[go: up one dir, main page]

JPH05292899A - Production of microcapsule - Google Patents

Production of microcapsule

Info

Publication number
JPH05292899A
JPH05292899A JP4163013A JP16301392A JPH05292899A JP H05292899 A JPH05292899 A JP H05292899A JP 4163013 A JP4163013 A JP 4163013A JP 16301392 A JP16301392 A JP 16301392A JP H05292899 A JPH05292899 A JP H05292899A
Authority
JP
Japan
Prior art keywords
protein
substance
polysaccharide
oil
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4163013A
Other languages
Japanese (ja)
Inventor
Hideaki Kawana
秀明 川名
Kazuko Ito
和子 伊藤
Hisao Miyagawa
久雄 宮川
Chinami Katou
千潯 加藤
Takahiko Soeda
孝彦 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Publication of JPH05292899A publication Critical patent/JPH05292899A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Seasonings (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To efficiently obtain the subject capsule causing no injury to human bodies, excellent in safety and edible property and useful for foods and medicines, etc., by using a transglutaminase as a coat curing agent in a complex coacervation method using a hydrophobic substance as a core substance, a protein and a polysaccharide. CONSTITUTION:The objective capsule is obtained by using a transglutaminase as a coat curing agent in a complex coacervation method using one kind or two or more kinds of hydrophobic substances selected from alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, flavor and a vitamin and used as a core substance, a protein such as gelatin and a polysaccharide such as gum arabic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンプレックスコアセル
ベーション法におけるマイクロカプセルの製造方法に関
する。更に詳細には、コアセルベートを硬化する際に、
硬化剤として従来用いられているアルデヒド類に代えて
トランスグルタミナーゼ(以下、TGと略記することが
ある)を使用することにより得られる可食性マイクロカ
プセルの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing microcapsules in a complex coacervation method. More specifically, when curing the coacervate,
The present invention relates to a method for producing edible microcapsules obtained by using transglutaminase (hereinafter sometimes abbreviated as TG) in place of aldehydes that have been conventionally used as a curing agent.

【0002】[0002]

【従来の技術】疎水性物質を含むマイクロカプセルの製
造方法としては、例えば米国特許第2800457号に
記述されるコンプレックスコアセルベーション法が代表
的であり、実用化に際してはほとんどの場合壁膜形成物
質としてゼラチン−アラビアゴム系が用いられているこ
とは周知の通りである。この方法は、電荷を持つ親水性
コロイド水溶液中に疎水性物質を乳化あるいは分散させ
る工程(乳化工程),この乳化物に先のコロイドと反対
の電荷を持つ親水性コロイド水溶液を添加し水により希
釈した後pHを調整してコアセルベーションを生起し核
(芯)となる疎水性物質の周囲にコロイドを堆積させた
コアセルベートを得る工程(コアセルベーション工
程),コアセルベートを冷却して固化させる工程(ゲル
化工程),コアセルベート壁膜を不溶化させる工程(硬
化工程)より成り、硬化剤としては通常ゼラチンの不溶
化剤として知られているアルデヒド類、ジケトン類、エ
ポキシド類、酸無水物や酸塩化物類、無機塩類等の化合
物が一般に用いられるが、その中で効果、コスト、供給
といった観点からアルデヒド類が代表的に使用されてい
る。
2. Description of the Related Art As a method for producing microcapsules containing a hydrophobic substance, a complex coacervation method described in, for example, US Pat. No. 2,800,457 is representative, and in most cases in practical use, a wall film forming substance is used. It is well known that the gelatin-arabic gum system is used as. This method involves emulsifying or dispersing a hydrophobic substance in an aqueous hydrophilic colloid solution having an electric charge (emulsification step), adding an aqueous hydrophilic colloid solution having an opposite electric charge to the above colloid, and diluting with water. After that, the step of adjusting the pH to cause coacervation to obtain a coacervate in which colloid is deposited around the hydrophobic substance that becomes the nucleus (core) (coacervation step), the step of cooling the coacervate to solidify ( Gelation step) and a step of insolubilizing the coacervate wall film (curing step). As a curing agent, aldehydes, diketones, epoxides, acid anhydrides and acid chlorides which are generally known as gelatin insolubilizers are used. In general, compounds such as inorganic salts are used. Among them, aldehydes are typically used from the viewpoint of effect, cost and supply. It has been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、コアセ
ルベーション法によるマイクロカプセル製造方法は、従
来食品製造に用いられてきた他のカプセル化法に比し、
非常に粒径の小さなものが得られる等のメリットがある
ものの、硬化剤として人体に対して好ましくない性質を
有する試薬であるアルデヒド類等化合物を使用するため
食用には適さないものである。従って、可食性マイクロ
カプセルを求めようとした場合、アルデヒド類その他の
硬化剤は使用することが出来ない。またこの硬化剤はゼ
ラチンの不溶化剤であり、アラビアゴムはカプセル壁形
成後に離脱することはよく知られている。そこで、本発
明の目的は人体に害を及ぼさない、可食性マイクロカプ
セルの製造方法の提供をその課題とする。
However, the method for producing microcapsules by the coacervation method is superior to the other encapsulation methods conventionally used for food production.
Although it has a merit that an extremely small particle size can be obtained, it is not suitable for food because a compound such as an aldehyde which is a reagent having a property unfavorable to the human body is used as a curing agent. Therefore, when trying to obtain edible microcapsules, aldehydes and other hardening agents cannot be used. It is well known that this hardening agent is an insolubilizing agent for gelatin, and that gum arabic is released after the capsule wall is formed. Therefore, an object of the present invention is to provide a method for producing edible microcapsules that does not harm the human body.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を行った結果、硬化剤としてアル
デヒド類等化合物に代えてトランスグルタミナーゼ(以
下、TGと略する)を使用することにより、食用可能な
マイクロカプセルを安全かつ簡便な方法で得られること
を見出し本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have used transglutaminase (hereinafter abbreviated as TG) as a curing agent in place of compounds such as aldehydes. By doing so, they have found that edible microcapsules can be obtained by a safe and simple method, and have completed the present invention.

【0005】即ち、本発明は、疎水性物質を芯物質とす
る蛋白質と多糖類からなるコンプレックスコアセルベー
ション法において、TGを被膜硬化剤として用いること
を特徴とするマイクロカプセルの製造方法である。詳細
には、ゼラチン等の蛋白質1〜10%とアラビアゴム等
の多糖類1〜10%を含む20〜80℃の水溶液中に疎
水性物質及びTGを分散し、コアセルベーション生成領
域にpHを調整することによってコアセルベート層を生
起せしめた後、20〜80℃の条件に保つことによりコ
アセルベート層中においてゼラチン等の蛋白質、TGに
よる架橋反応を進行させ、コアセルベートを硬化させる
ことを特徴とするマイクロカプセルの製造方法である。
That is, the present invention is a method for producing microcapsules, characterized in that TG is used as a film hardening agent in a complex coacervation method comprising a protein having a hydrophobic substance as a core substance and a polysaccharide. Specifically, the hydrophobic substance and TG are dispersed in an aqueous solution at 20 to 80 ° C containing 1 to 10% of protein such as gelatin and 1 to 10% of polysaccharide such as gum arabic to adjust pH to the coacervation generation region. A microcapsule characterized by causing a coacervate layer to be produced by adjustment and then maintaining the condition at 20 to 80 ° C. to promote a crosslinking reaction by a protein such as gelatin and TG in the coacervate layer to cure the coacervate. Is a manufacturing method.

【0006】本発明では、溶液中の蛋白濃度がTGが作
用しない程度の希薄な状態にしてから、TGを添加し、
その後コアセルベートを生起せしめることで蛋白濃度の
高いコアセルベート層とTGを作用させることにより、
コアセルベート壁膜を形成する蛋白質中のグルタミン酸
残基のγ−カルボキシアミド基のアシル転移反応により
この蛋白質を架橋高分子化させることができる。TGの
添加方法としては疎水性物質中に分散して添加すること
も、周囲の水溶液中に添加することも可能である。この
ように、TGを用いることにより、アルデヒド類等化合
物による不溶化処理を施すことなくコアセルベート壁膜
を硬化させることによりマイクロカプセルを得ることが
できる。
In the present invention, TG is added after the concentration of protein in the solution is made to a dilute state such that TG does not act.
After that, by causing coacervate to act and the coacervate layer having a high protein concentration to act on TG,
This protein can be crosslinked and polymerized by the acyl transfer reaction of the γ-carboxamide group of the glutamic acid residue in the protein forming the coacervate wall membrane. The TG can be added by dispersing it in a hydrophobic substance or by adding it to the surrounding aqueous solution. Thus, by using TG, the microcapsules can be obtained by curing the coacervate wall film without performing insolubilization treatment with a compound such as an aldehyde.

【0007】本発明に用いられるTGは、TG活性があ
る限りその起源を特に問わず、いずれの種類のTGを用
いても良い。例えば、ストレプトベルチシリウム(Stre
ptoverticillium )等に属する微生物由来のもの(BT
Gと略記する。尚、特開平1−27471参照),モル
モット等の哺乳動物由来のもの(MTGと略記する。
尚、特公平1−50382参照),水産動物由来のもの
(関信夫ら、昭和63年度日本水産学会秋季大会講演要
旨集167頁及び平成2年度日本水産学会春季大会講演
要旨集219頁参照),バイオテクノロジー技術を使用
して遺伝子組換によって得られるもの(特開平1−30
0889参照)等を用いることができる。しかし、その
中でもカルシウム非依存性であり、かつ大量に取得でき
るBTGを用いる方が好ましい。
The TG used in the present invention may be any kind of TG regardless of its origin as long as it has TG activity. For example, Streptoverticillium (Stre
derived from microorganisms belonging to ptoverticillium (BT) (BT
Abbreviated as G. Incidentally, those derived from mammals such as JP-A-1-27471) and guinea pigs (abbreviated as MTG).
In addition, refer to Japanese Examined Patent Publication No. 1-50382), those derived from marine animals (see Nobuo Seki et al., 167 Abstracts of Autumn Meeting of the Fisheries Society of Japan and 219 Abstracts of Spring Meeting of the Fisheries Society of Japan in 1987), Obtained by genetic recombination using biotechnology (Japanese Patent Laid-Open No. 1-30
0889) and the like can be used. However, among them, it is preferable to use BTG, which is calcium-independent and can be obtained in a large amount.

【0008】本発明に用いられる疎水性物質は特に限定
するものではないが、例えばコーン油、大豆油、菜種
油、落花生油、パーム油等の植物油、魚油、ラード、ヘ
ッド等の動物油、α−リノレン酸、エイコサペンタエン
酸(EPAと略する)、ドコサヘキサエン酸(DHAと
略する)といった脂肪酸等を挙げることができる。また
食用ワックス類を用いても何等差し支えない。これらは
単独あるいは配合して用いられ、目的に応じ適宜選択す
ることが出来る。この油脂に、フレーバー組成物、ビタ
ミン等油溶性物質、調味料、香辛料、乳化剤等を含有さ
せたり、あるいは着色剤を添加したりすることは何等差
し支えない。要するに、これらを目的に応じて単独又は
複数配合することができる。尚、ここで述べるフレーバ
ー組成物とは例えば、ミートフレーバー,かつお節フレ
ーバー等の畜肉魚介類に関連したものや、果実フレーバ
ー、野菜フレーバー等が挙げられる。油溶性ビタミン類
としては、ビタミンA,D,E,F,K等を挙げること
ができる。これらを、目的に応じて、単独叉は複数配合
しても良い。使用される疎水性物質の量は、特に制限は
ないが、通常皮膜となるゼラチンに対して、重量比で1
−10程度である。
The hydrophobic substance used in the present invention is not particularly limited. For example, vegetable oils such as corn oil, soybean oil, rapeseed oil, peanut oil and palm oil, animal oils such as fish oil, lard and head, and α-linolene. Examples thereof include fatty acids such as acids, eicosapentaenoic acid (abbreviated as EPA), and docosahexaenoic acid (abbreviated as DHA). Also, edible waxes may be used without any problem. These may be used alone or in combination and may be appropriately selected depending on the purpose. There is no problem in adding a flavor composition, an oil-soluble substance such as vitamins, a seasoning, a spice, an emulsifier, or a coloring agent to the oil or fat. In short, these may be blended individually or in plural according to the purpose. The flavor composition described here includes, for example, meat flavor, bonito flavour, and the like related to meat and seafood, fruit flavors, vegetable flavors, and the like. Examples of oil-soluble vitamins include vitamins A, D, E, F and K. You may mix these individually or in multiple numbers according to the objective. The amount of the hydrophobic substance used is not particularly limited, but it is 1 by weight with respect to the gelatin that normally forms a film.
It is about -10.

【0009】尚、以上については主として疎水性の素材
について言及してきたが、コアセルベートは、性質上内
部に蛋白質、アミノ酸、核酸、酵素のような水溶性の物
質も取り込みことができるので、疎水性物質と共に蛋白
質、アミノ酸及び核酸の内から選ばれた1種叉は2種以
上の物質を芯物質とすることもできる。TGによりカプ
セル壁を硬化させる本発明においては、コアセルベート
がそのままカプセル化されるため、上記水溶性物質につ
いても充分カプセル内に保持し得るものである。また、
疎水性物質と酵素を芯物質として用いることもできる。
このようにして得られたマイクロカプセルは固定化酵素
として使用できる。即ち、本発明は蛋白質と多糖類から
なるコンプレックスコアセルベーション法において、疎
水性物質と酵素を芯物質とし、トランスグルタミナーゼ
を被膜硬化剤として用いることを特徴とする固定化酵素
の製造方法でもある。
Although the above description has mainly dealt with hydrophobic materials, coacervates can incorporate water-soluble substances such as proteins, amino acids, nucleic acids, and enzymes into the interior, so that hydrophobic substances can be incorporated. At the same time, one kind or two or more kinds of substances selected from proteins, amino acids and nucleic acids can be used as the core substance. In the present invention in which the capsule wall is hardened by TG, the coacervate is encapsulated as it is, and therefore the above water-soluble substance can be sufficiently retained in the capsule. Also,
Hydrophobic substances and enzymes can also be used as core substances.
The microcapsules thus obtained can be used as an immobilized enzyme. That is, the present invention is also a method for producing an immobilized enzyme characterized by using a hydrophobic substance and an enzyme as core substances and transglutaminase as a film hardening agent in a complex coacervation method comprising a protein and a polysaccharide.

【0010】さて、本発明のコンプレックスコアセルベ
ーション法に用いられる蛋白質は、ゼラチン,カゼイ
ン,大豆蛋白,コラーゲン等種々の酸性及び塩基性の可
食蛋白質であれば、特に限定するところではない。しか
し、使い易さやカプセル化能が高いゼラチンが最も適し
ている。
The protein used in the complex coacervation method of the present invention is not particularly limited as long as it is various acidic and basic edible proteins such as gelatin, casein, soybean protein and collagen. However, gelatin is most suitable because it is easy to use and has high encapsulation ability.

【0011】本発明で用いられる多糖類は、アラビアゴ
ム,ナトリウムアラビナイト,寒天等種々の可食多糖類
であれば特に限定するものではない。しかし、一般的に
よく用いられるアラビアゴムが本発明においても最も好
ましい。
The polysaccharide used in the present invention is not particularly limited as long as it is various edible polysaccharides such as gum arabic, sodium arabinite and agar. However, commonly used gum arabic is most preferred in the present invention.

【0012】本発明中の蛋白質、油脂、水からなるエマ
ルション及び多糖類の重量比は通常コアセルベーション
が生起する範囲内であれば何等差し支えない。これらの
重量比は目的に応じて適宜選択することが出来、これを
コントロールすることにより求める粒径のマイクロカプ
セルを製造することが可能である。しかし、通常、溶液
中にゼラチン等の蛋白質を1〜10%、アラビアゴム等
の多糖類1〜10%を含むように調製したものを用い
る。この溶液に疎水性物質及びTGを分散させ、コアセ
ルベーション生成領域にpHを調整(使用する蛋白質、
多糖の種類、組合せにより異なるが、蛋白質としてゼラ
チン、多糖としてアラビアゴムを用いる時は通常pH4
−5.5に調整)することによってコアセルベート層を
生起させる。次に、20〜80℃の条件で、一定時間保
つことによりコアセルベート層中においてゼラチン等の
蛋白質のTGによる架橋反応を進行させ、コアセルベー
トを硬化させ目的とするマイクロカプセルを製造するこ
とができる。尚、反応時間をコントロ−ルすることによ
り、所望の特性、例えば徐放性がコントロ−ルされたマ
イクロカプセルを調製することができる。反応温度、反
応時間は皮膜強度を変化させる因子であるからである。
In the present invention, the weight ratio of the protein, the oil and fat, the emulsion comprising water, and the polysaccharide may be any ratio within the range where coacervation usually occurs. These weight ratios can be appropriately selected according to the purpose, and by controlling this, it is possible to produce microcapsules having the desired particle size. However, usually, a solution prepared by containing a protein such as gelatin in an amount of 1 to 10% and a polysaccharide such as gum arabic in an amount of 1 to 10% is used. A hydrophobic substance and TG are dispersed in this solution to adjust the pH in the coacervation generation region (protein to be used,
Although it depends on the type and combination of polysaccharides, when gelatin is used as the protein and gum arabic is used as the polysaccharide, the pH is usually 4
(Adjusted to −5.5) to generate a coacervate layer. Next, by keeping the condition of 20 to 80 ° C. for a certain period of time, the crosslinking reaction of the protein such as gelatin with TG in the coacervate layer proceeds to harden the coacervate to produce the desired microcapsules. By controlling the reaction time, it is possible to prepare microcapsules having desired characteristics, for example, sustained release. This is because the reaction temperature and the reaction time are factors that change the film strength.

【0013】TGを作用させる際の条件としては、TG
が触媒活性を発現できる範囲で、かつコアセルベーショ
ンが生起できる範囲であれば適宜選択することが出来
る。通常、系の温度が約20〜80℃,pHが約4〜8
の範囲内であれば特に酵素活性を著しく阻害する物質が
混在していない限り目的とするアシル転移反応を行わせ
ることが出来る。また、TGの添加量については、コア
セルベート系内に存在する蛋白質1gあたり約0.01
〜500単位(この単位については特開平1−2747
1参照)が望ましく、更に好ましくは0.1〜100単
位である。この理由としては、酵素濃度がこの範囲より
低い場合には充分な反応が起きない為であること、この
範囲より高い場合には反応のコントロールが困難となる
こと等が挙げられる。
The conditions for causing TG to act are TG
Can be appropriately selected as long as it exhibits catalytic activity and within a range where coacervation can occur. Usually, the temperature of the system is about 20-80 ° C, and the pH is about 4-8.
Within the range, the target acyl transfer reaction can be carried out unless a substance that significantly inhibits the enzyme activity is mixed. The amount of TG added is about 0.01 per 1 g of the protein present in the coacervate system.
.About.500 units (for this unit, JP-A-1-2747)
1) is desirable, and more preferably 0.1 to 100 units. The reason for this is that if the enzyme concentration is lower than this range, a sufficient reaction does not occur, and if it is higher than this range, it becomes difficult to control the reaction.

【0014】更に、TGを作用させて被膜を硬化せしめ
る工程において、カプセル粒子間の凝集、結着を防止す
るために、特公昭47−16167に見られるごとく、
アカシアトラガント、メチルセルローズ、カルボキシル
メチルセルローズ等の濃化剤を添加することもできる。
Further, in order to prevent aggregation and binding between the capsule particles in the step of curing the coating by acting TG, as disclosed in Japanese Patent Publication No. 47-16167,
It is also possible to add thickeners such as acacia tragacanth, methyl cellulose and carboxymethyl cellulose.

【0015】上記のようにして製造されたマイクロカプ
セルを、熱風乾燥、凍結乾燥等の通常の乾燥手段を用い
て乾燥後、そのまま使用することも可能だが、これを更
に凍結乾燥した後粉砕したマイクロカプセルを用いても
良い。このとき、凍結乾燥並びに粉砕方法については、
従来行われている方法であればいずれでも良く、特に限
定するところではない。
The microcapsules produced as described above can be used as they are after being dried by a usual drying means such as hot air drying and freeze drying, but they are further freeze dried and then pulverized into microcapsules. You may use a capsule. At this time, regarding the freeze-drying and crushing method,
Any conventional method may be used without any particular limitation.

【0016】[0016]

【発明の効果】本発明は、マイクロカプセルの膜の硬化
剤としてアルデヒド類等化合物を使用するため従来は食
品製造には応用出来なかったコアセルベーション法にお
いて、硬化剤をアルデヒド類に代えてTGを使用するこ
とにより、非常に粒径の小さなカプセルが得られるとい
うコアセルベーション法のメリットを損なうことなく活
用し、また油溶性物質に限らず水溶性物質をも保持する
機能を有しかつ食品として供することが可能な可食性マ
イクロカプセルを安全かつ簡便に得られる方法を提供し
得るものである。
INDUSTRIAL APPLICABILITY The present invention uses a compound such as an aldehyde compound as a curing agent for a microcapsule film, and in the coacervation method, which has heretofore not been applicable to food production, TG is used instead of the curing agent. By utilizing, without impairing the merit of the coacervation method that capsules with a very small particle size can be obtained, it also has the function of holding not only oil-soluble substances but also water-soluble substances and foods. It is possible to provide a method for safely and simply obtaining edible microcapsules that can be used as a food.

【0017】また、カプセル被膜を硬化させる工程にお
いてTGの添加量、反応温度及び反応時間を調整するこ
とにより、カプセル内の芯物質の放出条件を制御するこ
とも可能である。即ち、硬化反応の進行度を調整するこ
とにより、種々の耐圧強度、溶解温度、細孔径を有する
被膜を形成する事ができる。このため本方法によれば、
徐放性をコントロールされた香料カプセルや、目的温度
でのみ放出するカプセル等を製造することも可能であ
る。
It is also possible to control the release condition of the core substance in the capsule by adjusting the amount of TG added, the reaction temperature and the reaction time in the step of curing the capsule coating. That is, by adjusting the progress of the curing reaction, it is possible to form a coating film having various pressure resistance strengths, melting temperatures, and pore sizes. Therefore, according to this method,
It is also possible to produce perfume capsules with controlled sustained release, capsules that release only at the target temperature, and the like.

【0018】更に、その結果、人間の食用に留まらず用
途が拡大し、例えば養殖される水産動物、例えば、クル
マエビ、ブラックタイガー等の甲殻類,ハマチ、ウナ
ギ、アユ等の魚類等の初期飼料の製造方法としても大変
有効である。即ち水産初期飼料の求められる性状として
は、成長促進因子等の水溶性物質はその仔稚魚が捕食可
能な粒径で耐水性に加工されていなければならず従来不
可能であったが、本発明によってこの加工も可能とな
る。
Further, as a result, the application is expanded not only to human consumption, but for example, as an initial feed for aquatic animals to be cultivated, for example, crustaceans such as prawns and black tiger, fishes such as yellowtail, eel and ayu. It is also very effective as a manufacturing method. That is, as a property required for the early-stage fishery feed, a water-soluble substance such as a growth-promoting factor had to be processed into a water-resistant material having a particle size capable of predating the larvae, which was conventionally impossible. This processing is also possible by this.

【0019】近年健康食品としてニーズが高いが酸化し
易く不安定なα−リノレン酸やEPA、DHAのほかフ
レーバー組成物やビタミン類等の物質のカプセルは、粒
径の大きなものは既に存在しているが、マイクロカプセ
ル化したものは存在しなかった。しかし、本発明により
EPA、DHA等の物質もマイクロカプセル化、かつ安
定化が可能となる。また、本発明はTGを含有するコン
プレックスコアセルベ−ション法における硬化剤でもあ
る。硬化剤中に、TGを0.1−100重量%含有して
いれば良い。TG以外のマンニト−ル等の安定化剤を本
発明の硬化剤に配合させてもよい。
Recently, capsules of α-linolenic acid, EPA, and DHA, which are highly oxidizable and unstable as health foods, but also flavor compositions and substances such as vitamins, have a large particle size. However, there was no microencapsulated product. However, according to the present invention, substances such as EPA and DHA can be microencapsulated and stabilized. The present invention is also a curing agent in the complex coacervation method containing TG. The curing agent may contain TG in an amount of 0.1 to 100% by weight. Stabilizers such as mannitol other than TG may be added to the curing agent of the present invention.

【0020】[0020]

【実施例】以下、本発明を実施例み基づき説明する。
尚、本発明は実施例に限定されるものではない。
EXAMPLES The present invention will be described below based on examples.
The present invention is not limited to the examples.

【0021】(実施例1)株式会社ニッピ(社)製酸処
理ゼラチン5gとシグマ社製アラビアゴム3gを50℃
の温水300gに溶解した水溶液と味の素(株)社製コ
ーンサラダ油25gに、水溶液中のゼラチン1gあたり
20単位のBTG(特開平1−27471の実施例1の
方法により得たもの)を添加し、日本精機(株)社製エ
ースホモジナイザーにて10,000rpm/分,5分
間乳化を行った。この乳化液を50℃湯浴中で攪拌させ
ておき1N−NaOHによりpHを5に調整してコアセ
ルベーションを生起させ、50℃湯浴中で120分間反
応させた。 反応開始から、60分後に攪拌を停止し、
静置すると50〜60μmのカプセルが沈澱した。次
に、デカンテーションによりカプセルを取り出し、50
℃にて熱風乾燥をおこなったところ、カプセルの溶解及
び油の溶出は観察されず、油を内包するカプセル粉体を
得た。また、これを25℃及び80℃の水中に投入した
ところ、いずれの場合も油の溶出は観察されなかった。
尚、コ−ンサラダ油の代わりに、EPA,DHA,α−
リノレン酸及びアミノ酸含有油脂をそれぞれ用いても同
様の結果が得られた。
Example 1 5 g of acid-treated gelatin manufactured by Nippi Co., Ltd. and 3 g of gum arabic manufactured by Sigma Co. were heated to 50 ° C.
20 g of BTG (obtained by the method of Example 1 of JP-A-1-27471) per 1 g of gelatin in the aqueous solution was added to 25 g of an aqueous solution dissolved in 300 g of warm water and corn salad oil manufactured by Ajinomoto Co., Inc. Emulsification was performed at 10,000 rpm / min for 5 minutes with an ace homogenizer manufactured by Nippon Seiki Co., Ltd. This emulsion was stirred in a 50 ° C water bath, pH was adjusted to 5 with 1N-NaOH to cause coacervation, and the mixture was reacted in a 50 ° C water bath for 120 minutes. After 60 minutes from the start of the reaction, stop stirring,
When left to stand, capsules of 50 to 60 μm were precipitated. Next, the capsule is taken out by decantation, and 50
When hot-air drying was performed at ℃, dissolution of the capsule and elution of oil were not observed, and a capsule powder containing oil was obtained. Also, when this was put into water at 25 ° C. and 80 ° C., no oil elution was observed in any case.
It should be noted that, instead of cone salad oil, EPA, DHA, α-
Similar results were obtained using linolenic acid and amino acid-containing fats and oils, respectively.

【0022】(実施例2) 反応時間による放出温度の
制御 実施例1と同様の製造方法において、コアセルベーショ
ン生起後の反応時間を60分間としてカプセルを製造し
た。デカンテーションによりカプセルを取り出し、50
℃にて熱風乾燥をおこなったところ、カプセルの溶解及
び油の溶出は観察されず、実施例1同様に油を内包する
カプセル粉体を得た。これを25℃の水中に投じた場合
には油の溶出は観察されなかったが、80℃の熱水中に
投入した場合については、実施例1と異なり油の溶出が
見られた。この結果から分かるように、TGの反応時間
を短縮することにより、高温で徐放性を有するマイクロ
カプセルを製造することに成功した。
Example 2 Control of Release Temperature by Reaction Time In the same production method as in Example 1, capsules were produced with a reaction time of 60 minutes after coacervation occurred. Remove the capsules by decantation, 50
When hot air drying was performed at 0 ° C., dissolution of capsules and elution of oil were not observed, and a capsule powder containing oil was obtained as in Example 1. When this was poured into water at 25 ° C., oil leaching was not observed, but when it was poured into hot water at 80 ° C., leaching of oil was observed unlike Example 1. As can be seen from these results, by shortening the reaction time of TG, it was possible to manufacture microcapsules having sustained release properties at high temperature.

【0023】(実施例3) 酸化安定化効果 実施例2のコーンサラダ油の代わりに同量のえごま油を
用いて粉末マイクロカプセルを製造した。得られたカプ
セルを常温条件において保存し、その酸化安定性を調べ
た。比較のため、デキストリンを吸着剤とした噴霧乾燥
もの及びサイクロデキストリンにより包接したえごま油
粉末を製造し、同条件の保存試験に供した。7日毎にサ
ンプルを取り出し、過酸化物価を測定した。測定方法
は、エーテルにより粉末中から油を抽出した後、JAS
法による測定法に従い、分析を行った。結果を図1に示
す。本法により粉末化されたえごま油は他の方法に較べ
て極めて高い酸化安定性を示した。図1中のPOVは過
酸化物価を示し、数値が高い程酸化を受けたことをしめ
す。尚、同様に魚油中のEPA、DHAを用いた実験に
おいても同じ結果が得られた。
Example 3 Oxidative Stabilizing Effect Powdered microcapsules were produced using the same amount of sesame oil as the corn salad oil of Example 2. The obtained capsules were stored under normal temperature conditions, and their oxidative stability was examined. For comparison, a spray-dried product using dextrin as an adsorbent and a sesame oil powder clathrated with cyclodextrin were produced and subjected to a storage test under the same conditions. A sample was taken out every 7 days and the peroxide value was measured. The measuring method is that after extracting the oil from the powder with ether, JAS
The analysis was performed according to the measuring method by the method. The results are shown in Figure 1. The sesame oil pulverized by this method showed much higher oxidative stability than other methods. The POV in FIG. 1 indicates the peroxide value, and the higher the value, the more the oxidation is indicated. In addition, the same result was obtained in an experiment using EPA and DHA in fish oil.

【0024】(実施例4) フレーバーの安定化効果 実施例2のコーンサラダ油の代わりに同量の魚介フレー
バー含有油脂を用いてマイクロカプセルを製造した。得
られたカプセルを24℃において保存し、カプセル化し
たフレーバーの劣化度の変化を調べた。実施例3同様に
比較試験のため、デキストリンを吸着剤とした噴霧乾燥
もの及びサイクロデキストリンにより包接したフレーバ
ー粉末を製造し、同条件の保存試験に供した。フレーバ
ーの劣化度は製造直後のフレーバー粉末をコントロール
とする2点比較による官能評価によって決定した。結果
を図2に示すように、本法により粉末化されたフレーバ
ーは他の方法に較べて極めて高い安定性を示した。
Example 4 Stabilizing Effect of Flavors Microcapsules were produced by using the same amount of the oil and fat containing seafood flavor instead of the corn salad oil of Example 2. The obtained capsules were stored at 24 ° C., and changes in the deterioration degree of the encapsulated flavors were examined. For comparison tests as in Example 3, spray dried products using dextrin as an adsorbent and flavor powders clathrated with cyclodextrin were produced and subjected to a storage test under the same conditions. Degradation of flavor was determined by sensory evaluation by two-point comparison using flavor powder immediately after production as a control. As shown in the results of FIG. 2, the flavor powdered by this method showed extremely high stability as compared with the other methods.

【0025】(実施例5) フレーバーの徐放効果 実施例1のコーンサラダ油の代わりに同量の香気成分
(リモネン)含有油脂を用いてマイクロカプセルを製造
した。製造にあたっては、コアセルベーション後の反応
時間を60分(サンプル1)及び120分(サンプル
2)の2種のカプセルを調製し、カプセルから放出され
る香気成分の放出速度を測定した。放出速度測定は、デ
シケータ中のシャーレにカプセルを薄く充填し、一定速
度で空気を通過させ、通過空気中に揮発した香気成分を
コールドトラップで捕集し、所定時間毎の捕集量により
放出速度を求めた。結果を図3に示すように、本法によ
り粉末化されたフレーバーはコアセルベーション後の反
応時間の調整により徐放性の制御が可能であった。
(Example 5) Sustained release effect of flavor Microcapsules were produced using the same amount of aroma component (limonene) -containing fats and oils instead of the corn salad oil of Example 1. In the production, two types of capsules having reaction times after coacervation of 60 minutes (Sample 1) and 120 minutes (Sample 2) were prepared, and the release rate of the aroma component released from the capsules was measured. To measure the release rate, a petri dish in a desiccator is thinly filled with capsules, air is allowed to pass through at a constant rate, the aroma components volatilized in the passing air are collected by a cold trap, and the release rate is determined by the amount collected every predetermined time. I asked. As shown in the results in FIG. 3, the flavor powdered by this method could be controlled for sustained release by adjusting the reaction time after coacervation.

【0026】(実施例6) ビタミンの安定化効果 実施例1のコーンサラダ油の代わりに同量のビタミン含
有油脂を用いてマイクロカプセルを製造した。このカプ
セルを用いて、水中での溶出率の経時変化を未被覆のビ
タミンと比較した。結果を図4に示すように、本法によ
りカプセル化されたビタミンは被覆性に優れ、熱、水分
による分解を防ぐ効果が見られた。
Example 6 Stabilizing Effect of Vitamin Microcapsules were produced by using the same amount of vitamin-containing fats and oils instead of the corn salad oil of Example 1. Using this capsule, the time course of the dissolution rate in water was compared with that of an uncoated vitamin. As shown in the results of FIG. 4, the vitamins encapsulated by this method were excellent in covering properties and were effective in preventing decomposition by heat and moisture.

【0027】(実施例7) 核酸、アミノ酸の安定化効
果 実施例1のコーンサラダ油の代わりに同量の核酸含有油
脂を用いてマイクロカプセルを製造した。これを核酸を
分解するフォスファターゼを有する魚肉すり身中に混練
し、加熱中の安定性を調べた。核酸残存率の判定は酵素
分解による遊離リン酸の測定により行った。結果を図5
に示すように、本法によりカプセル化された核酸は酵素
分解に対する保護効果に優れていた。
Example 7 Stabilizing Effect of Nucleic Acid and Amino Acid Microcapsules were produced by using the same amount of the nucleic acid-containing fats and oils as the corn salad oil of Example 1. This was kneaded into ground fish meat having phosphatase that decomposes nucleic acid, and the stability during heating was examined. The nucleic acid residual rate was determined by measuring free phosphoric acid by enzymatic decomposition. The result is shown in Fig. 5.
As shown in, the nucleic acid encapsulated by this method was excellent in the protective effect against enzymatic degradation.

【0028】(実施例8) 酵素の固定化 実施例1の工程において加えるTGを100単位とし、
マイクロカプセルを製造した。この際、乾燥には熱風乾
燥の代わりに凍結乾燥を用いた。乾燥後、カプセル中の
TG残存酵素活性を調べたところ、90%の残存活性が
得られた。
(Example 8) Immobilization of enzyme The TG added in the process of Example 1 was 100 units,
Microcapsules were produced. At this time, freeze drying was used instead of hot air drying for drying. After drying, the TG residual enzyme activity in the capsule was examined, and 90% residual activity was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】ごま油の酸化促進試験結果を示す。FIG. 1 shows the results of an oxidation promotion test of sesame oil.

【図2】フレーバの保存試験結果を示す。FIG. 2 shows the results of flavor storage tests.

【図3】香気成分の放出挙動を示す。FIG. 3 shows the release behavior of aroma components.

【図4】ビタミンの溶出試験結果を示す。FIG. 4 shows the results of vitamin elution test.

【図5】核酸の安定性を示す。FIG. 5 shows the stability of nucleic acids.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 A23L 1/48 (72)発明者 加藤 千潯 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社食品総合研究所内 (72)発明者 添田 孝彦 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社食品総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location A23L 1/48 (72) Inventor Chito Kato 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa (72) Inventor, Takahiko Soeda 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc., Food-Research Institute

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 疎水性物質を芯物質とする蛋白質と多糖
類からなるコンプレックスコアセルベーション法におい
て、トランスグルタミナーゼを被膜硬化剤として用いる
ことを特徴とするマイクロカプセルの製造方法。
1. A method for producing microcapsules, which comprises using transglutaminase as a film-hardening agent in a complex coacervation method comprising a protein having a hydrophobic substance as a core substance and a polysaccharide.
【請求項2】 蛋白質がゼラチンであることを特徴とす
る請求項1記載のマイクロカプセルの製造方法。
2. The method for producing microcapsules according to claim 1, wherein the protein is gelatin.
【請求項3】 多糖類がアラビアゴムであることを特徴
とする請求項1記載のマイクロカプセルの製造方法。
3. The method for producing microcapsules according to claim 1, wherein the polysaccharide is gum arabic.
【請求項4】 疎水性物質がα−リノレン酸、エイコサ
ペンタエン酸、ドコサヘキサエン酸、フレーバー及びビ
タミンの内から選ばれた1種叉は2種類以上の物質であ
る請求項1記載のマイクロカプセルの製造方法。
4. The production of microcapsules according to claim 1, wherein the hydrophobic substance is one or more substances selected from α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, flavors and vitamins. Method.
【請求項5】 疎水性物質と共に蛋白質、アミノ酸及び
核酸の内から選ばれた1種叉は2種以上の物質を芯物質
とする請求項1記載のマイクロカプセルの製造方法。
5. The method for producing microcapsules according to claim 1, wherein the core substance is one or more substances selected from proteins, amino acids and nucleic acids together with the hydrophobic substance.
【請求項6】 蛋白質と多糖類からなるコンプレックス
コアセルベーション法において、疎水性物質と酵素を芯
物質とし、トランスグルタミナーゼを被膜硬化剤として
用いることを特徴とする固定化酵素の製造方法。
6. A method for producing an immobilized enzyme, which comprises using a hydrophobic substance and an enzyme as a core substance and transglutaminase as a film hardening agent in a complex coacervation method comprising a protein and a polysaccharide.
【請求項7】 トランスグルタミナーゼを含有するコン
プレックスコアセルベーション法における硬化剤。
7. A curing agent in a complex coacervation method containing transglutaminase.
JP4163013A 1991-06-24 1992-06-22 Production of microcapsule Pending JPH05292899A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24855191 1991-06-24
JP3-248551 1991-06-24

Publications (1)

Publication Number Publication Date
JPH05292899A true JPH05292899A (en) 1993-11-09

Family

ID=17179858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4163013A Pending JPH05292899A (en) 1991-06-24 1992-06-22 Production of microcapsule

Country Status (1)

Country Link
JP (1) JPH05292899A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782883A2 (en) 1996-01-08 1997-07-09 Ajinomoto Co., Ltd. Edible microcapsule and food containing the same
JPH10249184A (en) * 1997-01-31 1998-09-22 Givaudan Roure Internatl Sa Protein-encapsulated oil particles
US6045835A (en) * 1997-10-08 2000-04-04 Givaudan Roure (International) Sa Method of encapsulating flavors and fragrances by controlled water transport into microcapsules
US6106875A (en) * 1997-10-08 2000-08-22 Givaudan Roure (International) Sa Method of encapsulating flavors and fragrances by controlled water transport into microcapsules
US6150505A (en) * 1997-09-19 2000-11-21 Hadasit Medical Research Services & Development Ltd. Fibrin microbeads prepared from fibrinogen, thrombin and factor XIII
JP2002028473A (en) * 2000-07-18 2002-01-29 Ogawa & Co Ltd Method for manufacturing microcapsule film of which is made airtight
KR20030070798A (en) * 2002-02-26 2003-09-02 주식회사 국순당 Method for preparation of micoencapsulated lipid soluble antioxidant coated by polysaccharides and proteins
JP2004532112A (en) * 2001-05-16 2004-10-21 メインラブ Microcapsules based on vegetable proteins
JP2006061826A (en) * 2004-08-26 2006-03-09 Pilot Corporation Microcapsule manufacturing method, microcapsule and magnetic display medium using the same
JP2007175639A (en) * 2005-12-28 2007-07-12 Pilot Corporation Microcapsule manufacturing method, microcapsule and display medium using the same
KR100758664B1 (en) * 2006-08-16 2007-09-13 (주)케비젠 Method for preparing unsaturated fatty acid-containing microcapsules, microcapsules prepared by the method and products containing the same
WO2007113706A1 (en) * 2006-04-04 2007-10-11 Firmenich Sa Method for preparing microcapsules by coacervation
JP2009534016A (en) * 2006-03-22 2009-09-24 ネステク ソシエテ アノニム Solid product containing oil droplets
EP2113287A2 (en) 2008-05-02 2009-11-04 FUJIFILM Corporation Composition for hair
US7727629B2 (en) 2002-04-11 2010-06-01 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
JP2013537206A (en) * 2010-09-21 2013-09-30 リポテック,エセ.ア. Nanocapsules containing microemulsions
US8663690B2 (en) 2006-10-31 2014-03-04 William Marsh Rice University Method for nanoencapsulation
KR101526689B1 (en) * 2013-10-02 2015-06-05 건국대학교 산학협력단 Composition of biopolymer microcapsule and method of preparation
CN105286011A (en) * 2015-09-18 2016-02-03 华南理工大学 Soluble soybean polysaccharide-soybean protein-curcumin compound as well as preparation and application
US9968120B2 (en) 2006-05-17 2018-05-15 Dsm Nutritional Products Ag Homogenized formulations containing microcapsules and methods of making and using thereof
US10166196B2 (en) 2007-01-10 2019-01-01 Dsm Nutritional Products Ag Vegetarian microcapsules
EP3466266A1 (en) 2017-10-06 2019-04-10 Tohoku University Production method of edible sustained-release functional material and edible sustained-release functional material
WO2020260593A1 (en) * 2019-06-27 2020-12-30 Firmenich Sa Flavored food product

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782883A2 (en) 1996-01-08 1997-07-09 Ajinomoto Co., Ltd. Edible microcapsule and food containing the same
US6475542B1 (en) 1996-01-08 2002-11-05 Ajinomoto Co., Inc. Edible microcapsule and food containing the same
US6325951B1 (en) 1997-01-31 2001-12-04 Givaudan Roure Flavors Corporation Enzymatically protein-encapsulating oil particles by complex coacervation
JPH10249184A (en) * 1997-01-31 1998-09-22 Givaudan Roure Internatl Sa Protein-encapsulated oil particles
US6039901A (en) * 1997-01-31 2000-03-21 Givaudan Roure Flavors Corporation Enzymatically protein encapsulating oil particles by complex coacervation
JP4729150B2 (en) * 1997-01-31 2011-07-20 ジボーダン ソシエテ アノニム Protein encapsulated oil particles
US6503731B2 (en) * 1997-09-19 2003-01-07 Hadasit Medical Research & Development Ltd. Fibrin microbeads prepared from fibrinogen, thrombin and factor XIII for binding cells
US6150505A (en) * 1997-09-19 2000-11-21 Hadasit Medical Research Services & Development Ltd. Fibrin microbeads prepared from fibrinogen, thrombin and factor XIII
US6737074B2 (en) 1997-09-19 2004-05-18 Hadasit Medical Research & Development Ltd. Methods of separating cells, transplanting cells and engineering tissue using fibrin microbeads
US6106875A (en) * 1997-10-08 2000-08-22 Givaudan Roure (International) Sa Method of encapsulating flavors and fragrances by controlled water transport into microcapsules
US6045835A (en) * 1997-10-08 2000-04-04 Givaudan Roure (International) Sa Method of encapsulating flavors and fragrances by controlled water transport into microcapsules
JP2002028473A (en) * 2000-07-18 2002-01-29 Ogawa & Co Ltd Method for manufacturing microcapsule film of which is made airtight
JP4695248B2 (en) * 2000-07-18 2011-06-08 小川香料株式会社 Method for producing microcapsules with airtight coating
JP2004532112A (en) * 2001-05-16 2004-10-21 メインラブ Microcapsules based on vegetable proteins
KR20030070798A (en) * 2002-02-26 2003-09-02 주식회사 국순당 Method for preparation of micoencapsulated lipid soluble antioxidant coated by polysaccharides and proteins
US7727629B2 (en) 2002-04-11 2010-06-01 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
JP2011025242A (en) * 2002-04-11 2011-02-10 Ocean Nutrition Canada Ltd Encapsulated agglomeration of microcapsule and method for preparation thereof
JP2013177400A (en) * 2002-04-11 2013-09-09 Ocean Nutrition Canada Ltd Encapsulated agglomeration of microcapsules and method for the preparation thereof
JP2006061826A (en) * 2004-08-26 2006-03-09 Pilot Corporation Microcapsule manufacturing method, microcapsule and magnetic display medium using the same
JP2007175639A (en) * 2005-12-28 2007-07-12 Pilot Corporation Microcapsule manufacturing method, microcapsule and display medium using the same
JP2009534016A (en) * 2006-03-22 2009-09-24 ネステク ソシエテ アノニム Solid product containing oil droplets
WO2007113706A1 (en) * 2006-04-04 2007-10-11 Firmenich Sa Method for preparing microcapsules by coacervation
US8088403B2 (en) 2006-04-04 2012-01-03 Firmenich Sa Method for preparing microcapsules by coacervation
US9968120B2 (en) 2006-05-17 2018-05-15 Dsm Nutritional Products Ag Homogenized formulations containing microcapsules and methods of making and using thereof
WO2008020680A1 (en) * 2006-08-16 2008-02-21 Chebigen Inc. The method of preparing a microcapsule containing unsaturated fatty acids, the microcapsule prepared by the method, and articles containing the microcapsule
KR100758664B1 (en) * 2006-08-16 2007-09-13 (주)케비젠 Method for preparing unsaturated fatty acid-containing microcapsules, microcapsules prepared by the method and products containing the same
US8282961B2 (en) 2006-08-16 2012-10-09 Chebigen Inc. Method of preparing a microcapsule containing unsaturated fatty acids, the microcapsule prepared by the method, and articles containing the microcapsule
US8663690B2 (en) 2006-10-31 2014-03-04 William Marsh Rice University Method for nanoencapsulation
US10166196B2 (en) 2007-01-10 2019-01-01 Dsm Nutritional Products Ag Vegetarian microcapsules
EP2113287A2 (en) 2008-05-02 2009-11-04 FUJIFILM Corporation Composition for hair
US10758490B2 (en) 2010-09-21 2020-09-01 Lipotec, S.A. Nanocapsules containing microemulsions
JP2013537206A (en) * 2010-09-21 2013-09-30 リポテック,エセ.ア. Nanocapsules containing microemulsions
KR101526689B1 (en) * 2013-10-02 2015-06-05 건국대학교 산학협력단 Composition of biopolymer microcapsule and method of preparation
CN105286011B (en) * 2015-09-18 2018-05-15 华南理工大学 A kind of soluble soybean polysaccharide-soybean protein-curcumin complex and preparation and application
CN105286011A (en) * 2015-09-18 2016-02-03 华南理工大学 Soluble soybean polysaccharide-soybean protein-curcumin compound as well as preparation and application
EP3466266A1 (en) 2017-10-06 2019-04-10 Tohoku University Production method of edible sustained-release functional material and edible sustained-release functional material
CN109619542A (en) * 2017-10-06 2019-04-16 青叶化成株式会社 Preparation method of edible slow-release functional material and edible slow-release functional material
US10702472B2 (en) 2017-10-06 2020-07-07 Aobakasei Kabushiki Kaisha Production method of edible sustained-release functional material and edible sustained-release functional material
CN109619542B (en) * 2017-10-06 2022-07-15 青叶化成株式会社 Preparation method of edible slow-release functional material and edible slow-release functional material
WO2020260593A1 (en) * 2019-06-27 2020-12-30 Firmenich Sa Flavored food product
CN113507841A (en) * 2019-06-27 2021-10-15 弗门尼舍有限公司 Flavored food products

Similar Documents

Publication Publication Date Title
JPH05292899A (en) Production of microcapsule
US6475542B1 (en) Edible microcapsule and food containing the same
JP5896954B2 (en) Agglomeration of encapsulated microcapsules and production thereof
AU671652B2 (en) A microencapsulated oil or fat product
AU2006213503B2 (en) Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
US6969530B1 (en) Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
US5690990A (en) Process for encapsulating the flavor with colloid gel matrix
EP2588066B1 (en) Solid core coacervated capsules
JPH0361403B2 (en)
JP2007503293A (en) Micro capsule
JP2006506410A (en) Microcapsules having a plurality of shells and methods for their preparation
JP2009084224A (en) Microcapsule and method for producing the same
Sanguansri et al. 12 Microencapsulation and Delivery of Omega-3 Fatty Acids
CN107454823A (en) The corase grind shape product of core and shell
WO2005090534A1 (en) Method for producing calcium component powder containing oil-soluble substance
US20090269445A1 (en) Method and microcapsules for improving organoleptic properties
JP2007534473A (en) Oil encapsulation by coacervation
Anbudhasan et al. Development of omega 3 fatty acid enriched stable functional foods: Challenges and options
Sanguansri et al. Microencapsulation and delivery of omega-3 fatty acids
EP1938807A1 (en) Reactive powdering
Abdelaziz et al. Working Principles and Use of Gelatin for Food Component Encapsulation
JP2008035730A (en) Coated granule-containing composition and method for producing the same
Geranpour et al. Spray drying encapsulation of essential fatty acids and functional oils
JPH11216354A (en) Manufacture of micro-capsule
Lazou et al. 5 Extrusion for