JPH05294730A - Silicon nitride ceramic sintered compact - Google Patents
Silicon nitride ceramic sintered compactInfo
- Publication number
- JPH05294730A JPH05294730A JP4096778A JP9677892A JPH05294730A JP H05294730 A JPH05294730 A JP H05294730A JP 4096778 A JP4096778 A JP 4096778A JP 9677892 A JP9677892 A JP 9677892A JP H05294730 A JPH05294730 A JP H05294730A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- oxide
- weight
- spinel structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 51
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 239000000919 ceramic Substances 0.000 title claims abstract description 41
- 239000000126 substance Substances 0.000 claims abstract description 30
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 23
- 239000011029 spinel Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 12
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 22
- 238000005245 sintering Methods 0.000 claims description 22
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000292 calcium oxide Substances 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 8
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 8
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 6
- 239000002253 acid Substances 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 150000007513 acids Chemical class 0.000 abstract description 3
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 229910052744 lithium Inorganic materials 0.000 abstract description 2
- 229910052712 strontium Inorganic materials 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000395 magnesium oxide Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000010936 titanium Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000009770 conventional sintering Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 150000002363 hafnium compounds Chemical class 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は窒化けい素セラミックス
焼結体に係り、特に優れた機械的強度および耐摩耗性に
加えて、耐薬品性にも優れた特性を有する窒化けい素セ
ラミックス焼結体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride ceramics sintered body, which has particularly excellent mechanical strength and wear resistance as well as excellent chemical resistance. Regarding the body
【0002】[0002]
【従来の技術】窒化けい素を主成分とするセラミックス
焼結体は、1000℃以上の環境下でも優れた耐熱性を
有し、かつ低熱膨脹係数のため耐熱衝撃性も優れている
等の諸特性をもつことから、従来の耐熱性超合金に代わ
る高温構造材料としてガスタービン用部品、エンジン用
部品、製鋼用機械部品等の各種高強度耐熱部品への応用
が試みられている。また、金属に対する耐食性が優れて
いることから溶融金属の耐溶材料としての応用も試みら
れ、さらに耐摩耗性も優れていることから、軸受等の摺
動部材、切削工具への実用化も図られている。2. Description of the Related Art Ceramic sintered bodies containing silicon nitride as a main component have excellent heat resistance even in an environment of 1000 ° C. or higher, and also have excellent thermal shock resistance due to a low coefficient of thermal expansion. Because of its properties, it has been attempted to be applied to various high-strength heat-resistant parts such as gas turbine parts, engine parts, and steel-making machine parts as a high-temperature structural material replacing conventional heat-resistant superalloys. In addition, since it has excellent corrosion resistance to metals, it has been tried to apply molten metal as a melt-resistant material, and because it has excellent wear resistance, it can be put to practical use in sliding members such as bearings and cutting tools. ing.
【0003】窒化けい素、その原料粉末単独では焼結が
困難であるため、通常焼結助剤としての希土類酸化物や
酸化マグネシウム等を原料粉末に所定量添加して焼結性
を改善し緻密で高強度なセラミックス焼結体とされる。Since it is difficult to sinter silicon nitride or its raw material powder alone, a rare earth oxide, magnesium oxide or the like as a sintering aid is usually added to the raw material powder in a predetermined amount to improve the sinterability. And made into a high-strength ceramics sintered body.
【0004】例えば窒化けい素セラミックス焼結体の焼
結組成としては窒化ケイ素−酸化イットリウム−酸化ア
ルミニウム系、窒化ケイ素−酸化イットリウム−酸化ア
ルミニウム−窒化アルミニウム系、窒化ケイ素−酸化イ
ットリウム−酸化アルミニウム−チタニウム、マグネシ
ウムまたはジルコニウムの酸化物系等が知られている。For example, as a sintering composition of a silicon nitride ceramics sintered body, silicon nitride-yttrium oxide-aluminum oxide system, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride system, silicon nitride-yttrium oxide-aluminum oxide-titanium. , Oxides of magnesium or zirconium, etc. are known.
【0005】上記焼結組成における酸化イットリウム
(Y2 O3 )などの希土類元素の酸化物や酸化アルミニ
ウムを添加して形成したセラミックス焼結体は、焼結性
が高く焼結体が緻密化し、機械的強度特性に優れ、また
高温度における焼結体の強度劣化を防止することができ
る。また窒化アルミニウムのような窒化物や酸化チタン
などの複数種類の酸化物を組合せたものを添加すること
によって高強度で耐熱性、耐摩耗性に優れ、かつ高温で
過酷な使用環境においても優れた機械的強度を発揮する
ように工夫されている。A ceramic sintered body formed by adding an oxide of a rare earth element such as yttrium oxide (Y 2 O 3 ) or aluminum oxide in the above-mentioned sintering composition has high sinterability and becomes dense. It has excellent mechanical strength characteristics and can prevent strength deterioration of the sintered body at high temperature. In addition, by adding a combination of multiple types of oxides such as nitrides such as aluminum nitride and titanium oxide, it has high strength, excellent heat resistance and wear resistance, and is excellent even in high temperature and harsh operating environments. It is designed to exert mechanical strength.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記組
成を有するセラミックス焼結体は、高強度で耐熱性およ
び耐摩耗性には優れているものの、いずれも、酸などの
化学薬品に対する耐性(耐薬品性)が未だ不充分であ
り、薬品が混在する環境で使用する構造材料として採用
した場合に、所定の耐久性、信頼性が得られないという
問題点があった。一方、耐薬品性(耐酸性)に優れた材
料としてβサイアロンを原料とする焼結体も広く使用さ
れているが、機械的特性が不充分であるため、適用範囲
が狭く限定される欠点があった。However, although the ceramic sintered bodies having the above composition have high strength and excellent heat resistance and wear resistance, they are all resistant to chemicals such as acids (chemical resistance). However, when used as a structural material used in an environment in which chemicals are mixed, predetermined durability and reliability cannot be obtained. On the other hand, a sintered body made of β-sialon is widely used as a material having excellent chemical resistance (acid resistance), but it has a drawback that its application range is limited due to insufficient mechanical properties. there were.
【0007】特に近年、航空機エンジンを初めとするガ
スタービンなどの燃焼機関においては運転効率を高める
ために、回転数、運転温度および圧力を従来より大幅に
上昇させる方向で実用化が進められており、軸受部にも
高度化への対応が求められている。また海洋開発分野な
どの化学物質が多量に存在する環境下で使用可能な軸受
も必要となり、従来用いられてきた金属製転がり軸受で
は対応が困難であるので、耐薬品性、耐熱性、耐食性な
どにおいて金属より優れた特性を有するセラミックス材
料を転がり軸受として適用する試みが増加している。In recent years, in particular, in combustion engines such as gas turbines such as aircraft engines, in order to improve the operating efficiency, the practical use has been promoted in the direction of significantly increasing the rotational speed, the operating temperature and the pressure as compared with conventional ones. However, the bearings are also required to respond to the sophistication. In addition, bearings that can be used in environments with large amounts of chemical substances, such as in the field of offshore development, are also required, and it is difficult to use conventional metal rolling bearings, so chemical resistance, heat resistance, corrosion resistance, etc. There is an increasing number of attempts to apply ceramic materials, which have superior characteristics to metals, to rolling bearings.
【0008】本発明は上記のような課題要請に対処する
ためになされたものであり、窒化けい素が本来備える優
れた強度、耐摩耗性、耐熱性を損うことなく、さらに酸
などの化学薬品に対しても優れた耐性を有する窒化けい
素セラミックス焼結体を提供することを目的とする。The present invention has been made in order to meet the above-mentioned demands, and it does not impair the excellent strength, wear resistance and heat resistance originally possessed by silicon nitride, and further chemistry such as acid. An object is to provide a silicon nitride ceramics sintered body having excellent resistance to chemicals.
【0009】[0009]
【課題を解決するための手段と作用】本発明者らは、上
記目的を達成するため、従来の窒化けい素セラミックス
焼結体を製造する際に一般に使用されていた焼結助剤、
添加物の他に、各種の化合物を原料中に添加して、その
化合物の添加が最終製品としての焼結体の特性に及ぼす
影響を実験により確認した。In order to achieve the above-mentioned object, the present inventors have proposed a sintering aid which is generally used when producing a conventional silicon nitride ceramics sintered body,
In addition to the additives, various compounds were added to the raw materials, and the effects of the addition of the compounds on the properties of the sintered body as the final product were confirmed by experiments.
【0010】その結果、ある種のスピネル構造体と、H
fおよびTiの酸化物等と、必要に応じて酸化カシウ
ム、酸化リチウム、酸化ストロンチウム、酸化けい素の
少なくとも1種とを焼結助剤として窒化けい素原料中に
それぞれ所定量ずつ添加したときに、特に優れた耐薬品
性(耐酸性)を有し、強度劣化が少ない窒化けい素セラ
ミックス焼結体が得られることが判明した。As a result, a certain spinel structure and H
When a predetermined amount of each of oxides of f and Ti and, if necessary, at least one of calcium oxide, lithium oxide, strontium oxide, and silicon oxide is added to a silicon nitride raw material as a sintering aid. It has been found that a silicon nitride ceramics sintered body having particularly excellent chemical resistance (acid resistance) and having little strength deterioration can be obtained.
【0011】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る窒化けい素セラミック
ス焼結体は、MgO・Al2 O3 スピネル構造体を0.
5〜3重量%と、HfおよびTiの酸化物および炭化物
の少くとも1種を0.1〜2重量%と、残部を構成する
窒化けい素とから成るセラミックス混合体を焼成してな
ることを特徴とする。The present invention has been completed based on the above findings. That is, the silicon nitride ceramics sintered body according to the present invention has a MgO.Al 2 O 3 spinel structure of 0.
5 to 3% by weight, 0.1 to 2% by weight of at least one kind of oxides and carbides of Hf and Ti, and silicon nitride constituting the balance, by firing a ceramic mixture. Characterize.
【0012】また、上記スピネル構造体、HfおよびT
iの酸化物および炭化物の少なくとも一方の他に、必要
に応じて酸化カルシウム、酸化リチウム、酸化ストロン
チウムおよび酸化けい素から成る群から選択された少な
くとも1種を0.1〜2重量%をセラミックス混合体に
含有させてもよい。Further, the above spinel structure, Hf and T
In addition to at least one of the oxides and carbides of i, 0.1 to 2% by weight of ceramics is optionally mixed with at least one selected from the group consisting of calcium oxide, lithium oxide, strontium oxide and silicon oxide. It may be contained in the body.
【0013】さらにセラミックス混合体における上記M
gO・Al2 O3 スピネル構造体、HfおよびTiの酸
化物および炭化物、酸化カルシウム、酸化リチウム、酸
化ストロンチウムおよび酸化けい素等の焼結助剤の総添
加量を1.5〜5重量%の範囲に設定するとよい。Further, the above M in the ceramic mixture
gO.Al 2 O 3 spinel structure, oxides and carbides of Hf and Ti, calcium oxide, lithium oxide, strontium oxide and silicon oxide, etc. It is good to set it in the range.
【0014】本発明に係るセラミックス焼結体を製造す
る工程において、窒化けい素原料粉末に添加されるMg
O・Al2 O3 スピネル構造体は、立方晶の結晶構造を
有し、単位格子中に8個の化学単位(MgO・Al2 O
3 )を含むものである。このMgO・Al2 O3 スピネ
ル構造体は製造プロセスにおいて、焼結促進剤として機
能するばかりではなく、特に薬品に対して強い耐性を示
す粒界相を形成して焼結体の耐薬品性を向上させるため
に、原料粉末中に0.5〜3重量%の範囲で添加され
る。その添加量が0.5重量%未満の場合には、上記粒
界相の形成が不充分となり、得られる焼結体を薬品が混
在する雰囲気で使用する場合に焼結体の強度の劣化を防
止する機能が充分に発揮されない。一方添加量が3重量
%を超える過量とした場合には、耐薬品性および機械的
強度が逆に低下し始めるので上記範囲に設定される。特
に好ましくは1〜2重量に設定することが望ましい。Mg added to the silicon nitride raw material powder in the process of manufacturing the ceramic sintered body according to the present invention.
The O.Al 2 O 3 spinel structure has a cubic crystal structure and has eight chemical units (MgO.Al 2 O) in the unit cell.
3 ) is included. This MgO.Al 2 O 3 spinel structure not only functions as a sintering accelerator in the manufacturing process, but also forms a grain boundary phase that has a strong resistance to chemicals to improve the chemical resistance of the sintered body. In order to improve, it is added to the raw material powder in the range of 0.5 to 3% by weight. If the addition amount is less than 0.5% by weight, the formation of the grain boundary phase becomes insufficient, and the strength of the sintered body deteriorates when the obtained sintered body is used in an atmosphere in which chemicals are mixed. The preventive function is not fully exerted. On the other hand, if the added amount is too much over 3% by weight, the chemical resistance and mechanical strength will start to decrease, and therefore the above range is set. It is particularly desirable to set the weight to 1 to 2 weights.
【0015】なお、上記MgO成分およびAl2 O3 成
分をスピネル構造体の形で添加することにより、従来製
法と比較して焼結性が大幅に改善され、特にY2 O3 や
MgOなどの従来の焼結助剤を使用する場合と比較して
助剤の添加量を低減できる上に、焼結体密度を大幅に改
善することができる。また従来製法による焼結体と同一
密度の焼結体を製造する場合には、焼結温度を50〜1
00℃程度引き下げることが可能になり、製造条件を緩
和することができ製造コストの低減も図ることができ
る。By adding the above-mentioned MgO component and Al 2 O 3 component in the form of a spinel structure, the sinterability is greatly improved as compared with the conventional production method, and particularly, Y 2 O 3 and MgO are not added. Compared with the case of using a conventional sintering aid, the amount of the additive added can be reduced, and the density of the sintered body can be significantly improved. Further, when a sintered body having the same density as that of the conventional sintered body is produced, the sintering temperature is 50 to 1
It is possible to lower the temperature by about 00 ° C., the manufacturing conditions can be relaxed, and the manufacturing cost can be reduced.
【0016】また本発明に係る焼結体の製造プロセスに
おいて原料粉末に添加する他の成分であるHfおよびT
iの酸化物および炭化物は、MgO・Al2 O3 スピネ
ル構造体と相乗的に作用し、緻密化焼結を促進する焼結
促進剤として機能する上に、焼結後において高融点の化
合物となり、単独に粒子として焼結体組織内に分散する
形態を有し、焼結体の強度および耐摩耗性を向上させる
効果を有し、原料粉末中に0.1〜2重量%の範囲で添
加される。Further, Hf and T which are other components added to the raw material powder in the manufacturing process of the sintered body according to the present invention.
The oxides and carbides of i act synergistically with the MgO.Al 2 O 3 spinel structure, function as a sintering accelerator that promotes densification sintering, and become a high melting point compound after sintering. , Has a form of being dispersed as a particle in the sintered body structure independently, has an effect of improving the strength and wear resistance of the sintered body, and is added to the raw material powder in the range of 0.1 to 2% by weight. To be done.
【0017】添加量が0.1重量%未満の場合は、強度
特性および耐摩耗性の改善効果が少ない一方、添加量が
2重量%を超える場合には耐酸性を主体とする耐薬品性
が低下してしまう。焼結体の機械的強度および耐薬品性
を共に最適に保持するためには、好ましくは1〜4重量
%の範囲に設定することがより望ましい。When the added amount is less than 0.1% by weight, the effect of improving the strength characteristics and wear resistance is small, while when the added amount exceeds 2% by weight, the chemical resistance mainly composed of acid resistance is low. Will fall. In order to maintain both the mechanical strength and the chemical resistance of the sintered body in an optimum manner, it is more preferable to set it in the range of 1 to 4% by weight.
【0018】さらに本発明において原料粉末に添加する
他の成分としての酸化カルシウム、酸化リチウム、酸化
ストロンチウムおよび酸化けい素は、高温域における焼
結体の機械的強度を増加させると同時に焼結促進にも寄
与するものであり、特に常圧焼結を行なう場合に著しい
効果を発揮するものである。その添加量が0.1重量%
未満の場合においては、上記高温強度の改善および焼結
性が不充分である一方、2重量%を超える過量となる場
合には、常温度における焼結体強度が劣化してしまうた
め、添加量は0.1〜2重量%の範囲に設定される。特
に常温および高温ともに良好な強度を確保するために
は、添加量を0.25〜1重量%の範囲に設定すること
が望ましい。Further, calcium oxide, lithium oxide, strontium oxide and silicon oxide as other components added to the raw material powder in the present invention increase the mechanical strength of the sintered body in a high temperature region and at the same time promote the sintering. Also contributes, and particularly, it exerts a remarkable effect when performing atmospheric pressure sintering. The amount added is 0.1% by weight
If the amount is less than the above, the improvement of the high temperature strength and the sinterability are insufficient, while if the amount exceeds 2% by weight, the strength of the sintered body at ordinary temperature deteriorates. Is set in the range of 0.1 to 2% by weight. In particular, in order to secure good strength at both normal temperature and high temperature, it is desirable to set the addition amount in the range of 0.25 to 1% by weight.
【0019】なお、セラミックス混合体における上記M
gO・Al2 O3 スピネル構造体、HfおよびTiの酸
化物および炭化物、酸化カルシウム、酸化リチウム、酸
化ストロンチウムおよび酸化けい素等の焼結助剤の総添
加量は1.5〜5重量%の範囲、より好ましくは2〜
3.5重量%の範囲に設定するとよい。添加量が上記範
囲内である焼結体は、特に耐薬品性(耐酸性)および機
械的強度が共に優れる。The above M in the ceramic mixture is
The total addition amount of the sintering aids such as gO.Al 2 O 3 spinel structure, Hf and Ti oxides and carbides, calcium oxide, lithium oxide, strontium oxide and silicon oxide is 1.5 to 5% by weight. Range, more preferably 2
It is preferable to set it in the range of 3.5% by weight. The sintered body whose addition amount is within the above range is particularly excellent in both chemical resistance (acid resistance) and mechanical strength.
【0020】また本発明に係る焼結体の主成分となる窒
化けい素(Si3 N4 )は、菱面体晶系のα相型および
六方晶系のβ相型の2種のいずれも使用することが可能
であるが、α相型窒化けい素は、β相型と比較して高温
焼結後に結晶粒が長く成長し、高い機械的強度を保持す
ることができるため、原料窒化けい素全体のうちα相型
の窒化けい素が80重量%以上を占めることが望まし
い。さらに窒化けい素特有の耐熱衝撃特性、耐摩耗性を
確保するために、焼結体に占める窒化けい素成分比が9
5重量%以上となるように、他の添加成分量を設定する
ことが望ましい。本発明に係る窒化けい素セラミックス
焼結体は、例えば以下のようなプロセスを経て製造され
る。すなわち窒化けい素粉末に対してMgO・Al2 O
3 スピネル構造体粉末と、HfおよびTiの酸化物およ
び炭化物の少くとも1種の粉末と、さらに必要に応じて
酸化カルシウム、酸化リチウム、酸化ストロンチウム、
酸化けい素から成る群より選択された少なくとも1種の
粉末とを所定量添加して原料混合体を調製し、次に得ら
れた原料混合体を金型プレス等の汎用の成形法によって
所定形状の成形体とした後に、この成形体を窒素ガスま
たはアルゴンなどの不活性ガス雰囲気中で1700〜1
800℃程度の温度で所定時間焼成する。As the silicon nitride (Si 3 N 4 ) which is the main component of the sintered body according to the present invention, both of the rhombohedral α-phase type and the hexagonal β-phase type are used. However, compared with β-phase type, α-phase type silicon nitride can grow longer after high temperature sintering and can maintain high mechanical strength. It is desirable that α-phase silicon nitride accounts for 80% by weight or more of the whole. Further, in order to secure the thermal shock resistance and wear resistance peculiar to silicon nitride, the silicon nitride component ratio in the sintered body is 9%.
It is desirable to set the amount of other additive components so as to be 5% by weight or more. The silicon nitride ceramics sintered body according to the present invention is manufactured, for example, through the following processes. That is, with respect to the silicon nitride powder, MgO.Al 2 O
3 spinel structure powder, at least one powder of oxides and carbides of Hf and Ti, and optionally calcium oxide, lithium oxide, strontium oxide,
A predetermined amount of at least one kind of powder selected from the group consisting of silicon oxide is added to prepare a raw material mixture, and the obtained raw material mixture is then shaped into a predetermined shape by a general-purpose molding method such as a die press. After forming the molded body of 1700, this molded body is treated with 1700 to 1 in an inert gas atmosphere such as nitrogen gas or argon.
Baking is performed at a temperature of about 800 ° C. for a predetermined time.
【0021】ここで焼成雰囲気を窒素やアルゴンなどの
不活性ガス雰囲気とする理由は、酸素等を含む酸化性雰
囲気では高温焼結時に窒化けい素が酸化されてSiO2
に変化し、目的とする窒化けい素焼結体本来の機械的強
度が得られないからである。[0021] Here, the reason for the firing atmosphere with an inert gas atmosphere such as nitrogen or argon, in an oxidizing atmosphere containing oxygen such as is silicon nitride oxide during high temperature sintering SiO 2
This is because the original mechanical strength of the intended silicon nitride sintered body cannot be obtained.
【0022】なお、上記焼成操作は常圧焼結法によって
も、あるいはその他の焼結法、例えばホットプレス法、
雰囲気加圧法、熱間静水圧焼結法(HIP)等を使用し
て実施してもよい。いずれの焼成法においても緻密で機
械的強度が高く、特に酸などの化学薬品が混在する使用
環境において耐薬品性が優れた窒化けい素セラミックス
焼結体が得られる。特に常圧焼結法によっても焼結性が
良好であるため、窒化けい素セラミックス焼結体の量産
性を大幅に改善することが可能になる。The above-mentioned firing operation may be carried out by a normal pressure sintering method or another sintering method, for example, a hot pressing method,
It may be carried out by using an atmospheric pressure method, a hot isostatic pressing method (HIP) or the like. In any of the firing methods, a silicon nitride ceramics sintered body which is dense and has high mechanical strength and which has excellent chemical resistance particularly in a use environment in which chemicals such as acids are mixed can be obtained. In particular, since the sinterability is good even by the atmospheric pressure sintering method, it is possible to greatly improve the mass productivity of the silicon nitride ceramics sintered body.
【0023】[0023]
【実施例】次に本発明を以下に示す実施例を参照してよ
り具体的に説明する。EXAMPLES Next, the present invention will be described more specifically with reference to the following examples.
【0024】実施例1および比較例1〜2 α相型窒化けい素95wt%を含む平均粒径0.6μm
の窒化けい素粉末96.5重量%と、平均粒径0.8μ
mのMgO・Al2 O3 スピネル構造体粉末2.5重量
%と、平均粒径0.8μmの酸化ハフニウム粉末1重量
%との混合物を、エタノールを溶媒としてボールミルに
て24時間混合し、均一な原料粉末混合体を調製した。 Example 1 and Comparative Examples 1-2 Average particle size of 0.6 μm containing 95 wt% of α-phase silicon nitride
Silicon nitride powder of 96.5% by weight and average particle size of 0.8μ
of MgO.Al 2 O 3 spinel structure powder (2.5% by weight) and hafnium oxide powder (average particle diameter: 0.8 μm) (1% by weight) were mixed for 24 hours in a ball mill using ethanol as a solvent to obtain a uniform mixture. A raw material powder mixture was prepared.
【0025】次に得られた原料粉末混合体に有機バイン
ダーを所定量添加して均一に混合した後に、1000kg
/cm2 の成形圧力で加圧成形し、長さ50mm×幅50mm
×厚さ5mmの成形体を多数製作した。Next, a predetermined amount of an organic binder was added to the obtained raw material powder mixture and the mixture was uniformly mixed.
50mm in length x 50mm in width by pressure molding at a molding pressure of / cm 2.
× Many molded products having a thickness of 5 mm were manufactured.
【0026】次に得られた成形体を温度500℃の窒素
ガス雰囲気中において2時間脱脂した後に、この脱脂体
を、窒素ガス雰囲気中において、温度1775℃で4時
間常圧焼結を行い、実施例1に係る窒化けい素セラミッ
クス焼結体を調製した。Next, the molded body thus obtained was degreased in a nitrogen gas atmosphere at a temperature of 500 ° C. for 2 hours, and then the degreased body was subjected to atmospheric pressure sintering at a temperature of 1775 ° C. for 4 hours in a nitrogen gas atmosphere. A silicon nitride ceramics sintered body according to Example 1 was prepared.
【0027】一方比較例1として、実施例1において、
MgO・Al2 O3 スピネル構造体の代わりに平均粒径
0.9μmの酸化イットリウム(Y2 O3 )を2重量%
と、平均粒径0.9μmの酸化アルミニウム粉末2重量
%とを窒化けい素粉末96重量%に添加した以外は実施
例1と同一条件で原料混合、成形、脱脂、焼結処理して
比較例1に係る窒化けい素セラミックス焼結体を調製し
た。On the other hand, as Comparative Example 1, in Example 1,
2% by weight of yttrium oxide (Y 2 O 3 ) having an average particle diameter of 0.9 μm instead of the MgO · Al 2 O 3 spinel structure.
And 2% by weight of aluminum oxide powder having an average particle size of 0.9 μm were added to 96% by weight of silicon nitride powder, and raw materials were mixed, molded, degreased, and sintered under the same conditions as in Example 1 to obtain a comparative example. A silicon nitride ceramics sintered body according to No. 1 was prepared.
【0028】また比較例2として、β相型サイアロン粉
末(z=2)を使用した以外は実施例1と同一条件で原
料混合、成形、脱脂、焼結処理して比較例2に係る窒化
けい素セラミックス焼結体を調製した。In Comparative Example 2, the raw material mixing, molding, degreasing and sintering treatments were carried out under the same conditions as in Example 1 except that β-phase type sialon powder (z = 2) was used, and the silicon nitride according to Comparative Example 2 was used. An elemental ceramics sintered body was prepared.
【0029】こうして得た実施例1および比較例1〜2
に係る窒化けい素セラミックス焼結体(試料)につい
て、相対密度、常温(25℃の室温)における曲げ強度
および破壊靭性値を測定した後に、耐薬品性(耐酸性)
を評価するために各試料をそれぞれ30%濃度のHCl
溶液、HNO3 溶液、H2 SO4 溶液中に浸漬し、90
℃で100時間加熱して浸漬処理を実施し、浸漬処理後
における各試料の重量減少を測定し、下記表1に示す結
果を得た。Example 1 and Comparative Examples 1 and 2 thus obtained
After measuring relative density, bending strength and fracture toughness at room temperature (room temperature of 25 ° C.), the silicon nitride ceramics sintered body (sample) according to
In order to evaluate the
Solution, HNO 3 solution, H 2 SO 4 solution
Immersion treatment was performed by heating at 100 ° C. for 100 hours, and the weight reduction of each sample after the immersion treatment was measured, and the results shown in Table 1 below were obtained.
【0030】[0030]
【表1】 なお表1中の曲げ強度値は、3点曲げ強度試験によって
測定したものであり、試料サイズは4mm×3mm×40m
m、クロスヘッドスピード0.5mm/min 、スパン30m
mの試験条件で測定した。各試料の測定操作は4回ずつ
実施しその平均値で示している。また破壊靭性値はマイ
クロインデンテーション法を使用して測定した。[Table 1] The bending strength values in Table 1 were measured by a 3-point bending strength test, and the sample size was 4 mm x 3 mm x 40 m.
m, crosshead speed 0.5 mm / min, span 30 m
It was measured under a test condition of m. The measurement operation of each sample was carried out four times, and the average value is shown. The fracture toughness value was measured using the microindentation method.
【0031】表1に示す結果から明らかなように、実施
例1に係る焼結体では、密度、曲げ強度、破壊靭性値が
相対的に高く機械的強度が優れるとともに、浸漬処理後
の重量減少も少なく耐薬品性に優れている。一方、スピ
ネル構造体を添加せず、従来の焼結助剤(Y2 O3 およ
びAl2 O3 )を添加した比較例1の焼結体において
は、浸漬処理後の重量減少が大きくなり、耐薬品性が低
下するとともに、機械的強度も大幅に低下していること
が判明した。またセラミックス原料粉末としてβ相型サ
イアロンを使用した比較例2の焼結体においては、耐薬
品性は良好であるものの、曲げ強度および破壊靭性値が
大幅に低下することが判明した。As is clear from the results shown in Table 1, the sintered body according to Example 1 has a relatively high density, bending strength, fracture toughness value, excellent mechanical strength, and weight reduction after immersion treatment. It has little chemical resistance. On the other hand, in the sintered body of Comparative Example 1 in which the conventional sintering aids (Y 2 O 3 and Al 2 O 3 ) were added without adding the spinel structure, the weight reduction after the immersion treatment was large, It was found that the chemical resistance was reduced and the mechanical strength was also significantly reduced. It was also found that the sintered body of Comparative Example 2 using β-phase type sialon as the ceramic raw material powder has a good chemical resistance, but the bending strength and the fracture toughness value are significantly reduced.
【0032】実施例2〜13および比較例3〜5 実施例2〜13として、実施例1において使用した窒化
けい素粉末と、MgO・Al2 O3 スピネル構造体粉末
と、ハフニウム(Hf)の酸化物または炭化物粉末と、
平均粒径0.8μのTiの酸化物または炭化物と、表2
に示す各種金属化合物粉末とを表2左欄に示す組成比と
なるように調合して原料混合体をそれぞれ調製した。 Examples 2 to 13 and Comparative Examples 3 to 5 As Examples 2 to 13, the silicon nitride powder used in Example 1, the MgO.Al 2 O 3 spinel structure powder and hafnium (Hf) were used. Oxide or carbide powder,
Table 2 shows oxides or carbides of Ti having an average particle size of 0.8μ.
Various metal compound powders shown in Table 2 were blended so as to have the composition ratio shown in the left column of Table 2 to prepare raw material mixtures.
【0033】次に得られた各原料混合体を実施例1と同
一条件で原料混合、成形、脱脂、焼結処理してそれぞれ
実施例2〜13に係る窒化けい素焼結体を製造した。Next, the raw material mixture thus obtained was mixed, molded, degreased and sintered under the same conditions as in Example 1 to produce silicon nitride sintered bodies according to Examples 2 to 13, respectively.
【0034】一方比較例3〜5として表2左欄に示すよ
うに、ハフニウム酸化物を過量に添加したもの(比較例
3)、スピネル構造体を過量に添加したもの(比較例
4)、ハフニウム化合物を全く添加しないもの(比較例
5)の原料混合体をそれぞれ調製し、実施例1と同一条
件で原料混合から焼結操作を実施してそれぞれ比較例3
〜5に係る焼結体を製造した。On the other hand, as shown in the left column of Table 2 as Comparative Examples 3 to 5, those containing hafnium oxide in excess (Comparative Example 3), those containing spinel structure in excess (Comparative Example 4), and hafnium. A raw material mixture containing no compound (Comparative Example 5) was prepared, and the sintering operation was performed from the raw material mixing under the same conditions as in Example 1, and Comparative Example 3 was performed.
The sintered bodies according to ~ 5 were manufactured.
【0035】こうして製造した実施例2〜13および比
較例3〜5に係る各窒化けい素セラミックス焼結体につ
いて、実施例1と同一条件で相対密度および曲げ強度を
それぞれ測定するとともに、浸漬処理を実施して各試料
の重量減少を測定し、下記表2右欄に示す結果を得た。With respect to the silicon nitride ceramics sintered bodies according to Examples 2 to 13 and Comparative Examples 3 to 5 thus manufactured, the relative density and bending strength were measured under the same conditions as in Example 1, and the dipping treatment was performed. The weight loss of each sample was measured and the results shown in the right column of Table 2 below were obtained.
【0036】[0036]
【表2】 [Table 2]
【0037】表2に示す結果から明らかなように、スピ
ネル構造体、ハフニウムおよびTiの酸化物または炭化
物および必要に応じて金属化合物をそれぞれ所定量含有
した実施例2〜13に係る焼結体は、いずれも高い曲げ
強度値を有しており、かつ耐薬品性が優れていることが
確認された。As is clear from the results shown in Table 2, the sintered bodies according to Examples 2 to 13 containing the spinel structure, the oxides or carbides of hafnium and Ti and, if necessary, the metal compounds in the predetermined amounts, respectively. It was confirmed that all of them had high bending strength values and excellent chemical resistance.
【0038】一方、比較例3〜5に示すように上記スピ
ネル構造体、ハフニウム化合物および金属化合物の少く
とも1種の成分が過量に添加されたり、あるいは不足す
る場合には、曲げ強度が低下したり、耐薬品性が劣るこ
とが確認された。On the other hand, as shown in Comparative Examples 3 to 5, when at least one component of the above spinel structure, hafnium compound and metal compound is added in an excessive amount or insufficient, the bending strength decreases. It was also confirmed that the chemical resistance was poor.
【0039】また実施例1に係る製法で調製した窒化け
い素セラミックス焼結体を耐薬品性部材として使用し、
図1に示す玉軸受を試作した。この玉軸受は内径80mm
の内輪1と外輪2とから成る一対の同心状の軌道輪の環
状間隙に複数のボール状の転動体3を介装して構成され
る。各転動体3は保持器4によって所定間隔に保持され
る。そして上記内輪1、外輪2および転動体3の少なく
とも1部品を実施例1に係る窒化けい素セラミックス焼
結体で形成して各組合せに係る玉軸受を塩酸ミストが混
在するグリース潤滑条件下で回転数10000rpmで
高速回転させ、セラミックス焼結体部分に剥離、摩耗ま
たは割れが発生するまでの運転時間(寿命)を、従来の
鋼製玉軸受と比較して測定したところ、1.3〜2.1
倍も寿命を延伸させることができた。Further, using the silicon nitride ceramics sintered body prepared by the manufacturing method according to Example 1 as a chemical resistant member,
The ball bearing shown in FIG. 1 was prototyped. This ball bearing has an inner diameter of 80 mm
A plurality of ball-shaped rolling elements 3 are provided in the annular gap of a pair of concentric race rings composed of the inner ring 1 and the outer ring 2. The rolling elements 3 are held by the cage 4 at predetermined intervals. Then, at least one part of the inner ring 1, the outer ring 2 and the rolling element 3 is formed of the silicon nitride ceramics sintered body according to the first embodiment, and the ball bearings of each combination are rotated under a grease lubrication condition in which hydrochloric acid mist is mixed. The operating time (life) until peeling, abrasion or cracking of the ceramic sintered body portion was measured at a high speed of several 10,000 rpm as compared with a conventional steel ball bearing, and 1.3 to 2. 1
The life could be extended twice as long.
【0040】[0040]
【発明の効果】以上説明の通り本発明に係る窒化けい素
セラミックス焼結体によれば、原料粉末中にMgO・A
l2 O3 スピネル構造体、HfおよびTiの化合物およ
び必要に応じてCa,Li,Sr,Siの酸化物が複合
添加されており、特にスピネル構造体によって焼結体組
織に薬品特性を有する粒界相が形成されているため、耐
薬品性に優れており、さらに窒化けい素焼結体本来の耐
摩耗性を損うことなく、機械的強度も改善される。従っ
て、軸受やガスタービン部品などを構成していた従来の
耐食性超合金に代わる高強度耐摩耗性、耐薬品性部材と
して極めて有用である。As described above, according to the silicon nitride ceramics sintered body of the present invention, MgO.A is contained in the raw material powder.
l 2 O 3 spinel structure, compound of Hf and Ti, and oxides of Ca, Li, Sr, Si if necessary added in combination, and in particular, particles having chemical properties in the sintered body structure due to the spinel structure Since the boundary phase is formed, it has excellent chemical resistance, and further, the mechanical strength is improved without impairing the original wear resistance of the silicon nitride sintered body. Therefore, it is extremely useful as a high-strength, wear-resistant, and chemical-resistant member that replaces the conventional corrosion-resistant superalloys that have been used in bearings, gas turbine parts, and the like.
【図1】本発明に係る窒化けい素セラミックス焼結体で
形成した玉軸受の構成例を示す断面図。FIG. 1 is a cross-sectional view showing a configuration example of a ball bearing formed of a silicon nitride ceramics sintered body according to the present invention.
1 内輪 2 外輪 3 転動体 4 保持器 1 inner ring 2 outer ring 3 rolling element 4 cage
Claims (5)
0.5〜3重量%と、HfおよびTiの酸化物および炭
化物の少くとも1種を0.1〜2重量%と、残部を構成
する窒化けい素とから成るセラミックス混合体を焼成し
てなることを特徴とする窒化けい素セラミックス焼結
体。1. The MgO.Al 2 O 3 spinel structure comprises 0.5 to 3% by weight, at least one of Hf and Ti oxides and carbides constitutes 0.1 to 2% by weight, and the balance constitutes. A silicon nitride ceramics sintered body obtained by firing a ceramics mixture containing silicon nitride.
0.5〜3重量%と、HfおよびTiの酸化物および炭
化物の少くとも1種を0.1〜2重量%と、酸化カルシ
ウム、酸化リチウム、酸化ストロンチウムおよび酸化け
い素から成る群から選択された少なくとも1種を0.1
〜2重量%と、残部を構成する窒化けい素とから成るセ
ラミックス混合体を焼成してなることを特徴とする窒化
けい素セラミックス焼結体。2. A MgO.Al 2 O 3 spinel structure in an amount of 0.5 to 3% by weight, at least one of Hf and Ti oxides and carbides in an amount of 0.1 to 2% by weight, calcium oxide, 0.1 at least one selected from the group consisting of lithium oxide, strontium oxide and silicon oxide.
A silicon nitride ceramics sintered body obtained by firing a ceramics mixture consisting of ˜2% by weight and the balance silicon nitride.
・Al2 O3 スピネル構造体、HfおよびTiの酸化物
および炭化物、酸化カルシウム、酸化リチウム、酸化ス
トロンチウムおよび酸化けい素等の焼結助剤の総添加量
を1.5〜5重量%の範囲に設定したことを特徴とする
請求項1または2記載の窒化けい素セラミックス焼結
体。3. The MgO in the ceramic mixture.
The total addition amount of sintering aids such as Al 2 O 3 spinel structure, Hf and Ti oxides and carbides, calcium oxide, lithium oxide, strontium oxide and silicon oxide is in the range of 1.5 to 5% by weight. 3. The silicon nitride ceramics sintered body according to claim 1 or 2, characterized in that
い素が80重量%以上であることを特徴とする請求項1
または2記載の窒化けい素セラミックス焼結体。4. The α-phase type silicon nitride in the silicon nitride raw material powder is 80% by weight or more.
Alternatively, the silicon nitride ceramics sintered body according to item 2.
ミックス焼結体で形成した耐薬品性部材。5. A chemical resistant member formed of the silicon nitride ceramics sintered body according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09677892A JP3210399B2 (en) | 1992-04-16 | 1992-04-16 | Chemically resistant silicon nitride ceramic sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09677892A JP3210399B2 (en) | 1992-04-16 | 1992-04-16 | Chemically resistant silicon nitride ceramic sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05294730A true JPH05294730A (en) | 1993-11-09 |
JP3210399B2 JP3210399B2 (en) | 2001-09-17 |
Family
ID=14174100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09677892A Expired - Lifetime JP3210399B2 (en) | 1992-04-16 | 1992-04-16 | Chemically resistant silicon nitride ceramic sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3210399B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07274071A (en) * | 1994-04-01 | 1995-10-20 | Takenaka Syst Kiki Kk | Video camera |
JP2007039331A (en) * | 2006-09-25 | 2007-02-15 | Toshiba Corp | Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member |
WO2024019143A1 (en) * | 2022-07-22 | 2024-01-25 | Agc株式会社 | Silicon nitride sintered body and method for producing silicon nitride sintered body |
WO2024043230A1 (en) * | 2022-08-24 | 2024-02-29 | Agc株式会社 | Silicon nitride sintered body and method for producing silicon nitride sintered body |
-
1992
- 1992-04-16 JP JP09677892A patent/JP3210399B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07274071A (en) * | 1994-04-01 | 1995-10-20 | Takenaka Syst Kiki Kk | Video camera |
JP2007039331A (en) * | 2006-09-25 | 2007-02-15 | Toshiba Corp | Method of manufacturing silicon nitride sintered compact, method of manufacturing chemical resistant member using the same and method of manufacturing bearing member |
WO2024019143A1 (en) * | 2022-07-22 | 2024-01-25 | Agc株式会社 | Silicon nitride sintered body and method for producing silicon nitride sintered body |
WO2024043230A1 (en) * | 2022-08-24 | 2024-02-29 | Agc株式会社 | Silicon nitride sintered body and method for producing silicon nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JP3210399B2 (en) | 2001-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4795588B2 (en) | Wear resistant parts made of silicon nitride | |
JP5732037B2 (en) | Wear-resistant member and method for manufacturing the same | |
JP2001328869A (en) | Abrasion-resistant member and method for producing the same | |
KR950005502B1 (en) | Wear-resistant member | |
JP2003034581A (en) | Silicon nitride abrasion resistant member and method for producing the same | |
JP5002155B2 (en) | Wear-resistant member made of silicon nitride and method of manufacturing the same | |
JP5268750B2 (en) | Impact resistant member and manufacturing method thereof | |
JP2829229B2 (en) | Silicon nitride ceramic sintered body | |
JP3210399B2 (en) | Chemically resistant silicon nitride ceramic sintered body | |
JPH0777986B2 (en) | Manufacturing method of silicon carbide sintered body | |
JP5362758B2 (en) | Wear resistant parts | |
JP2024101045A (en) | Silicon nitride sintered body, wear-resistant member using the same, and manufacturing method of silicon nitride sintered body | |
JP2004002067A (en) | Wear-resistant member and its production process | |
JP2000256066A (en) | Silicon nitride based sintered body, method for producing the same, and wear-resistant member using the same | |
JP4820840B2 (en) | Method for producing wear-resistant member made of silicon nitride | |
JP3810806B2 (en) | Sintered silicon nitride ceramics | |
JP7353820B2 (en) | Silicon nitride sintered body and wear-resistant parts using the same | |
JP2003300780A (en) | Wear resistant member made of silicon nitride and production method therefor | |
JP2000247748A (en) | High toughness silicon nitride sintered body | |
JP5150064B2 (en) | Method for manufacturing wear-resistant member | |
JPH07330436A (en) | Silicon nitride heat resistant member and method for manufacturing the same | |
JPH05238829A (en) | Sintered silicone nitride ceramic | |
JP2000335976A (en) | Silicon nitride based sintered body, method for producing the same, and wear-resistant member using the same | |
JPH0920563A (en) | Sintered silicon nitride | |
JP4869171B2 (en) | Method for producing wear-resistant member made of silicon nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 11 |