[go: up one dir, main page]

JPH0529432B2 - - Google Patents

Info

Publication number
JPH0529432B2
JPH0529432B2 JP9154090A JP9154090A JPH0529432B2 JP H0529432 B2 JPH0529432 B2 JP H0529432B2 JP 9154090 A JP9154090 A JP 9154090A JP 9154090 A JP9154090 A JP 9154090A JP H0529432 B2 JPH0529432 B2 JP H0529432B2
Authority
JP
Japan
Prior art keywords
carrier
sample
chitosan
wet
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9154090A
Other languages
Japanese (ja)
Other versions
JPH03290188A (en
Inventor
Yoshihide Kawamura
Mitsunori Itoyama
Masaaki Shinonaga
Masaki Mihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdings Inc
Original Assignee
Fuji Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Spinning Co Ltd filed Critical Fuji Spinning Co Ltd
Priority to JP9154090A priority Critical patent/JPH03290188A/en
Publication of JPH03290188A publication Critical patent/JPH03290188A/en
Publication of JPH0529432B2 publication Critical patent/JPH0529432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〓産業上の利用分野〓 本発明は、脱水乾燥時の担体の収縮率を小さく
し、又、該担体に高い圧縮強度を付与させた、酵
素もしくは微生物を固定化するのに優れた性能を
具備した担体の製造方法に関するものである。 〓従来の技術〓 多糖類系の担体はその優れた多孔性と親水性能
により固定化用担体、クロマトグラフイー用担体
として好適であるが、反面、物理的強度が低く、
又、含水率が高いので脱水乾燥前後の担体の容積
変化が極めて大きいものであつた。本発明者等
は、特公昭63−54286号、特開昭63−28453号及び
特開昭63−205144号で開示した如く、キトサンの
多孔質成形物を酵素の固定化用担体として使用す
るために各種の架橋剤で官能基を導入することを
研究してきたが、水溶液中で酵素を固定化し、そ
のまま水溶液中で酵素反応を行う際には極めて優
れた性能を発揮するが、有機溶剤中で酵素反応を
行う場合には酵素固定化用担体の脱水乾燥操作が
必須であり、脱水乾燥を行う場合には担体の収縮
が著しく、酵素の発現活性は極めて低いものであ
つた。又、特願平1−45781号で出願した微生物
の固定化用担体は、酵母や糸状菌の如き比較的大
きな微生物を固定化させるのに好適な細孔を多孔
質キトサン成形物が具備しているが、担体の空隙
率が高く流動層型リアクターでは優れた性能を発
揮するが、カラム充填の固定層型リアクターでは
圧縮強度の点で未だ不充分であつた。 〓発明が解決しようとする課題〓 有機溶剤中での酵素反応の特徴は、脱水縮合反
応を行う酵素の平衡関係を生成物側に移動させる
ことで、反応液中の水分は厳格に制御されなけれ
ばならない。一方、酵素は有機溶剤に不溶である
ので、担体に酵素を固定化するためには酵素水溶
液中に担体を加えて酵素を担体に吸着固定化した
後、脱水乾燥をする操作が必要である。従つて、
固定化された酵素の充分なる発現活性を得るため
に、脱水乾燥時の担体の収縮を出来るだけ小さく
する必要がある。しかし、上述したキトサン系固
定化用担体は、多孔質で酵素や基質の拡散が良好
であるうえ親水性を具備しているので、吸着され
た酵素の変性が少なく発現活性が高いという特徴
をもつているが、担体が脱水乾燥されたとき壊れ
たり、また著しく収縮をする欠点があつた。又、
微生物固定化用担体として用いたときには、無機
質担体に比較して弾力性があるうえに比重が小さ
いことから流動性に富み、種々の撹拌操作に耐え
る優れた性能があるが、微生物が担体内部に入り
込める大きさの細孔径を具備させることで担体内
部の空隙率が高くなり、特に流動層型リアクター
では通液時に生ずる担体の圧密化が著しいもので
あつた。 本発明は、脱水乾燥操作に対しての担体の収縮
率を小さくし、又、高い圧縮強度を有する如く改
善することを目的とするものである。 〓課題を解決するための手段〓 本発明は、低分子量キトサンの酸性水溶液を塩
基性水溶液中で凝固析出させ多孔質キトサン成形
物を得、次いで脂肪族ポリアルコールのグリシジ
ルエーテルを反応させ、更に官能基を導入する固
定化用担体の製造方法において、脂肪族ポリアル
コールのグリシジルエーテルを水酸化カリウムを
含むジオキサン中で反応させることを特徴とする
酵素もしくは微生物固定化用担体の製造方法であ
る。 本発明においては、キトサンとして平均分子量
が10000〜230000の低分子量キトサンが用いられ、
該低分子量キトサンを酢酸、ジクロル酢酸、蟻酸
の単独又は混合物の水溶液に溶解させてキトサン
酸性水溶液とする。キトサン酸性水溶液中のキト
サンの濃度は2〜20%(重量)の範囲で自由に選
択できる。この際、キトサン酸性水溶液中に細孔
調節剤として水溶性高分子物質であるポリビニル
アルコール、ポリエチレングリコール等を単独又
は組合せ添加してもかまわない。該キトサン酸性
水溶液からキトサンを再生して多孔質キトサン成
形物を得るためには、例えば孔径0.1〜0.25mmφ
のノズルより圧力下で塩基性水溶液中に該キトサ
ン酸性水溶液を一定量づつ落下させ凝固再生させ
ることにより、多孔質キトサン成形物の粒状体が
得られる。塩基性凝固液中に加える塩基性物質と
しては、水酸化ナトリウム、水酸化カリウム、炭
酸ナトリウム、炭酸カリウム、アンモニア、エチ
レンジアミン等のアルカリ性物質が用いられ、塩
基性溶液とするには、水、又はメタノール、エタ
ノール等の極性を有するアルコール類又は水とア
ルコール類の混合物に上述の塩基性物質を加えて
使用する。得られた水を含有する多孔質キトサン
成形物は、成形物の表面に更に大きな直径の細気
孔を具現さすためには、必要に応じ特願平1−
45781号で開示した方法による表面処理を行つて
もよい。即ち、得られた多孔質キトサン成形物を
必要に応じメタノール、エタノール、イソプロピ
ルアルコール等のアルコール類やアクリロニトリ
ル等の極性溶媒を用いて水を置換して酸水溶液で
表面処理をする。この際用いられる酸としては酢
酸、蟻酸、プロピオン酸等の有機酸、又は塩酸、
硝酸等の鉱酸が用いられる。酸による表面処理
は、成形物に水が含まれていれば酸の水溶液を、
極性溶媒が含まれていれば該極性溶媒と酸の混合
液を用いることが好ましい。酸の濃度としては
0.5〜5.0%(重量)のものが用いられ、処理時間
は10秒〜5分間の短時間行われ、酸処理後は酸を
充分水洗する。 次いで、最終生成物である担体の収縮率を小さ
くし、高い圧縮強度を持たせるために多孔質キト
サン成形物の水をジオキサンで置換し、水酸化カ
リウム水溶液を入れ、脂肪族ポリアルコールのグ
リシジルエーテルを加え、多孔質キトサン成形物
と等容積のジオキサン中で反応させる。この際の
水酸化カリウムは、濃度が0.01〜3規定のものを
ジオキサンに対し、1/100〜1/10の容量加える。 本発明に用いられる脂肪族ポリアルコールのグ
リシジルエーテルとしては、エチレングリコール
ジグリシジルエーテル、トリエチレングリコール
ジグリシジルエーテル、トリメチレングリコール
ジグリシジルエーテル、テトラメチレングリコー
ルジグリシジルエーテル、ヘキサメチレングリコ
ールジグリシジルエーテルなどが挙げられる。多
孔質キトサン成形物と脂肪族ポリアルコールのグ
リシジルエーテルとの反応は、20〜90℃好ましく
は25〜80℃の範囲で0.5〜48時間ゆるやかな撹拌
下で行われる。 尚、本発明は、脂肪族ポリアルコールのグリシ
ジルエーテルを、水酸化カリウムを含むジオキサ
ン中で反応させることを特徴とするが、水酸化カ
リウムは他のアルカリ性物質に比べてジオキサン
との溶解性が優れており、また、水酸化カリウム
はキトサンC−6位の水酸基との反応性が良く、
脂肪族ポリアルコールのグリシジルエーテルとの
架橋反応が促進されるという効果がある。 反応終了後ジオキサンで洗浄した後、純水で中
性になるまで洗浄する。この様にして得られた多
孔質キトサン成形物に、更に酵素もしくは微生物
を固定化するのに適する種々の活性基を含む官能
基を導入する。その官能基の種類としては第1
級、第2級、第3級、第4級のアンモニウム基等
の陰イオン交換基;スルホン酸基、カルボン酸基
等の陽イオン交換基;イミノジ酢酸基、アミドオ
キシム基、チオール基、ジチオカルバミン基等の
キレート配位基;及び芳香族や脂肪族アルキル等
の疎水性基が挙げられる。これらをキトサンの残
存アミノ基もしくは水酸基に反応させるために用
いられる試薬としては、上述の官能基を含むハロ
ゲン化アルキル、エポキシド、イソシアネート、
酸無水物、アルデヒド、ケトン、及びカルボン
酸、スルホン酸の酸ハロゲン化物等が挙げられ
る。 〓実施例〓 以下、本発明を実施例によつて詳細に説明する
が、本発明は実施例記載の範囲に限定されるもの
ではない。尚、圧縮弾性率、比表面積、細孔径、
脱水乾燥後の乾燥担体容積は次の方法により測定
した。 圧縮弾性率 レオメーターNRM−2010J−CW(不動工業(株)
製)を用いて直径6.0mmφ、深さ10mmのサンプル
アダプターに試料を詰め、直径5.5mmφの棒を2
cm/minの速度で4mm押し込んだときの圧縮弾性
率を測定した。 比表面積 試料を液体窒素中で急冷し−50℃、10-7トール
の真空度下で凍結乾燥後、比表面積測定装置を用
いてBET法で測定した。 細孔径 試料を液体窒素中で急冷し−50℃、10-7トール
の真空度下で凍詰乾燥後、走査型電子顕微鏡で測
定した。 脱水乾燥後の乾燥担体容積 試料10mlが含有する水をアセトンで置換し、デ
シケータ中で自然乾燥後の容積で示した。 実施例 1 脱アセチル化度80%、平均分子量52000のキト
サン350gを3.5%酢酸水溶液4650gに溶解した。
該溶液を、8%水酸化ナトリウム、20%エタノー
ル、72%水よりなる混合溶液中に孔径0.25mmφノ
ズルから一定量づつ落下させ凝固再生させた後、
中性になるまで充分水洗して、平均粒径約1.2mm
φ、圧縮弾性率1.1×106dyn/cm2、比表面積70
m2/g、細孔径0.2μの多孔質キトサン粒状体5
(湿潤)(試料A)を得た。 得られた多孔質キトサン粒状体1(湿潤)を
採取し、これに含まれている水をジオキサンで充
分置換した後、900mlのジオキサンに0.5N−水酸
化カリウム100mlを加えた溶液を加え撹拌した。
更にエチレングリコールジグリシジルエーテル
33.0gを加え、70℃で3時間反応させた。反応終
了後、充分水洗し圧縮弾性率7.0×106dyn/cm2
比表面積82m2/g、細孔径0.1μの容積510ml(湿
潤)の担体(試料B)を得た。 得られた試料Bについて以下に記述する、
及びの方法により官能基の導入を行つた。 試料Bの100ml(湿潤)に15%水酸化ナトリ
ウム水溶液を100ml加え、室温で1時間撹拌し
た。液を除去した後、ジオキサン100mlと塩酸
2−クロルトリエチルアミン12.9gとトリエチ
ルアミン7.6gを加え、80℃で3時間ゆるやか
に撹拌しながら反応させ、終了後純水で充分水
洗し、容積101ml(湿潤)の担体(試料1)を
得た。 試料Bの100ml(湿潤)に含まれる水をジメ
チルホルムアミドで充分置換後、ヘキサメチレ
ンジイソシアナート8gを加え、室温で2時間
反応させ、終了後ジメチルホルムアミドで未反
応のヘキサメチレンジイソシアナートを除去
し、イオン交換水で充分水洗し、容積99ml(湿
潤)の担体(試料2)を得た。 試料Bの100ml(湿潤)に含まれる水をジメ
チルホルムアミドで充分置換後、4,4′−ジフ
エニルメタンジイソシアナート8gを加え、室
温で1時間反応させた。反応終了後ジメチルホ
ルムアミドで未反応の4,4′−ジフエニルメタ
ンジイソシアナートを除去し、イオン交換水で
充分水洗し、容積98ml(湿潤)の担体(試料
3)を得た。 試料1、2、3の夫々について圧縮弾性率、比
表面積、細孔径、脱水乾燥後の乾燥担体容積を測
定し、その結果を第1表に示した。 比較例 1 実施例1と同様の操作で得られた試料Aの1
(湿潤)に含まれる水をジオキサンで充分置換後、
1のジオキサンを加え、水酸化カリウムを全く
添加することなしに、エチレングリコールジグリ
シジルエーテル33.0gを加え、70℃で3時間反応
させた。反応終了後充分水洗し圧縮弾性率2.8×
106dyn/cm2、比表面積80m2/g、細孔径0.2μの容
積690ml(湿潤)の担体(試料C)を得た。得ら
れた試料Cについて夫々100ml(湿潤)を3本採
取し夫々について実施例1に記述した、及び
の官能基の導入処理を行い、夫々容積101ml
(湿潤)(試料4)、容積95ml(湿潤)(試料5)、
容積95ml(湿潤)(試料6)を得た。得られた試
料4、5、6について圧縮弾性率、比表面積、細
孔径、脱水乾燥後の担体容積を測定し、その結果
を第1表に示した。
〓Field of Industrial Application〓 The present invention has excellent performance for immobilizing enzymes or microorganisms by reducing the shrinkage rate of the carrier during dehydration and drying, and by imparting high compressive strength to the carrier. The present invention relates to a method for producing a carrier. 〓Conventional technology〓 Polysaccharide-based carriers are suitable as immobilization carriers and chromatography carriers due to their excellent porosity and hydrophilic properties, but on the other hand, they have low physical strength and
Furthermore, since the water content was high, the volume change of the carrier before and after dehydration and drying was extremely large. As disclosed in Japanese Patent Publication No. 63-54286, Japanese Patent Application Publication No. 63-28453, and Japanese Patent Application Publication No. 63-205144, the present inventors have proposed a method for using porous molded chitosan as a carrier for enzyme immobilization. We have been researching the introduction of functional groups using various cross-linking agents to immobilize enzymes in aqueous solutions, and when performing enzymatic reactions directly in aqueous solutions, they exhibit extremely excellent performance, but in organic solvents When performing an enzyme reaction, dehydration and drying of the enzyme immobilization carrier is essential, and when dehydration and drying is performed, the carrier shrinks significantly and the expression activity of the enzyme is extremely low. In addition, the carrier for immobilizing microorganisms, filed in Japanese Patent Application No. 1-45781, has a porous chitosan molded product having pores suitable for immobilizing relatively large microorganisms such as yeast and filamentous fungi. However, although fluidized bed reactors exhibit excellent performance due to the high porosity of the carrier, fixed bed reactors packed in columns still lack sufficient compressive strength. 〓Problem to be solved by the invention〓 The characteristic of enzymatic reactions in organic solvents is that the equilibrium relationship of the enzyme performing the dehydration condensation reaction is shifted to the product side, and the water content in the reaction solution must be strictly controlled. Must be. On the other hand, enzymes are insoluble in organic solvents, so in order to immobilize enzymes on a carrier, it is necessary to add a carrier to an aqueous enzyme solution, adsorb and immobilize the enzyme on the carrier, and then dehydrate and dry the solution. Therefore,
In order to obtain sufficient expression activity of the immobilized enzyme, it is necessary to minimize the shrinkage of the carrier during dehydration and drying. However, the above-mentioned chitosan-based immobilization carrier is porous and has good diffusion of enzymes and substrates, and is also hydrophilic, so it has the characteristics of less denaturation of the adsorbed enzyme and high expression activity. However, when the carrier is dehydrated and dried, it breaks or shrinks significantly. or,
When used as a carrier for immobilizing microorganisms, it is more elastic and has a lower specific gravity than inorganic carriers, so it has excellent fluidity and can withstand various stirring operations. Providing pores large enough to penetrate the carrier increases the porosity inside the carrier, and especially in fluidized bed reactors, the compaction of the carrier that occurs during passage of liquid is significant. The object of the present invention is to reduce the shrinkage rate of the carrier during dehydration and drying operations, and to improve the carrier to have high compressive strength. <Means for Solving the Problems> The present invention involves coagulating and precipitating an acidic aqueous solution of low molecular weight chitosan in a basic aqueous solution to obtain a porous chitosan molded product, then reacting it with glycidyl ether of an aliphatic polyalcohol, and further producing a functional A method for producing a carrier for immobilizing an enzyme or microorganism into which a group is introduced is characterized in that glycidyl ether of an aliphatic polyalcohol is reacted in dioxane containing potassium hydroxide. In the present invention, low molecular weight chitosan with an average molecular weight of 10,000 to 230,000 is used as chitosan,
The low molecular weight chitosan is dissolved in an aqueous solution of acetic acid, dichloroacetic acid, and formic acid alone or in a mixture to obtain an acidic chitosan aqueous solution. The concentration of chitosan in the chitosan acidic aqueous solution can be freely selected within the range of 2 to 20% (by weight). At this time, water-soluble polymeric substances such as polyvinyl alcohol, polyethylene glycol, etc. may be added alone or in combination as a pore control agent to the chitosan acidic aqueous solution. In order to regenerate chitosan from the chitosan acidic aqueous solution and obtain a porous chitosan molded product, for example, the pore size is 0.1 to 0.25 mmφ.
The chitosan acidic aqueous solution is dropped into a basic aqueous solution in a fixed amount under pressure through a nozzle and solidified and regenerated, thereby obtaining granular bodies of porous chitosan molded articles. As the basic substance added to the basic coagulation solution, alkaline substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, and ethylenediamine are used.To make a basic solution, water or methanol is used. The above-mentioned basic substance is added to a polar alcohol such as ethanol, or a mixture of water and alcohol. The obtained water-containing porous chitosan molded article may be prepared in accordance with Japanese Patent Application No. 1999-1-2010, if necessary, in order to realize fine pores with a larger diameter on the surface of the molded article.
Surface treatment may be performed by the method disclosed in No. 45781. That is, the obtained porous chitosan molded product is surface-treated with an acid aqueous solution by replacing water with an alcohol such as methanol, ethanol, isopropyl alcohol, or a polar solvent such as acrylonitrile, if necessary. The acids used at this time include organic acids such as acetic acid, formic acid, and propionic acid, or hydrochloric acid,
Mineral acids such as nitric acid are used. For surface treatment with acid, if the molded product contains water, an aqueous acid solution is used.
If a polar solvent is included, it is preferable to use a mixture of the polar solvent and an acid. As the concentration of acid
A concentration of 0.5 to 5.0% (by weight) is used, the treatment is carried out for a short time of 10 seconds to 5 minutes, and the acid is thoroughly washed with water after the acid treatment. Next, in order to reduce the shrinkage rate of the final product carrier and give it high compressive strength, the water in the porous chitosan molded product was replaced with dioxane, an aqueous potassium hydroxide solution was added, and a glycidyl ether of aliphatic polyalcohol was added. is added and reacted in the same volume of dioxane as the porous chitosan molded article. At this time, potassium hydroxide having a concentration of 0.01 to 3 normal is added in a volume of 1/100 to 1/10 to dioxane. Examples of the glycidyl ether of aliphatic polyalcohol used in the present invention include ethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, trimethylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, and hexamethylene glycol diglycidyl ether. Can be mentioned. The reaction between the porous chitosan molded product and the glycidyl ether of the aliphatic polyalcohol is carried out at a temperature of 20 to 90°C, preferably 25 to 80°C, for 0.5 to 48 hours with gentle stirring. The present invention is characterized in that glycidyl ether of aliphatic polyalcohol is reacted in dioxane containing potassium hydroxide, but potassium hydroxide has better solubility in dioxane than other alkaline substances. In addition, potassium hydroxide has good reactivity with the hydroxyl group at the C-6 position of chitosan,
This has the effect of promoting the crosslinking reaction of aliphatic polyalcohol with glycidyl ether. After the reaction is completed, wash with dioxane and then with pure water until neutral. Functional groups containing various active groups suitable for immobilizing enzymes or microorganisms are further introduced into the porous chitosan molded article thus obtained. The first type of functional group is
anion exchange groups such as primary, secondary, tertiary, and quaternary ammonium groups; cation exchange groups such as sulfonic acid groups and carboxylic acid groups; iminodiacetic acid groups, amidoxime groups, thiol groups, and dithiocarbamine groups. and hydrophobic groups such as aromatic and aliphatic alkyl. Reagents used to react these with the remaining amino groups or hydroxyl groups of chitosan include alkyl halides, epoxides, isocyanates, and epoxides containing the above-mentioned functional groups.
Examples include acid anhydrides, aldehydes, ketones, and acid halides of carboxylic acids and sulfonic acids. 〓Example〓 Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to the scope described in the Examples. In addition, compressive elastic modulus, specific surface area, pore diameter,
The dry carrier volume after dehydration and drying was measured by the following method. Compressive modulus Rheometer NRM-2010J-CW (Fudou Kogyo Co., Ltd.)
Pack the sample into a sample adapter with a diameter of 6.0 mmφ and a depth of 10 mm using a
The compressive elastic modulus was measured when the sample was pushed in 4 mm at a speed of cm/min. Specific surface area The sample was rapidly cooled in liquid nitrogen and freeze-dried at −50° C. under a vacuum of 10 −7 Torr, and then measured by the BET method using a specific surface area measuring device. Pore diameter The sample was rapidly cooled in liquid nitrogen, freeze-dried at −50° C. under a vacuum of 10 −7 Torr, and then measured using a scanning electron microscope. Dry carrier volume after dehydration and drying The water contained in 10 ml of the sample was replaced with acetone, and the volume was expressed as the volume after air drying in a desiccator. Example 1 350 g of chitosan having a degree of deacetylation of 80% and an average molecular weight of 52,000 was dissolved in 4,650 g of a 3.5% acetic acid aqueous solution.
After solidifying and regenerating the solution by dropping it into a mixed solution of 8% sodium hydroxide, 20% ethanol, and 72% water through a nozzle with a hole diameter of 0.25 mm,
Wash thoroughly with water until neutral, and the average particle size is approximately 1.2mm.
φ, compressive modulus 1.1×10 6 dyn/cm 2 , specific surface area 70
Porous chitosan granules with m 2 /g and pore diameter of 0.2μ 5
(Wet) (Sample A) was obtained. The obtained porous chitosan granules 1 (wet) were collected, the water contained therein was sufficiently replaced with dioxane, and then a solution of 100 ml of 0.5N potassium hydroxide added to 900 ml of dioxane was added and stirred. .
Furthermore, ethylene glycol diglycidyl ether
33.0g was added and reacted at 70°C for 3 hours. After the reaction is completed, the compressive modulus of elasticity is 7.0×10 6 dyn/cm 2 after thorough washing with water.
A carrier (sample B) with a specific surface area of 82 m 2 /g, a pore diameter of 0.1 μm, and a volume of 510 ml (wet) was obtained. The obtained sample B is described below.
Functional groups were introduced by the methods described below. 100 ml of 15% aqueous sodium hydroxide solution was added to 100 ml of sample B (wet), and the mixture was stirred at room temperature for 1 hour. After removing the liquid, add 100 ml of dioxane, 12.9 g of 2-chlorotriethylamine hydrochloride, and 7.6 g of triethylamine, and react at 80°C for 3 hours with gentle stirring. After completion, wash thoroughly with pure water, volume 101 ml (wet). A carrier (sample 1) was obtained. After sufficiently replacing the water contained in 100 ml of sample B (wet) with dimethylformamide, 8 g of hexamethylene diisocyanate was added and reacted for 2 hours at room temperature. After completion, unreacted hexamethylene diisocyanate was removed with dimethylformamide. The carrier was washed thoroughly with ion-exchanged water to obtain a carrier (sample 2) with a volume of 99 ml (wet). After the water contained in 100 ml (wet) of sample B was sufficiently replaced with dimethylformamide, 8 g of 4,4'-diphenylmethane diisocyanate was added and reacted at room temperature for 1 hour. After the reaction was completed, unreacted 4,4'-diphenylmethane diisocyanate was removed with dimethylformamide and thoroughly washed with ion-exchanged water to obtain a carrier (sample 3) with a volume of 98 ml (wet). The compressive modulus, specific surface area, pore diameter, and dry carrier volume after dehydration and drying were measured for each of Samples 1, 2, and 3, and the results are shown in Table 1. Comparative Example 1 Sample A 1 obtained by the same operation as Example 1
After sufficiently replacing the water contained in (wet) with dioxane,
1 dioxane was added, 33.0 g of ethylene glycol diglycidyl ether was added without adding any potassium hydroxide, and the mixture was reacted at 70° C. for 3 hours. After the reaction is complete, wash thoroughly with water and compressive modulus is 2.8×
A carrier (sample C ) with a volume of 690 ml (wet) and a specific surface area of 80 m 2 /g and a pore diameter of 0.2 μ was obtained. Three samples of 100 ml each (wet) were taken from the sample C obtained, and each was subjected to the treatment for introducing the functional groups and as described in Example 1, each having a volume of 101 ml.
(wet) (sample 4), volume 95ml (wet) (sample 5),
A volume of 95 ml (wet) (sample 6) was obtained. The compressive modulus, specific surface area, pore diameter, and carrier volume after dehydration and drying were measured for the obtained samples 4, 5, and 6, and the results are shown in Table 1.

【表】 第1表の結果より明らかな如く、脂肪族ポリア
ルコールのグリシジルエーテルを反応さす際に、
水酸化カリウムを使用しなかつた試料4、5、6
については圧縮弾性率、乾燥担体容積(乾燥時の
担体の収縮を防止する)が本願発明の方法によつ
て得られたものよりも劣つていることが明らかで
ある。 実施例 2 脱アセチル化度78%、平均分子量12000のキト
サン700gと、ポリエチレングリコール(分子量
29000和光純薬工業(株)製)100gを、総量が10に
なる如く3%酢酸水溶液に溶解した。該溶液を、
2.5%アンモニア、20%エタノール、77.5%水か
らなる混合溶液中に孔径0.25mmφノズルから一定
量づつ落下させ凝固再生させた後、中性になるま
で充分水洗して平均粒径約1.2mmφの多孔質キト
サン粒状体10(湿潤容積)を得た。得られた多
孔質キトサン粒状体5(湿潤)を採取し、これ
に含まれている水を吸引濾過で除去後、0.5%酢
酸水溶液5中に25℃で30秒間浸漬処理した後、
直ちに中性になるまで水洗を行い、圧縮弾性率
0.6×106dyn/cm2、比表面積20.5m2/g、細孔径
20μの多孔質キトサン粒状体3900ml(湿潤容積)
(試料D)を得た。得られた多孔質キトサン粒状
体1(湿潤)を採取し、これに含まれている水
をジオキサンで充分置換した後、900mlのジオキ
サンに0.5N−水酸化カリウム100mlを加えた溶液
を加え、撹拌した。更にエチレングリコールジグ
リシジルエーテル28gを加え、70℃で3時間反応
させた。反応終了後、充分水洗し圧縮弾性率1.5
×106dyn/cm2、比表面積26m2/g、細孔径16μの
担体600ml(湿潤容積)(試料E)を得た。 得られた試料Eについて夫々100ml(湿潤)を
3本採取し実施例1に記述した、及びの方
法により官能基の導入を行い、の処理で容積
100ml(湿潤)の担体(試料7)、の処理で容積
99ml(湿潤)の担体(試料8)及びの処理で容
積98ml(湿潤)担体(試料9)を得た。試料7、
8、9の夫々について圧縮弾性率、比表面積、細
孔径、脱水乾燥後の乾燥担体容積を測定し、その
結果を第2表に示した。 比較例 2 実施例2と同様の操作で得られた試料Dの1
(湿潤)に含まれる水をジオキサンで充分置換後、
1のジオキサンを加え、水酸化カリウムを全く
添加することなしに、エチレングリコールジグリ
シジルエーテル28gを加え、70℃で3時間反応さ
せた。反応終了後充分水洗し、圧縮弾性率3.2×
106dyn/cm2、比表面積30m2/g、細孔径19μの容
積810ml(湿潤)の担体(試料F)を得た。 得られた試料Fについて夫々100ml(湿潤)を
3本採取し、夫々について実施例1に記述した
、及びの官能基の導入処理を行い、夫々容
積100ml(湿潤)(試料10)、容積99ml(湿潤)(試
料11)、容積96ml(湿潤)(試料12)を得た。 得られた試料10、11、12について、圧縮弾性
率、表面積、細孔径、脱水乾燥後の乾燥担体容積
を測定し、その結果を第2表に示した。
[Table] As is clear from the results in Table 1, when reacting glycidyl ether of aliphatic polyalcohol,
Samples 4, 5, and 6 without using potassium hydroxide
It is clear that the compressive modulus and dry carrier volume (which prevents shrinkage of the carrier during drying) are inferior to those obtained by the method of the present invention. Example 2 700 g of chitosan with a degree of deacetylation of 78% and an average molecular weight of 12,000 and polyethylene glycol (molecular weight
29000 (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in a 3% acetic acid aqueous solution such that the total amount was 10. The solution,
A fixed amount is dropped into a mixed solution consisting of 2.5% ammonia, 20% ethanol, and 77.5% water from a nozzle with a pore size of 0.25 mmφ to solidify and regenerate, and then washed thoroughly with water until it becomes neutral to form porous particles with an average particle size of approximately 1.2 mmφ. 10 (wet volume) of quality chitosan granules were obtained. The obtained porous chitosan granules 5 (wet) were collected, the water contained therein was removed by suction filtration, and then immersed in a 0.5% acetic acid aqueous solution 5 at 25°C for 30 seconds,
Immediately wash with water until neutral, and check the compressive modulus.
0.6×10 6 dyn/cm 2 , specific surface area 20.5 m 2 /g, pore diameter
20μ porous chitosan granules 3900ml (wet volume)
(Sample D) was obtained. After collecting the obtained porous chitosan granules 1 (wet) and sufficiently replacing the water contained therein with dioxane, a solution of 100 ml of 0.5N potassium hydroxide in 900 ml of dioxane was added and stirred. did. Further, 28 g of ethylene glycol diglycidyl ether was added, and the mixture was reacted at 70°C for 3 hours. After the reaction is complete, wash thoroughly with water to reduce the compressive modulus to 1.5.
A carrier of 600 ml (wet volume) (sample E) having a density of ×10 6 dyn/cm 2 , a specific surface area of 26 m 2 /g, and a pore diameter of 16 μm was obtained. Three samples of 100 ml (wet) each were collected from the obtained sample E, and functional groups were introduced by the methods described in Example 1.
100 ml (wet) of the carrier (sample 7), with a volume of
A volume of 99 ml (wet) carrier (sample 8) and a volume of 98 ml (wet) carrier (sample 9) was obtained by treatment. Sample 7,
The compressive modulus, specific surface area, pore diameter, and dry carrier volume after dehydration and drying were measured for each of Samples No. 8 and No. 9, and the results are shown in Table 2. Comparative Example 2 Sample D 1 obtained by the same operation as Example 2
After sufficiently replacing the water contained in (wet) with dioxane,
1 dioxane was added, 28 g of ethylene glycol diglycidyl ether was added without adding any potassium hydroxide, and the mixture was reacted at 70° C. for 3 hours. After the reaction is complete, wash thoroughly with water and compressive modulus is 3.2×
A carrier (sample F) with a volume of 810 ml (wet) having a surface area of 10 6 dyn/cm 2 , a specific surface area of 30 m 2 /g and a pore diameter of 19 μm was obtained. Three samples of 100 ml each (wet) were taken from the obtained sample F, and the functional groups of and were introduced as described in Example 1. A volume of 96 ml (wet) (sample 12) was obtained. The compressive modulus, surface area, pore diameter, and dry carrier volume after dehydration and drying were measured for the obtained samples 10, 11, and 12, and the results are shown in Table 2.

【表】 第2表の結果から明らかな如く、細孔径が第1
表の数値より大きいにも拘らず実施例2の本発明
の方法による担体は高い圧縮弾性率を有し、乾燥
担体容積においても優れていることが明らかであ
る。 〓発明の効果〓 本発明の製造方法による酵素もしくは微生物固
定化用担体は、カラム充填時の充填圧や担体の乾
燥操作に対し高い安定性を具備しており、非水系
での酵素反応用固定化担体として極めて優れた性
能を発揮する。又、酵母や糸状菌等の微生物を固
定化するのに適した大きな細孔径を具備させても
圧縮に対する高い強度があり、固定化微生物の流
動層型リアクターとしての反復繰り返し使用や長
期連続使用、更には充填型リアクターへの利用に
も極めて優れた固定化用担体である。
[Table] As is clear from the results in Table 2, the pore diameter is the
It is clear that the carrier prepared by the method of the present invention in Example 2 has a high compressive modulus of elasticity, even though the values are larger than those in the table, and the dry carrier volume is also excellent. 〓Effects of the Invention〓 The carrier for immobilizing enzymes or microorganisms produced by the production method of the present invention has high stability against the filling pressure during column filling and the drying operation of the carrier, and is suitable for immobilization for enzyme reactions in non-aqueous systems. It exhibits extremely excellent performance as a chemical carrier. In addition, even if it has a large pore diameter suitable for immobilizing microorganisms such as yeast and filamentous fungi, it has high strength against compression, making it suitable for repeated use and long-term continuous use as a fluidized bed reactor for immobilized microorganisms. Furthermore, it is an extremely excellent immobilization carrier for use in packed reactors.

Claims (1)

【特許請求の範囲】[Claims] 1 低分子量キトサンの酸性水溶液を塩基性水溶
液中で凝固析出させ多孔質キトサン成形物を得、
次いで脂肪族ポリアルコールのグリシジルエーテ
ルを反応させ、更に官能基を導入する固定化用担
体の製造方法において、脂肪族ポリアルコールの
グリシジルエーテルを水酸化カリウムを含むジオ
キサン中で反応させることを特徴とする酵素もし
くは微生物固定化用担体の製造方法。
1. Obtaining a porous chitosan molded article by coagulating and precipitating an acidic aqueous solution of low molecular weight chitosan in a basic aqueous solution,
A method for producing an immobilization carrier in which a glycidyl ether of an aliphatic polyalcohol is then reacted and a functional group is further introduced, characterized by reacting the glycidyl ether of an aliphatic polyalcohol in dioxane containing potassium hydroxide. A method for producing a carrier for immobilizing enzymes or microorganisms.
JP9154090A 1990-04-06 1990-04-06 Production of carrier for immobilization of enzyme or microorganism Granted JPH03290188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9154090A JPH03290188A (en) 1990-04-06 1990-04-06 Production of carrier for immobilization of enzyme or microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9154090A JPH03290188A (en) 1990-04-06 1990-04-06 Production of carrier for immobilization of enzyme or microorganism

Publications (2)

Publication Number Publication Date
JPH03290188A JPH03290188A (en) 1991-12-19
JPH0529432B2 true JPH0529432B2 (en) 1993-04-30

Family

ID=14029305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9154090A Granted JPH03290188A (en) 1990-04-06 1990-04-06 Production of carrier for immobilization of enzyme or microorganism

Country Status (1)

Country Link
JP (1) JPH03290188A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613153B2 (en) * 1992-08-05 1997-05-21 富士紡績株式会社 Method for producing carrier for immobilizing microorganisms
JP2678341B2 (en) * 1993-09-27 1997-11-17 富士紡績株式会社 Immobilized lipase

Also Published As

Publication number Publication date
JPH03290188A (en) 1991-12-19

Similar Documents

Publication Publication Date Title
US4063017A (en) Porous cellulose beads and the immobilization of enzymes therewith
EP0021750B1 (en) Production of spherically shaped material made of chitin derivative
CA1076047A (en) Porous cellulose beads
US5525710A (en) Highly porous chitosan bodies
CN102653596A (en) Method for preparing surface chitosan-crosslinked modified nitrocellulose membrane material
EP0176225B1 (en) Porous chitin shaped article and production thereof
US4355117A (en) Process for preparing agglomerated fibrous cellulose
Štamberg Bead cellulose
US10155217B2 (en) Endotoxin adsorbent
JPS6354285B2 (en)
JPH0529432B2 (en)
JPS6354286B2 (en)
JP4606524B2 (en) Polylysine, polylysine production method, polylysine composition, and pharmaceutical production method for removing endotoxin
WO2011051145A1 (en) Enzyme-functionalized supports
JPH022587B2 (en)
JPH09165404A (en) Chitosan molding with its surface being n-thiocarbamoylated and its production
JPH0657761B2 (en) Manufacturing method of porous chitosan moldings
JP2613153B2 (en) Method for producing carrier for immobilizing microorganisms
JPH0248044A (en) Production of chitosan shaped body having anion exchange ability
JP2595004B2 (en) Enzyme-immobilizing carrier, its enzyme-immobilizing method and enzyme desorbing method
JP2613154B2 (en) Method for producing carrier for immobilizing microorganisms
NZ198572A (en) Preparing agglomerated fibrous ion-exchange cellulose composites
JP3049411B2 (en) Method for producing ultrafine particulate chitosan having anion exchange ability
JP2824902B2 (en) Method for producing enzyme-immobilizing carrier
JP2660649B2 (en) Method for producing enzyme-immobilizing carrier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20090430

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 17

EXPY Cancellation because of completion of term