell to allow the sample liquid to flow therethrough, and an O-ring which adheres and fixes the oxygen permeable film to the bottom surface of the electrode body part are arranged Biosensor that.
体機能性物質は微生物であることを特徴とするバイオセ
ンサ。2. The biosensor according to claim 1, wherein the biofunctional substance is a microorganism.
いて、網状体として金属ネットを用いることを特徴とす
るバイオセンサ。3. The biosensor according to claim 1 or 2, wherein a metal net is used as the mesh body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4096863A JPH05296965A (en) | 1992-04-17 | 1992-04-17 | Biosensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4096863A JPH05296965A (en) | 1992-04-17 | 1992-04-17 | Biosensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05296965A true JPH05296965A (en) | 1993-11-12 |
Family
ID=14176293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4096863A Pending JPH05296965A (en) | 1992-04-17 | 1992-04-17 | Biosensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05296965A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100813447B1 (en) * | 2002-03-18 | 2008-03-13 | 닛토덴코 가부시키가이샤 | Manufacturing method of polarizer, polarizer, polarizing plate, and image display device |
-
1992
- 1992-04-17 JP JP4096863A patent/JPH05296965A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100813447B1 (en) * | 2002-03-18 | 2008-03-13 | 닛토덴코 가부시키가이샤 | Manufacturing method of polarizer, polarizer, polarizing plate, and image display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4230537A (en) | Discrete biochemical electrode system | |
Suzuki | Advances in the microfabrication of electrochemical sensors and systems | |
CN1160563C (en) | Electrochemical analysis for determining the initial time of sample detection | |
US4517291A (en) | Biological detection process using polymer-coated electrodes | |
AU713539B2 (en) | Mobile hand-held equipment with biosensor | |
Dhall et al. | Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor | |
US6706160B2 (en) | Chemical sensor and use thereof | |
CN1404575A (en) | Enzymatic-electrochemical measuring device | |
JP3625448B2 (en) | Ion sensor and biochemical automatic analyzer using the same | |
KR102379684B1 (en) | Biosensors produced from enzymes with reduced solubility and methods of production and use thereof | |
JPH05296965A (en) | Biosensor | |
JPH0989839A (en) | Biosensor application water quality meter | |
JPH0526846A (en) | Method for continuously measuring concentrations of chlorine ion and bromine ion in body fluid using same liquid and same electrode | |
Nagy et al. | Bioelectroanalytical sensors and analytical problems in their application | |
JP2001108647A (en) | Detector using electrodes | |
CN112505122B (en) | Method for testing substrates and products by double-index enzyme electrode detection device | |
Inoue et al. | Cell-based electrochemical assay for endotoxin using a secreted alkaline phosphatase reporter system | |
JP4801062B2 (en) | SIRE flow detector | |
Flanagan et al. | Thin‐film antimony–antimony‐oxide enzyme electrode for penicillin determination | |
CN103163190A (en) | Single use bioreactor/container for use with detachable dissolved oxygen sensor | |
US5547553A (en) | Mercury thread electrode | |
Macholán et al. | Continuous determination of phenol, vitamin C, lysine and glucose in flowing solutions by means of an amperometric enzyme electrode | |
WO2005045422A1 (en) | A biosensor having exchangable biopart | |
Tran‐Minh | Biosensors in flow‐injection systems for biomedical analysis, process and environmental monitoring | |
CN109781821B (en) | Blood sugar detector |