[go: up one dir, main page]

JPH05289851A - Multiplier - Google Patents

Multiplier

Info

Publication number
JPH05289851A
JPH05289851A JP4095030A JP9503092A JPH05289851A JP H05289851 A JPH05289851 A JP H05289851A JP 4095030 A JP4095030 A JP 4095030A JP 9503092 A JP9503092 A JP 9503092A JP H05289851 A JPH05289851 A JP H05289851A
Authority
JP
Japan
Prior art keywords
circuit
partial product
partial
carry
cpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4095030A
Other languages
Japanese (ja)
Inventor
Hideo Yamashita
英男 山下
Yuji Yoshida
裕司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4095030A priority Critical patent/JPH05289851A/en
Publication of JPH05289851A publication Critical patent/JPH05289851A/en
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】2つのデータの積を求める際に,その幾つかの
部分積を求めそれを加算することによって最終積を求め
る乗算装置に関し,限られたLSI資源において部分積
加算におけるキャリー伝播を速く行うことにより,乗算
の高速化を図る。 【構成】CSA回路およびCPA回路によって構成され
る部分積演算回路120,130,140 におけるCPA回路を複
数に分割し,部分和とキャリーの形で部分積を算出し,
それらを部分積加算回路150,160 により加算して最終積
を求める。
(57) [Summary] [Purpose] When a product of two data is obtained, a multiplication device for obtaining a final product by obtaining some partial products and adding the partial products In order to speed up the multiplication, the carry propagation in step 2 is performed quickly. [Constitution] The CPA circuit in the partial product arithmetic circuits 120, 130, 140 composed of the CSA circuit and the CPA circuit is divided into a plurality of parts, and the partial products are calculated in the form of partial sum and carry,
The final products are obtained by adding them by the partial product adding circuits 150 and 160.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,2つのデータの積を求
める際に,その幾つかの部分積を求め,それを加算する
ことによって最終積を求める乗算装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiplication device for obtaining a final product by obtaining several partial products of two data when obtaining the product of the data.

【0002】乗算装置が扱う乗算の桁数が多い場合,乗
算を速くするためには,部分和の演算におけるキャリー
の伝播時間についても考慮する必要がある。
When the number of digits of multiplication handled by the multiplication device is large, it is necessary to consider the carry propagation time in the operation of partial sum in order to speed up the multiplication.

【0003】[0003]

【従来の技術】図6は,従来の一般的な乗算論理説明図
である。従来,被乗数X,乗数Yの乗算を行うのに,図
6に示すように,被乗数X,乗数Yをそれぞれ上位X
H,YHと,下位XL,YLとに分割し,部分積Z1,
Z2,Z3,Z4を求め,次に各部分積について,それ
ぞれの重みに応じた加算を行い最終積Zを求める方法が
用いられている。
2. Description of the Related Art FIG. 6 is an explanatory view of a conventional general multiplication logic. Conventionally, in the multiplication of the multiplicand X and the multiplier Y, as shown in FIG.
H, YH and lower XL, YL are divided into partial products Z1,
A method is used in which Z2, Z3, and Z4 are obtained, and then, for each partial product, addition is performed according to each weight to obtain a final product Z.

【0004】この論理を用いた入力が各8バイトの乗算
装置の一般例を図7に示す。この乗算装置は,大きく部
分積演算回路710,720,730,740と部分積
加算回路750とによって構成されている。部分積演算
回路は,倍数発生回路711,721,731,741
と,3入力の桁上げ保存加算回路(CSA:Carry Save
Adder)712,722,732,742と,2入力の
桁上げ伝搬加算回路(CPA:Carry Propagate Adder
)713,723,733,743とによって構成さ
れている。
FIG. 7 shows a general example of a multiplication device which uses this logic and has 8 bytes for each input. This multiplication device is roughly composed of partial product arithmetic circuits 710, 720, 730 and 740 and a partial product addition circuit 750. The partial product calculation circuit is composed of multiple generation circuits 711, 721, 731, 741.
And a 3-input carry save adder circuit (CSA: Carry Save
Adder) 712, 722, 732, 742 and carry propagation adder circuit (CPA: Carry Propagate Adder) of 2 inputs
) 713, 723, 733, 743.

【0005】また,部分積加算回路は,3入力の桁上げ
保存加算回路(CSA)751と,2入力の桁上げ伝播
加算回路(CPA)752とによって構成されており,
16バイト幅の3入力の加算を行い最終積を算出する。
さらに,これらのCPAは,先行桁上げ方式(CLA:
Carry Look Ahead)を採用し,演算の高速化を図ってい
る。
The partial product adder circuit is composed of a 3-input carry save adder circuit (CSA) 751 and a 2-input carry propagation adder circuit (CPA) 752.
The final product is calculated by adding three inputs with a width of 16 bytes.
In addition, these CPAs are based on leading carry systems (CLA:
Carry Look Ahead) is adopted to speed up the calculation.

【0006】この図7に示す乗算装置による入力8バイ
トの乗算は,次のように行われる。まず,入力データは
X,Yそれぞれ分割され,部分積演算回路710,72
0,730,740に送られる。部分積演算回路710
に送られたデータは,さらに倍数発生回路711からC
SA回路712に送られ,CPA回路713によって加
算されて部分積Z1が求まる。Z2,Z3,Z4も,部
分積演算回路720,730,740において同様に求
められる。
The multiplication of the input 8 bytes by the multiplication device shown in FIG. 7 is performed as follows. First, the input data is divided into X and Y, and the partial product operation circuits 710 and 72 are divided.
0,730,740. Partial product arithmetic circuit 710
The data sent to the
It is sent to the SA circuit 712 and added by the CPA circuit 713 to obtain the partial product Z1. Z2, Z3 and Z4 are similarly obtained in the partial product arithmetic circuits 720, 730 and 740.

【0007】次に,この求まった4つの部分積は,部分
積加算回路750に送られる。部分積加算回路750に
おいて,各部分積はCSA回路751,さらにCPA回
路752においてその重みに応じて加算され,最終積Z
が算出されて,結果レジスタ770に格納される。
Next, the obtained four partial products are sent to the partial product addition circuit 750. In the partial product addition circuit 750, each partial product is added in the CSA circuit 751 and further in the CPA circuit 752 according to its weight, and the final product Z
Is calculated and stored in the result register 770.

【0008】実際にこの乗算装置をLSI化する場合,
LSIの集積度や入出力ピン数の制限等により,全体を
1個のLSIで構成することは困難である。そのため,
幾つかのブロックに分割し,複数個のLSIで構成する
必要がある。
When the multiplication device is actually formed into an LSI,
Due to the degree of integration of the LSI and the limitation of the number of input / output pins, it is difficult to configure the entire LSI with one LSI. for that reason,
It is necessary to divide it into several blocks and configure it with multiple LSIs.

【0009】図8は,部分積演算回路をそれぞれ1個の
LSI,また部分積加算回路を2個のLSI,計6個の
LSIで構成したものを示している。LSI1,LSI
2,LSI3,LSI4は部分積演算回路であり,それ
ぞれ部分積Z1,Z2,Z3,Z4を演算する。LSI
5,LSI6は部分積加算回路であり,最終積16バイ
トを求める上位8バイト,下位8バイトの加算を行う。
FIG. 8 shows a structure in which the partial product arithmetic circuits are each composed of one LSI, and the partial product addition circuits are composed of two LSIs, that is, a total of six LSIs. LSI1, LSI
2, LSI3 and LSI4 are partial product calculation circuits, and calculate partial products Z1, Z2, Z3 and Z4, respectively. LSI
5, LSI6 is a partial product addition circuit, which performs addition of upper 8 bytes and lower 8 bytes for obtaining the final product 16 bytes.

【0010】この乗算装置は,8バイトデータを扱って
いるため,LSIの各入出力ピンは部分積演算回路71
0〜740ではそれぞれ入力64ピン,出力64ピンと
なり,それらを入力とする部分積加算回路850では入
力128ピン,出力ピン64ピン,部分積換算回路86
0も入力ピン128ピン,出力ピン64ピン分,それぞ
れ少なくとも必要となっている。
Since this multiplication device handles 8-byte data, each input / output pin of the LSI has a partial product calculation circuit 71.
In 0 to 740, there are 64 input pins and 64 output pins, and in the partial product addition circuit 850 that receives these inputs, 128 input pins, 64 output pins, and partial product conversion circuit 86.
As for 0, at least 128 input pins and 64 output pins are required.

【0011】[0011]

【発明が解決しようとする課題】しかしながら,このよ
うな構成を用いた場合,部分積の加算を行うにあたり,
部分積演算回路720での加算で,キャリーはCPA回
路723において8バイト分伝搬した後,部分積加算回
路750において4バイト分伝搬することになる。すな
わち,図6にCP2として示すように,キャリーが伝搬
することになる。部分積演算回路730においても同様
である。この部分積加算におけるキャリーの伝搬をいか
に速く行うかが,この乗算装置における演算時間の短縮
化につながる。
However, when such a configuration is used, when adding partial products,
By the addition in the partial product arithmetic circuit 720, the carry is propagated by 8 bytes in the CPA circuit 723 and then by 4 bytes in the partial product addition circuit 750. That is, the carry propagates as indicated by CP2 in FIG. The same applies to the partial product calculation circuit 730. How fast the carry is propagated in this partial product addition leads to a reduction in the calculation time in this multiplication device.

【0012】本発明はこの点に着目し,限られたLSI
資源において,部分積加算におけるキャリー伝搬を速く
行うことにより,乗算の高速化を図ることを目的とす
る。
The present invention focuses on this point, and
For resources, we aim to speed up multiplication by speeding carry propagation in partial product addition.

【0013】[0013]

【課題を解決するための手段】図1は,本発明の原理ブ
ロック図である。図1において,100は被乗数レジス
タ,101は乗数レジスタ,110,1120,13
0,140は部分積演算回路,112,122,13
2,142は桁上げ保存加算回路(以下,CSA回路と
いう),113,123,124,133,134,1
43,144は桁上げ伝播加算回路(以下,CPA回路
という),150,160は部分積加算回路,170は
結果レジスタを表す。
FIG. 1 is a block diagram showing the principle of the present invention. In FIG. 1, 100 is a multiplicand register, 101 is a multiplier register, 110, 1120, 13
0, 140 are partial product arithmetic circuits, 112, 122, 13
2, 142 are carry save adder circuits (hereinafter referred to as CSA circuits), 113, 123, 124, 133, 134, 1
43 and 144 are carry propagation addition circuits (hereinafter referred to as CPA circuits), 150 and 160 are partial product addition circuits, and 170 is a result register.

【0014】部分積演算回路110,120,130,
140は,被乗数Xと乗数Yとが与えられたとき,各々
上位と下位とに分割した被乗数Xと乗数Yとの部分積を
それぞれ算出する回路であり,CSA回路およびCPA
回路を有する。
The partial product arithmetic circuits 110, 120, 130,
Reference numeral 140 denotes a circuit which, when given a multiplicand X and a multiplier Y, calculates a partial product of the multiplicand X and the multiplier Y, which are divided into upper and lower parts, respectively.
It has a circuit.

【0015】本発明では,部分積演算回路120,13
0,140におけるCPA回路を分割し,下位のCPA
回路からのキャリーC2〜C4を,部分積加算回路15
0,160に送るように構成している。すなわち,部分
積演算回路120におけるCPA回路を,CPA回路1
23とCPA回路124とに分割し,CPA回路123
の部分和とCPA回路124からのキャリーとを,部分
積加算回路150に送り,CPA回路124からの部分
和を部分積加算回路160に送っている。部分積演算回
路130も同様である。
In the present invention, the partial product arithmetic circuits 120, 13
The CPA circuit in 0 and 140 is divided into the lower CPA
The carry C2 to C4 from the circuit is added to the partial product addition circuit 15
It is configured to send to 0,160. That is, the CPA circuit in the partial product calculation circuit 120 is replaced by the CPA circuit 1
23 and a CPA circuit 124, and a CPA circuit 123
And the carry from the CPA circuit 124 are sent to the partial product addition circuit 150, and the partial sum from the CPA circuit 124 is sent to the partial product addition circuit 160. The same applies to the partial product calculation circuit 130.

【0016】部分積演算回路140においても,CPA
回路を2つのCPA回路143,144に分割し,部分
積加算回路160には,CPA回路143の部分和とC
PA回路144のキャリーを送っている。上位同士の部
分積を求める部分積演算回路110でも,CPA回路1
13を分割してもよいが,演算速度とLSI化した場合
のピン数の増加との兼ね合いを考慮し,分割しなくても
よい。
Also in the partial product arithmetic circuit 140, the CPA
The circuit is divided into two CPA circuits 143 and 144, and the partial product addition circuit 160 includes the partial sum and C of the CPA circuit 143.
Carrying PA circuit 144 is being sent. Even in the partial product calculation circuit 110 for obtaining partial products of upper ranks, the CPA circuit 1
Although 13 may be divided, it may not be divided in consideration of the trade-off between the calculation speed and the increase in the number of pins when integrated into an LSI.

【0017】部分積加算回路150,160では,送ら
れてきた部分和とキャリーとを加算し,最終積を求め
る。
In the partial product addition circuits 150 and 160, the partial sum and the carry that have been sent are added to obtain the final product.

【0018】[0018]

【作用】本発明は,部分積演算回路の中の演算幅が短く
なるようにCPA回路の分割を行い,キャリーの伝搬す
る物理的な距離を短くすることにより,演算の高速化を
図ったものである。
According to the present invention, the CPA circuit is divided so that the operation width in the partial product operation circuit is shortened, and the physical distance for carrying the carrier is shortened, so that the operation speed is increased. Is.

【0019】図2は,図1に示す乗算装置の乗算論理説
明図である。部分積演算回路120,130,140に
おけるCPA回路を二分割した場合の演算方法は,図2
に示すとおりである。同図において,C2,C3,C4
は,それぞれCPA回路124,134,144の出力
するキャリーを表す。
FIG. 2 is an explanatory diagram of the multiplication logic of the multiplication device shown in FIG. The calculation method when the CPA circuit in the partial product calculation circuits 120, 130, 140 is divided into two is as shown in FIG.
As shown in. In the figure, C2, C3, C4
Represent carry output by the CPA circuits 124, 134 and 144, respectively.

【0020】図2にキャリー伝播CP1として示すよう
に,部分積演算回路120のCPA回路124からのキ
ャリーC2は,部分積演算回路120内で4バイト分伝
搬し,部分積加算回路150内で8バイト分伝搬する。
As indicated by carry propagation CP1 in FIG. 2, carry C2 from CPA circuit 124 of partial product arithmetic circuit 120 propagates for 4 bytes in partial product arithmetic circuit 120 and 8 in partial product addition circuit 150. Propagate for bytes.

【0021】図2に示すCP1と,図6に従来技術とし
て示したCP2とを比較した場合,一見同じ距離だけキ
ャリーが伝搬し,演算速度が同じにみえる。しかし,実
際には,本発明に係る部分積加算回路150と,従来の
部分積加算回路750とでは,どちらも8バイト幅のC
PA回路によって演算されるので,CP1とCP2の部
分積加算回路150,750内でのキャリー伝搬速度は
同じである。したがって,部分積演算回路120の中で
の伝搬距離の短いCP1の方が,CP2よりも全体とし
て速くキャリーが伝搬することになる。
When CP1 shown in FIG. 2 is compared with CP2 shown in FIG. 6 as the prior art, the carry propagates by the same distance and the calculation speeds seem to be the same. However, in practice, both the partial product addition circuit 150 according to the present invention and the conventional partial product addition circuit 750 have a C of 8-byte width.
Since it is calculated by the PA circuit, the carry propagation speeds in the partial product addition circuits 150 and 750 of CP1 and CP2 are the same. Therefore, the carry propagates faster in CP1 having a shorter propagation distance in the partial product calculation circuit 120 than in CP2 as a whole.

【0022】[0022]

【実施例】図3は,本発明の実施例のブロック図であ
る。図3において,図1と同符号のものは図1に示すも
のに対応し,111,121,131,141は倍数発
生回路,151,161は桁上げ保存加算回路(CSA
回路),152,162は桁上げ伝播加算回路(CPA
回路),163はキャリー信号線を表す。
FIG. 3 is a block diagram of an embodiment of the present invention. In FIG. 3, those having the same reference numerals as those in FIG. 1 correspond to those shown in FIG. 1, 111, 121, 131 and 141 are multiple generation circuits, and 151 and 161 are carry save and add circuits (CSA).
Circuits), 152, 162 are carry propagation addition circuits (CPA)
Circuit 163, 163 represents a carry signal line.

【0023】この乗算装置において,8バイトデータで
ある被乗数Xと乗数Yの乗算は,以下のように実行され
る。まず,Xの上位/下位とYの上位/下位との各部分
積を部分積演算回路110,120,130,140に
おいて求める。部分積演算回路110,120,13
0,140は,倍数発生回路111,121,131,
141,CSA回路112,122,132,142お
よびCPA回路から構成されており,特に部分積演算回
路120,130,140のCPA回路は,図2に示す
論理に基づき二分割されている。
In this multiplication device, the multiplication of the multiplicand X, which is 8-byte data, and the multiplier Y is executed as follows. First, the partial product arithmetic circuits 110, 120, 130, 140 obtain respective partial products of the upper / lower order of X and the upper / lower order of Y. Partial product arithmetic circuits 110, 120, 13
0 and 140 are multiple generation circuits 111, 121, 131,
141, CSA circuits 112, 122, 132, 142 and a CPA circuit, and in particular, the CPA circuits of the partial product operation circuits 120, 130, 140 are divided into two based on the logic shown in FIG.

【0024】部分積演算回路110は8バイトのZ1を
出力し,部分積演算回路120,130,140は,そ
れぞれ4バイトのZ2H,Z2L,Z3H,Z3Lおよ
びZ4H,Z4Lと,1ビットのキャリーC2,C3,
C4を出力する。
The partial product calculation circuit 110 outputs Z1 of 8 bytes, and the partial product calculation circuits 120, 130 and 140 respectively output Z2H, Z2L, Z3H, Z3L and Z4H, Z4L of 4 bytes and a carry C2 of 1 bit. , C3
Output C4.

【0025】次に,これらの部分積演算回路110,1
20,130,140からの出力を部分積加算回路15
0,160によって加算し,最終積Zを求める。なお,
CPA回路143の出力である4バイトのZ4Lは,部
分積加算回路160の入力としないで,直接,最終積Z
の下位4バイトとしてもよい。
Next, these partial product arithmetic circuits 110, 1
Outputs from 20, 130, and 140 are partial product addition circuits 15
The final product Z is obtained by adding 0,160. In addition,
The 4-byte Z4L output from the CPA circuit 143 is directly input to the final product Z without being input to the partial product addition circuit 160.
It may be the lower 4 bytes.

【0026】図4は,部分積加算回路150のCSA構
成例を示す。図3に示す部分積加算回路150のCSA
回路151は,Z1,Z2H,Z3H,C2,C3の加
算を行う。このCSA回路151での最下位ビットの加
算は,5ビットの加算となるので,例えば,図4に示す
ようなCSA回路151を構成する。この図に示す40
1〜404は全加算器(full adder) である。
FIG. 4 shows a CSA configuration example of the partial product addition circuit 150. CSA of partial product addition circuit 150 shown in FIG.
The circuit 151 performs addition of Z1, Z2H, Z3H, C2 and C3. Since the addition of the least significant bit in the CSA circuit 151 is an addition of 5 bits, the CSA circuit 151 as shown in FIG. 4 is constructed, for example. 40 shown in this figure
Reference numerals 1 to 404 are full adders.

【0027】全加算器401により,Z1,Z2H,Z
3Hの最下位ビットを加算する。その結果の下位ビット
と,キャリーC2,C3とを,全加算器403により加
算する。全加算器402は,Z1,Z2H,Z3Hの最
下位ビットの次のビットを加算し,全加算器404は,
その出力と全加算器401のキャリーを加算する。
By the full adder 401, Z1, Z2H, Z
Add the least significant bit of 3H. The lower bits of the result and carry C2 and C3 are added by full adder 403. The full adder 402 adds the bit next to the least significant bit of Z1, Z2H, Z3H, and the full adder 404
The output and the carry of full adder 401 are added.

【0028】以上のような回路構成をとった場合,ゲー
トのスイッチング速度が高速であり,それに比べてLS
I内の信号伝達速度が遅い程効果が大きい。上記実施例
では,部分積演算回路におけるCPA回路を2つに分割
している。これにより,キャリーの入出力分が必要とな
るので,図8に示す従来の装置と比較して,部分積演算
回路110〜140のピン数が全体で3ピン増え,また
部分積加算回路150,160のピン数も全体で3ピン
増える。すなわち,部分積演算回路におけるCPA回路
の分割で,部分和の演算幅を2分の1とすると,下位か
らの上位へのキャリーが生じるためLSIの出力が各1
ピン増加する。 例えば,この演算幅を4分の1とする
と各々3ピン増加することになる。これに伴い部分積加
算回路150,160の入力は,従来の装置と比べて,
計9ピン増加することになる。
When the circuit configuration as described above is adopted, the switching speed of the gate is high, and the LS is higher than that.
The slower the signal transmission speed in I, the greater the effect. In the above embodiment, the CPA circuit in the partial product calculation circuit is divided into two. As a result, since the carry input / output is required, the number of pins of the partial product arithmetic circuits 110 to 140 is increased by 3 pins as compared with the conventional device shown in FIG. The total number of 160 pins will increase by 3 pins. That is, if the calculation width of the partial sum is halved in the division of the CPA circuit in the partial product calculation circuit, carry from the lower order to the upper order occurs, so that the output of the LSI is 1 each.
Pin increase. For example, if this calculation width is set to 1/4, it will increase by 3 pins each. As a result, the inputs of the partial product addition circuits 150 and 160 are
A total of 9 pins will be added.

【0029】この部分積演算回路の分割によるキャリー
伝播距離と,出力ピン数の増減の関係は,図5に示すよ
うになる。図5から明らかなように,CPA回路を分割
し,CLAの幅を狭くすればするほどキャリーの伝搬は
速く行われるが,LSIのピン数が増加することにな
る。望ましいのは,出力ピン数があまり増加しないで,
しかもキャリー伝播距離が実用上十分に短くなることで
ある。LSIの実装やピン数等の物理的制限を考慮し,
図5から考察すると,二分割が効率的であると考えられ
る。
The relationship between the carry propagation distance and the increase / decrease in the number of output pins due to the division of the partial product calculation circuit is as shown in FIG. As is clear from FIG. 5, as the CPA circuit is divided and the width of the CLA is made narrower, the carry propagation is faster, but the number of pins of the LSI increases. It is desirable that the number of output pins does not increase so much,
Moreover, the carry propagation distance is sufficiently short in practical use. Considering physical restrictions such as LSI mounting and pin count,
Considering from FIG. 5, it is considered that the bisection is efficient.

【0030】なお,図4のCSA回路151に示すよう
に,部分積加算回路150の入力数の増加により,CS
A回路のビット加算部分が一段増加することになる。し
かし,近年のLSI設計における遅延時間問題について
は,ゲートのスイッチング時間よりも信号のLSI内伝
搬速度がネックとなってきているので,部分積加算回路
150内でCSAを一段増やしても,部分積演算回路1
20,130,140の内部において,短いCLAの演
算幅でキャリーを伝搬させ出力した方が,全体として高
速に最終積を求めることができる。
As shown in the CSA circuit 151 of FIG. 4, the number of inputs to the partial product addition circuit 150 increases,
The bit addition portion of the A circuit is increased by one stage. However, regarding the delay time problem in the recent LSI design, the propagation speed of the signal in the LSI has become more of a bottleneck than the switching time of the gate. Therefore, even if the CSA in the partial product addition circuit 150 is increased by one stage, the partial product is increased. Arithmetic circuit 1
In the inside of 20, 130, 140, the final product can be obtained faster as a whole by carrying and outputting the carry with a short CLA calculation width.

【0031】[0031]

【発明の効果】以上説明したように,本発明によれば,
部分積演算回路におけるCPA回路の分割を行い,部分
和とキャリーの形で部分積を算出し,それらを加算する
ことによって最終積を求めるので,部分積演算回路にお
けるキャリーの伝播時間が短縮され,全体として高速に
乗算結果を得ることができるようになる。
As described above, according to the present invention,
The CPA circuit in the partial product arithmetic circuit is divided, partial products are calculated in the form of partial sum and carry, and the final product is obtained by adding them, so the carry propagation time in the partial product arithmetic circuit is shortened, As a whole, the multiplication result can be obtained at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理ブロック図である。FIG. 1 is a principle block diagram of the present invention.

【図2】本発明の乗算論理説明図である。FIG. 2 is an explanatory diagram of a multiplication logic of the present invention.

【図3】本発明の実施例のブロック図である。FIG. 3 is a block diagram of an embodiment of the present invention.

【図4】本発明の実施例における部分積加算回路のCS
A構成例を示す図である。
FIG. 4 is a diagram showing a CS of the partial product addition circuit according to the embodiment of the present invention.
It is a figure which shows the A structural example.

【図5】本発明に関連するキャリー伝播距離と出力ピン
数の増減説明図である。
FIG. 5 is an explanatory view of increase / decrease in carry propagation distance and the number of output pins related to the present invention.

【図6】従来の一般的な乗算論理説明図である。FIG. 6 is an explanatory diagram of a conventional general multiplication logic.

【図7】従来の乗算装置の例を示す図である。FIG. 7 is a diagram showing an example of a conventional multiplication device.

【図8】従来の乗算装置の例を示す図である。FIG. 8 is a diagram showing an example of a conventional multiplication device.

【符号の説明】[Explanation of symbols]

100 被乗数レジスタ 101 乗数レジスタ 110,120,130,140 部分積演算回路 112,122,132,142 桁上げ保存加算回
路 113,123,124,133,134,143,1
44 桁上げ伝播加算回路 150,160 部分積加算回路 170 結果レジスタ
100 Multiplicand register 101 Multiplier register 110, 120, 130, 140 Partial product arithmetic circuit 112, 122, 132, 142 Carry save addition circuit 113, 123, 124, 133, 134, 143, 1
44 Carry propagation addition circuit 150, 160 Partial product addition circuit 170 Result register

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被乗数Xと乗数Yとを各々上位と下位と
に分割したものの部分積をそれぞれ算出する,桁上げ保
存加算回路(CSA) および桁上げ伝播加算回路(CPA) を有
する部分積演算回路(110,120,130,140) と,その部分積
演算回路の出力を加算する部分積加算回路(150,160) と
を備えた乗算装置において,上記部分積演算回路におけ
る桁上げ伝播加算回路(CPA) を分割して構成し,分割さ
れた桁上げ伝播加算回路(CPA) の出力である部分和とキ
ャリーとを, 最終積を求める上記部分積加算回路に入力
して加算するようにしたことを特徴とする乗算装置。
1. A partial product operation having a carry save adder circuit (CSA) and a carry propagation adder circuit (CPA) for calculating a partial product of a multiplicand X and a multiplier Y divided into upper and lower parts, respectively. In a multiplication device comprising a circuit (110, 120, 130, 140) and a partial product addition circuit (150, 160) for adding the outputs of the partial product calculation circuit, the carry propagation addition circuit (CPA) in the partial product calculation circuit is configured by dividing. Then, the multiplication device is characterized in that the partial sum and the carry which are the outputs of the divided carry propagation addition circuit (CPA) are input to the partial product addition circuit for obtaining the final product and added.
JP4095030A 1992-04-15 1992-04-15 Multiplier Withdrawn JPH05289851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4095030A JPH05289851A (en) 1992-04-15 1992-04-15 Multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095030A JPH05289851A (en) 1992-04-15 1992-04-15 Multiplier

Publications (1)

Publication Number Publication Date
JPH05289851A true JPH05289851A (en) 1993-11-05

Family

ID=14126698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095030A Withdrawn JPH05289851A (en) 1992-04-15 1992-04-15 Multiplier

Country Status (1)

Country Link
JP (1) JPH05289851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926396A (en) * 1995-05-26 1999-07-20 Matsushita Electric Industrial Co., Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926396A (en) * 1995-05-26 1999-07-20 Matsushita Electric Industrial Co., Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit
US5978573A (en) * 1995-05-26 1999-11-02 Matsushita Electric Industrial Co.Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit

Similar Documents

Publication Publication Date Title
JP2594428B2 (en) Method and apparatus for reducing carry propagation delay
US5325320A (en) Area efficient multiplier for use in an integrated circuit
US4525797A (en) N-bit carry select adder circuit having only one full adder per bit
JPH09501528A (en) Structure and method for reducing the number of carry lookahead adder stages in a high speed arithmetic unit
US5586071A (en) Enhanced fast multiplier
US5257217A (en) Area-efficient multiplier for use in an integrated circuit
US3914589A (en) Four-by-four bit multiplier module having three stages of logic cells
JPH09231201A (en) Floating point multiplication accumulation device
JPH05289851A (en) Multiplier
JP2001501341A (en) Digital adder circuit
JP4607604B2 (en) 4: 2 CSA cell and 4: 2 carry save addition method
US5944777A (en) Method and apparatus for generating carries in an adder circuit
JPH056892B2 (en)
JPH063839B2 (en) Semiconductor integrated circuit device
JPH01220528A (en) Parity generator
US20030126177A1 (en) Arithmetic unit and method thereof
Sairam et al. FPGA Implementation of Area Efficient 16-Bit Vedic Multiplier Using Higher Order Compressors
JPS59116853A (en) Apparatus for creating multiplication pipeline of arbitrary size
Satyanarayana et al. Design and fpga implementation of digit-serial modified booth multipliers
Pang et al. Optimizing Multiplier Performance Through Verilog Hardware Description Language Design
JPH07141148A (en) Pipeline parallel multiplier
KR950015180B1 (en) High speed adder
Wojko Pipelined multipliers and FPGA architectures
JPS62154029A (en) multiplication circuit
JPH03269724A (en) Multiplier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706