JPH05291500A - Compound semiconductor integrated circuit - Google Patents
Compound semiconductor integrated circuitInfo
- Publication number
- JPH05291500A JPH05291500A JP4095031A JP9503192A JPH05291500A JP H05291500 A JPH05291500 A JP H05291500A JP 4095031 A JP4095031 A JP 4095031A JP 9503192 A JP9503192 A JP 9503192A JP H05291500 A JPH05291500 A JP H05291500A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- compound semiconductor
- capacitor
- fet
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超高周波用アナログIC
などに用いられる化合物半導体集積回路に関する。BACKGROUND OF THE INVENTION The present invention relates to an analog IC for ultra high frequency.
The present invention relates to a compound semiconductor integrated circuit used for the above.
【0002】[0002]
【従来の技術】一般に、GaAsアナログIC(MMI
C)のバイアス回路として、セルフバイアス法が多用さ
れる。これに使用されるバイパスコンデンサーとして、
1000pF程度の大きな容量のコンデンサーが要求さ
れる。2. Description of the Related Art Generally, a GaAs analog IC (MMI
The self-bias method is often used as the bias circuit of C). As a bypass condenser used for this,
A large capacity capacitor of about 1000 pF is required.
【0003】従来、このような大容量コンデンサーとし
て、外付けのチップコンデンサーを用いたり、集積する
場合にはMIMキャパシターが用いられていた。MIM
キャパシターとは、第1のメタル(Ti、Pt及びAu
など)上に誘電率が7程度のp型SiN膜などのCVD
膜を2000オングストロ−ム厚成長させ、この上に第
2のメタルを堆積したコンデンサーである。図4に、こ
のMIMキャパシターを用いたGaAsアナログICの
回路図を示す。同図において、33はGaAsFETで
あり、このGaAsFET33のゲ−ト電極は入力端子
34に接続され、ドレイン電極は出力端子35に接続さ
れ、ソ−ス電極は抵抗31を介してグランドに接地され
ている。また、GaAsFET33のソ−ス電極は一端
がグランドに接続されたコンデンサ−32の他端に接続
されている。さらに、入力端子34とGaAsFET3
3のゲ−ト電極との間には一端がグランドに接続された
抵抗31の他端が接続されていた。Conventionally, as such a large-capacity capacitor, an external chip capacitor has been used, or an MIM capacitor has been used for integration. MIM
The capacitor means the first metal (Ti, Pt and Au).
Etc.) CVD of p-type SiN film with a dielectric constant of about 7
This is a capacitor in which a film is grown to a thickness of 2000 Å and a second metal is deposited on the film. FIG. 4 shows a circuit diagram of a GaAs analog IC using this MIM capacitor. In the figure, 33 is a GaAsFET, the gate electrode of the GaAsFET 33 is connected to the input terminal 34, the drain electrode is connected to the output terminal 35, and the source electrode is grounded via the resistor 31. There is. The source electrode of the GaAsFET 33 is connected to the other end of the capacitor 32, one end of which is connected to the ground. Furthermore, the input terminal 34 and the GaAsFET 3
The other end of the resistor 31, one end of which was connected to the ground, was connected to the gate electrode of No. 3.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た従来のMIMキャパシターによるバイパスコンデンサ
ーにおいては、容量の精度は特に要求されないものの、
大きな容量を必要とするため、素子面積を大きくとらな
ければならないという問題点があった。However, in the above-mentioned conventional bypass capacitor using the MIM capacitor, although the accuracy of the capacitance is not particularly required,
Since a large capacitance is required, there is a problem that the element area must be large.
【0005】勿論、素子面積を小さくするため、p型S
iN膜を薄膜にし誘電率を高くして、その容量を増大し
ても良いが、これでは第1及び第2のメタル同志がショ
ートし、デバイスの歩留りが低下するという問題点があ
った。Of course, in order to reduce the element area, p-type S
Although the iN film may be thinned to increase the dielectric constant to increase the capacitance, this causes a problem that the first and second metals are short-circuited and the device yield is reduced.
【0006】本発明の目的は、上述した問題点に鑑み、
デバイスの歩留りを低下させることなく、大容量キャパ
シターの占める面積が減少できる化合物半導体集積回路
を提供するものである。The object of the present invention is to solve the above problems.
The present invention provides a compound semiconductor integrated circuit in which the area occupied by a large-capacity capacitor can be reduced without lowering the device yield.
【0007】[0007]
【課題を解決するための手段】本発明は上述した目的を
達成するため、化合物半導体基板上に第1の絶縁層,化
合物半導体層,第2の絶縁層,動作層が順次積層形成さ
れ、前記動作層及び前記第2の絶縁層に前記化合物半導
体層を露出する穴が形成され、前記露出された化合物半
導体層上にオ−ミック電極が形成されると共に、前記動
作層上に少なくとも1つ以上のFETが形成され、前記
オ−ミック電極上及び前記FETのソ−ス電極上に配線
メタルを形成して前記オ−ミック電極と前記FETのソ
−ス電極とを接続したものである。In order to achieve the above-mentioned object, the present invention comprises a compound semiconductor substrate on which a first insulating layer, a compound semiconductor layer, a second insulating layer, and an operating layer are sequentially laminated. A hole exposing the compound semiconductor layer is formed in the operating layer and the second insulating layer, an ohmic electrode is formed on the exposed compound semiconductor layer, and at least one or more holes are formed on the operating layer. FET is formed, and a wiring metal is formed on the ohmic electrode and the source electrode of the FET to connect the ohmic electrode and the source electrode of the FET.
【0008】[0008]
【作用】本発明においては、動作層の下方に化合物半導
体基板、第1の絶縁層及び化合物半導体層から成るキャ
パシターを形成したので、大容量のコンデンサーが素子
面積を増大することなく得られる。また、コンデンサー
の上層と複数のFETのソ−ス電極とを接続したので、
コンデンサーは複数のFETにより共有され、素子面積
が減少する。加えて、FETはその直近でコンデンサー
を介して高周波的に接地がとれるので、高周波特性が向
上する。In the present invention, since the capacitor composed of the compound semiconductor substrate, the first insulating layer and the compound semiconductor layer is formed below the operating layer, a large capacity capacitor can be obtained without increasing the element area. Moreover, since the upper layer of the capacitor and the source electrodes of the plurality of FETs are connected,
The capacitor is shared by a plurality of FETs, reducing the device area. In addition, since the FET can be grounded at a high frequency in the immediate vicinity through the capacitor, the high frequency characteristics are improved.
【0009】[0009]
【実施例】以下、本発明の化合物半導体集積回路に係わ
る実施例を図1乃至図3に基づいて説明する。Embodiments of the compound semiconductor integrated circuit according to the present invention will be described below with reference to FIGS.
【0010】即ち、図1において、化合物半導体集積回
路は、n+ GaAs基板1上に2000オングストロ−
ム厚のアンドープGaAs層(絶縁層)2,2000オ
ングストロ−ム厚のn+ GaAs層3,5000オング
ストロ−ム厚のアンドープGaAs層(絶縁層)4,動
作層となる2000オングストロ−ム厚のn型GaAs
層5が順次積層形成されている。そして、n型GaAs
層5及びアンドープGaAs層4の所定部分にはコンデ
ンサーの上層となるn+ GaAs層3の表面まで到達す
る穴7が形成されると共に、n型GaAs層5の所定部
分にもリセスエッチングにより溝6が形成されている。
さらに、穴7の底面上にはオ−ミックメタルをアロイし
て形成したオ−ミック電極9a及びn型GaAs層5上
における溝6の両側にソ−ス/ドレイン電極となるオ−
ミック電極9bが形成されている。また、溝6の底面に
はゲ−ト電極8が形成され、オ−ミック電極9aを含む
穴7の表面上及びオ−ミック電極9b上には配線メタル
10が形成されている。That is, referring to FIG. 1, the compound semiconductor integrated circuit has 2000 angstroms on an n + GaAs substrate 1.
Undoped GaAs layer (insulating layer) 2, 2000 angstroms n + GaAs layer 3, 5,000 angstrom undoped GaAs layer (insulating layer) 4, 2,000 angstroms thick n serving as an operating layer Type GaAs
Layers 5 are sequentially laminated. And n-type GaAs
A hole 7 reaching the surface of the n + GaAs layer 3 which is the upper layer of the capacitor is formed in a predetermined portion of the layer 5 and the undoped GaAs layer 4, and a groove 6 is also formed in the predetermined portion of the n-type GaAs layer 5 by recess etching. Are formed.
Further, an ohmic electrode 9a formed by alloying an ohmic metal on the bottom surface of the hole 7 and an source / drain electrode on both sides of the groove 6 on the n-type GaAs layer 5 are formed.
Mick electrode 9b is formed. A gate electrode 8 is formed on the bottom surface of the groove 6, and a wiring metal 10 is formed on the surface of the hole 7 including the ohmic electrode 9a and on the ohmic electrode 9b.
【0011】図2に示す化合物半導体集積回路は、動作
層にアンドープGaAs層5a,n型GaAlAs層5
b,n+ 型GaAs層5cが順次積層されたヘムト(H
EMT)構造を用いたものであり、これによれば、動作
速度の飛躍的な向上が図れることになる。In the compound semiconductor integrated circuit shown in FIG. 2, an undoped GaAs layer 5a and an n-type GaAlAs layer 5 are used as an operation layer.
Hemto (H
The EMT structure is used, and this can dramatically improve the operation speed.
【0012】図3はかかる化合物半導体集積回路の回路
図である。図中、GaAsFET23aのゲ−ト電極は
入力端子24に接続され、ドレイン電極はコンデンサ−
22aに接続されている。GaAsFET23aのソ−
ス電極には一端をグランドに接続したコンデンサ−22
a及び抵抗21aの他端がそれぞれ接続されている。ま
た、入力端子24は抵抗21aを介してグランドに接続
され、入力端子24とコンデンサ−22aとの間にも抵
抗21aが接続されている。さらに、GaAsFET2
3aのドレイン電極とGaAsFET23bのゲ−ト電
極とがコンデンサ−22aを介して接続され、GaAs
FET23bのドレイン電極はコンデンサ−22bに接
続され、このコンデンサ−22bは出力端子25に接続
されている。そして、GaAsFET23bのソ−ス電
極にはグランド、コンデンサ−22a及び抵抗21aに
接続されたコンデンサ−22b及び抵抗21bがそれぞ
れ接続されている。また、コンデンサ−22aと出力端
子25との間に抵抗21bが接続されている。FIG. 3 is a circuit diagram of such a compound semiconductor integrated circuit. In the figure, the gate electrode of the GaAs FET 23a is connected to the input terminal 24, and the drain electrode is the capacitor-
22a. GaAs FET 23a source
The capacitor electrode has one end connected to the ground.
a and the other end of the resistor 21a are connected to each other. The input terminal 24 is connected to the ground via the resistor 21a, and the resistor 21a is also connected between the input terminal 24 and the capacitor 22a. Furthermore, GaAsFET2
The drain electrode of 3a and the gate electrode of GaAs FET 23b are connected via a capacitor 22a,
The drain electrode of the FET 23b is connected to the capacitor-22b, and the capacitor-22b is connected to the output terminal 25. The source electrode of the GaAsFET 23b is connected to the ground, the capacitor 22b connected to the capacitor 22a and the resistor 21a, and the resistor 21b. A resistor 21b is connected between the capacitor 22a and the output terminal 25.
【0013】かくして、本実施例によれば、動作層の下
方にn+ GaAs基板1、アンドープGaAs層2及び
n+ GaAs層3から成るコンデンサ−を3次元的に形
成したので、大容量のコンデンサーがその占める面積を
増大することなく得られる。しかも、コンデンサーの上
層と2個のFETのソ−ス電極とを接続したので、コン
デンサ−は2個のFETにより共有され、素子面積が2
0%減少する。さらに、FETはその直近でコンデンサ
ーを介して高周波的に接地がとれるので、高周波特性が
向上する。In this way, according to this embodiment, since the capacitor composed of the n + GaAs substrate 1, the undoped GaAs layer 2 and the n + GaAs layer 3 is three-dimensionally formed below the operating layer, a large capacity capacitor is formed. Can be obtained without increasing the area it occupies. Moreover, since the upper layer of the capacitor is connected to the source electrodes of the two FETs, the capacitor is shared by the two FETs and the element area is 2
Reduce by 0%. Further, since the FET can be grounded in the high frequency in the immediate vicinity through the capacitor, the high frequency characteristics are improved.
【0014】[0014]
【発明の効果】以上説明したように本発明によれば、大
容量のコンデンサーが素子面積を増大することなく得ら
れ、しかもコンデンサーは複数のFETにより共有化さ
れるので、デバイスの歩留り低下を招くことなく素子面
積が大幅に削減できる。また、FETはその直近でコン
デンサーを介して高周波的に接地がとれるので、高周波
特性が向上できる。As described above, according to the present invention, a large-capacity capacitor can be obtained without increasing the element area, and since the capacitor is shared by a plurality of FETs, the device yield is reduced. The element area can be significantly reduced without any need. Further, since the FET can be grounded in the high frequency in the immediate vicinity through the capacitor, the high frequency characteristics can be improved.
【図1】本発明の化合物半導体集積回路の断面図であ
る。FIG. 1 is a cross-sectional view of a compound semiconductor integrated circuit of the present invention.
【図2】本発明の他の化合物半導体集積回路の断面図で
ある。FIG. 2 is a cross-sectional view of another compound semiconductor integrated circuit of the present invention.
【図3】本発明の化合物半導体集積回路の回路図であ
る。FIG. 3 is a circuit diagram of a compound semiconductor integrated circuit of the present invention.
【図4】従来の化合物半導体集積回路の回路図である。FIG. 4 is a circuit diagram of a conventional compound semiconductor integrated circuit.
1 n+ GaAs基板 2,4 アンドープGaAs層 3 n+ GaAs層 5 n型GaAs層(動作層) 6 溝 7 穴 8 ゲ−ト電極 9a,9b オ−ミック電極 10 配線メタル 1 n + GaAs substrate 2, 4 undoped GaAs layer 3 n + GaAs layer 5 n-type GaAs layer (operating layer) 6 groove 7 hole 8 gate electrode 9a, 9b ohmic electrode 10 wiring metal
Claims (1)
合物半導体層,第2の絶縁層,動作層が順次積層形成さ
れ、前記動作層及び前記第2の絶縁層に前記化合物半導
体層を露出する穴が形成され、前記露出された化合物半
導体層上にオ−ミック電極が形成されると共に、前記動
作層上に少なくとも1つ以上のFETが形成され、前記
オ−ミック電極上及び前記FETのソ−ス電極上に配線
メタルを形成して前記オ−ミック電極と前記FETのソ
−ス電極とを接続したことを特徴とする化合物半導体集
積回路。1. A first insulating layer, a compound semiconductor layer, a second insulating layer, and an operating layer are sequentially stacked on a compound semiconductor substrate, and the compound semiconductor layer is formed on the operating layer and the second insulating layer. An exposed hole is formed, an ohmic electrode is formed on the exposed compound semiconductor layer, and at least one FET is formed on the operation layer. The ohmic electrode and the FET are formed. 2. A compound semiconductor integrated circuit characterized in that a wiring metal is formed on the source electrode of said FET to connect said ohmic electrode and the source electrode of said FET.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4095031A JPH05291500A (en) | 1992-04-15 | 1992-04-15 | Compound semiconductor integrated circuit |
KR1019930004039A KR970003902B1 (en) | 1992-03-17 | 1993-03-17 | Integrated circuit of compound semiconductor and manufacturing method thereof |
US08/032,278 US5329154A (en) | 1992-03-17 | 1993-03-17 | Compound semiconductor integrated circuit having improved electrode bonding arrangements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4095031A JPH05291500A (en) | 1992-04-15 | 1992-04-15 | Compound semiconductor integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05291500A true JPH05291500A (en) | 1993-11-05 |
Family
ID=14126723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4095031A Pending JPH05291500A (en) | 1992-03-17 | 1992-04-15 | Compound semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05291500A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308478A (en) * | 1997-03-05 | 1998-11-17 | Toshiba Corp | Semiconductor module |
-
1992
- 1992-04-15 JP JP4095031A patent/JPH05291500A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308478A (en) * | 1997-03-05 | 1998-11-17 | Toshiba Corp | Semiconductor module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6090647A (en) | Capacitor for a semiconductor device | |
US5420449A (en) | Capacitor for a semiconductor device | |
US4731696A (en) | Three plate integrated circuit capacitor | |
JPH02246261A (en) | Capacitor structure and monolithic voltage maltiplier | |
EP0347111B1 (en) | Metal-semiconductor field effect transistor device | |
JPS5994849A (en) | Semiconductor integrated circuit device | |
US4969032A (en) | Monolithic microwave integrated circuit having vertically stacked components | |
US6436756B1 (en) | Semiconductor device and fabrication method thereof | |
JPH0521710A (en) | Semiconductor device | |
US5329154A (en) | Compound semiconductor integrated circuit having improved electrode bonding arrangements | |
CN109860147B (en) | Stacked capacitor manufacturing method and semiconductor device | |
US5031006A (en) | Semiconductor device having a Schottky decoupling diode | |
WO2024109515A1 (en) | Semiconductor structure and forming method therefor | |
JPH05291500A (en) | Compound semiconductor integrated circuit | |
JPH05335487A (en) | Transmission circuit element | |
US6501178B1 (en) | Semiconductor device | |
JPH05206286A (en) | Semiconductor integrated circuit | |
JPH0290561A (en) | semiconductor element | |
JPH04302149A (en) | Field-effect transistor | |
JPS6246551A (en) | Semiconductor integrated circuit device | |
JP3176730B2 (en) | Capacitor manufacturing method | |
JPH10256850A (en) | Semiconductor device and high frequency power amplifier | |
JPH01264250A (en) | semiconductor element | |
JPH0637251A (en) | Semiconductor device | |
JPH0436112Y2 (en) |