[go: up one dir, main page]

JPH05288751A - Subject measuring apparatus - Google Patents

Subject measuring apparatus

Info

Publication number
JPH05288751A
JPH05288751A JP11805092A JP11805092A JPH05288751A JP H05288751 A JPH05288751 A JP H05288751A JP 11805092 A JP11805092 A JP 11805092A JP 11805092 A JP11805092 A JP 11805092A JP H05288751 A JPH05288751 A JP H05288751A
Authority
JP
Japan
Prior art keywords
gap
carrier particles
sample
recess
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11805092A
Other languages
Japanese (ja)
Inventor
Toshiichi Onishi
敏一 大西
Matsuomi Nishimura
松臣 西村
Hideto Takayama
秀人 高山
Kazusane Tanaka
和實 田中
Takeshi Miyazaki
健 宮崎
Hiroaki Hoshi
宏明 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11805092A priority Critical patent/JPH05288751A/en
Publication of JPH05288751A publication Critical patent/JPH05288751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To measure highly accurate immunological activity by separating an agglutinated substance of carrier particles two-dimensionally. CONSTITUTION:A wedge-shaped cover member 3 formed of a transparent member with a recess 3a provided at an inner center is tightly attached on a flat substrate 2 formed of a transparent member, while the recess 3a forms a gap. The recess 3a has its height of the gap between the recess 3a and the substrate 2 reduced uniformly from an A direction to a B direction, a vertical distance DB of an opening at the end of the B direction is smaller than a diameter R of a carrier particle F to be used, and a vertical distance DA of the opening at the end of the A direction is several to several hundreds times the vertical distance DB so that an agglutinated substance G can pass through it. The wedge-shaped cover member 3 comprises wedge members 3b, 3c having electric conductivity and a transparent substrate 3d. In addition the wedge members 3b, 3c are opposite electrodes for forming an electric field in the recess 3a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、検体中の目的物質を定
性的又は定量的に検出する検体測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample measuring device for qualitatively or quantitatively detecting a target substance in a sample.

【0002】[0002]

【従来の技術】検体中の目的物質、例えば抗原、抗体等
の免疫学的活性物質を検出する方法としては、ラテック
ス粒子、ガラス粒子、セラミック球、カオリン、カーボ
ンブラック、赤血球等の動物血液成分等のコロイド粒子
等の担体粒子に免疫学的活性物質を感作させ、その担体
粒子を液体媒体中で検体と反応させて、反応液の凝集状
態を観察、確認して免疫学的活性物質を定性的に検出す
る方法が良く知られている。
2. Description of the Related Art Latex particles, glass particles, ceramic spheres, kaolin, carbon black, animal blood components such as red blood cells, etc. can be used as a method for detecting an immunologically active substance such as an antigen or an antibody in a sample. The carrier particles such as colloidal particles are sensitized with the immunologically active substance, and the carrier particles are reacted with the sample in the liquid medium to observe and confirm the agglutination state of the reaction solution to qualify the immunologically active substance. It is well known how to detect automatically.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、凝集状態を肉眼で判断する場合には、
定量性に乏しい検出しかできず、検出結果の精度、信頼
性を欠いている。
However, in the above-mentioned conventional example, when the aggregated state is visually judged,
Only detection with poor quantitativeness is possible, and the accuracy and reliability of detection results are lacking.

【0004】本発明の目的は、簡素な構造で、高精度に
定性的又は定量的検出が可能な検体測定装置を提供する
ことにある。
An object of the present invention is to provide a sample measuring device having a simple structure and capable of qualitative or quantitative detection with high accuracy.

【0005】[0005]

【課題を解決するための手段】上述の構成を有する本発
明に係る検体測定装置は、特定物質と特異的に結合する
物資を担持させた担体粒子と検体との反応液中における
前記担体粒子の凝集の程度により、検体中の前記特定物
質の測定を行う装置において、前記担体粒子の径よりも
大きい最大間隔から一様又は段階的に間隙が減少し、前
記最大間隔部から前記反応液が浸入し得る間隙部と、反
応液の浸入方向に対して垂直方向に電界を印加するため
の対向電極と、該対向電極に電圧を印加する手段とを有
することを特徴とするものである。
A sample measuring device according to the present invention having the above-mentioned structure is provided with a carrier particle carrying a substance which specifically binds to a specific substance and a carrier particle in a reaction solution of the sample. Depending on the degree of aggregation, in the device for measuring the specific substance in the sample, the gap decreases uniformly or stepwise from the maximum interval larger than the diameter of the carrier particles, and the reaction solution enters from the maximum interval part. And a counter electrode for applying an electric field in a direction perpendicular to the inflow direction of the reaction liquid, and a means for applying a voltage to the counter electrode.

【0006】上記特定発明に関連する本発明に係る検体
測定装置は、特定物質と特異的に結合する物資を担持さ
せた担体粒子と検体との反応液中における前記担体粒子
の凝集の程度により、検体中の前記特定物質の測定を行
う装置において、前記担体粒子の径よりも大きい最大間
隔から一様又は段階的に間隙が減少し、該最大間隙部か
ら前記反応液が浸入し得る間隙部と、前記間隙部内に浸
入した反応液中の担体粒子の二次元的分布を検出する検
出手段と、該検出手段からの出力を基に前記特定物質の
定量的又は定性的測定の演算を行う演算手段とを有する
ことを特徴とするものである。
The analyte measuring device according to the present invention related to the above-mentioned specific invention is characterized by the degree of agglomeration of the carrier particles in the reaction liquid of the carrier particles carrying the substance that specifically binds to the specific substance and the sample. In an apparatus for measuring the specific substance in a sample, a gap is uniformly or stepwise reduced from a maximum gap larger than the diameter of the carrier particles, and a gap portion into which the reaction solution can enter from the maximum gap portion. A detection means for detecting a two-dimensional distribution of carrier particles in the reaction liquid that has penetrated into the gap portion, and a calculation means for performing a quantitative or qualitative measurement calculation of the specific substance based on the output from the detection means. It is characterized by having.

【0007】[0007]

【作用】上述の構成を有する検体測定装置は、最大間隙
部の開口から間隙内に反応液を注入すると、間隔差によ
って大きさが異なる担体粒子、凝集体が分離され、凝集
の程度を明瞭に判別識別できる。
In the analyte measuring device having the above-mentioned structure, when the reaction solution is injected into the gap from the opening of the maximum gap part, carrier particles and agglomerates having different sizes are separated by the gap difference, and the degree of agglutination is clarified. Can be identified.

【0008】[0008]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は試料台1の外観斜視図であり、図2は図1
のA−B方向の縦断面図である。透明部材によって形成
された平板状の基板2の上には、透明な部材によって形
成され、中央内側に凹部3aを設けた楔状のカバー部材
3が密着され、凹部3aにより間隙が形成されている。
この凹部3aは図2に示すように、凹部3aと基板2と
の間隙の高さがA方向からB方向へ一様に減少するよう
にされ、B方向端部の開口の垂直間隔DBは使用する担体
粒子Fの径Rよりも小さくされており、A方向端部の開
口の垂直間隔DAは凝集体Gも通過できるように、垂直間
隔DBの数倍〜数100倍程度となっている。楔状カバー
部材3は電気伝導性を有する楔形部材3b、3cと、透
明基板3dで構成されており、楔形部材3bと3cの凹
部3a側は対向電極3e、3fとされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is an external perspective view of the sample table 1, and FIG.
FIG. 4 is a vertical cross-sectional view taken along line AB of FIG. On the flat plate-shaped substrate 2 formed of a transparent member, a wedge-shaped cover member 3 formed of a transparent member and having a concave portion 3a inside the center is closely attached, and a gap is formed by the concave portion 3a.
As shown in FIG. 2, the recess 3a is configured such that the height of the gap between the recess 3a and the substrate 2 is uniformly reduced from the A direction to the B direction, and the vertical interval DB of the opening at the B direction end is used. The diameter R is smaller than the diameter R of the carrier particles F, and the vertical distance DA of the opening at the end in the A direction is about several times to several hundred times the vertical distance DB so that the aggregate G can also pass through. The wedge-shaped cover member 3 is composed of wedge-shaped members 3b and 3c having electric conductivity and a transparent substrate 3d, and the recessed portions 3a of the wedge-shaped members 3b and 3c are opposed electrodes 3e and 3f.

【0009】着色した担体粒子Fにモノクローナル抗体
等の免疫学的活性物質を感作させ、その担体粒子Fを水
を主体とする液体媒体中に分散させた試薬と血清等の検
体とを混合すると、血清中にモノクローナル抗体と特異
的に反応する抗原が存在した場合には抗原−抗体反応が
起こり、複数個の免疫学的活性物質と担体粒子Fとが凝
集体Gを形成する。十分に反応させた後に、図3に示す
ようにこの反応液Lを基板2と凹部3bとの間の間隙に
A方向から注入すると、表面張力によって反応液Lが垂
直間隔の狭いB方向に侵入してゆく。未凝集の単一担体
粒子Fは径が小さいのでB方向の奥まで移動できるが、
凝集体Gはその大きさに応じて途中でトラップされて移
動できなくなり、凝集体GがAB方向に分離される。
When the colored carrier particles F are sensitized with an immunologically active substance such as a monoclonal antibody and the carrier particles F are dispersed in a liquid medium mainly composed of water and a specimen such as serum is mixed. When an antigen that specifically reacts with a monoclonal antibody is present in serum, an antigen-antibody reaction occurs, and a plurality of immunologically active substances and carrier particles F form aggregates G. After sufficiently reacting, as shown in FIG. 3, when the reaction liquid L is injected into the gap between the substrate 2 and the concave portion 3b from the A direction, the reaction liquid L intrudes in the B direction with a narrow vertical distance due to surface tension. Do it. Since the non-aggregated single carrier particles F have a small diameter, they can move deep in the B direction,
The aggregate G is trapped midway depending on its size and cannot move, and the aggregate G is separated in the AB direction.

【0010】また、対向電極3e、3fに電圧を印加し
て電界を作用させ凝集体Gを分離することは先の実施例
と同様である。その際に、対向電極3eと3fの間に電
圧を印加にしておくと、担体粒子F又は凝集体Gは電界
Eによる力が作用して分離される。電界Eは反応液中の
浸入方向と垂直に作用するため、担体粒子F及び凝集体
Gは凹部3aの間隙の大きさによる分離と電界の作用の
結果、凝集体は二次元的に分離される。また、凝集体G
の電離による移動度は、凝集体の大きさと、電荷の正負
と大きさと、比重により異なる。電荷の正負と大きさ
は、検体中に含まれる微量成分や担体粒子Fのイオン性
等の化学組成と反応液のPH等に依存し、比重は担体粒
子Fの材料組成や反応液の比重等に依存している。
Further, applying a voltage to the counter electrodes 3e, 3f to cause an electric field to act thereon to separate the aggregate G is the same as in the previous embodiment. At this time, if a voltage is applied between the counter electrodes 3e and 3f, the carrier particles F or the aggregates G are separated by the force of the electric field E. Since the electric field E acts perpendicularly to the infiltration direction into the reaction solution, the carrier particles F and the aggregates G are separated two-dimensionally as a result of the separation due to the size of the gap of the recess 3a and the action of the electric field. .. In addition, the aggregate G
The mobility due to ionization depends on the size of the aggregate, the positive / negative of the charge, and the size, and the specific gravity. The positive and negative and magnitude of the charge depend on the trace components contained in the sample, the chemical composition such as ionicity of the carrier particles F and the pH of the reaction solution, and the specific gravity is such as the material composition of the carrier particles F and the specific gravity of the reaction solution. Depends on.

【0011】図4に示すように、未凝集体ほど電界Eに
よる力が大きく作用する場合は、電界Eの方向がCから
Dのとき凝集の程度が大きい順にCからD方向へ分布
し、結果として凝集体Gは二次元的分布を示すことにな
る。従って、凝集体G及び担体粒子Fのトラップされて
いる位置とその数を目視で観察することが容易になる。
As shown in FIG. 4, when the force due to the electric field E is greater for unaggregated bodies, when the direction of the electric field E is from C to D, they are distributed in the direction from C to D in the descending order of aggregation. As a result, the aggregate G has a two-dimensional distribution. Therefore, it becomes easy to visually observe the trapped positions of the aggregate G and the carrier particles F and the number thereof.

【0012】凝集体Gの径は1個の凝集体Gを構成する
担体粒子Fの個数によって定まる。反応によって生成し
た凝集体Gの凝集状態、つまり凝集体Gを形成する担体
粒子Fの個数及び反応液中の凝集体Gの個数などは、反
応液L中に含まれる免疫学的活性物質の濃度及び性質に
依存している。従って、間隙に反応液Lを流入すると、
担体粒子F、凝集体Gがトラップされている位置及びそ
の数を目視によって判別、識別することで、免疫学的活
性物質の定性的又は定量的検出を行うことができる。実
際には、既知の免疫学的活性物質を含有する検量用検体
と反応させた反応液Lによって予め検量線を作成してお
き、それと比較することによって目的の免疫学的活性物
質の定量を行う。
The diameter of the aggregate G is determined by the number of the carrier particles F constituting one aggregate G. The aggregation state of the aggregate G generated by the reaction, that is, the number of carrier particles F forming the aggregate G and the number of the aggregate G in the reaction solution are determined by the concentration of the immunologically active substance contained in the reaction solution L. And depends on the nature. Therefore, when the reaction liquid L flows into the gap,
By visually identifying and identifying the positions where the carrier particles F and the aggregates G are trapped and the number thereof, it is possible to perform qualitative or quantitative detection of the immunologically active substance. In practice, a calibration curve is prepared in advance from the reaction solution L that has been reacted with a calibration sample containing a known immunologically active substance, and the target immunologically active substance is quantified by comparison with the calibration curve. ..

【0013】良好な測定結果を得る工夫としては、基板
2、カバー部材3の何れか一方を、担体粒子Fの色調と
対照的に着色した不透明部材としてもよく、例えば担体
粒子Fが明色系ならば部材を暗色系にする等の工夫をし
て、識別を容易にすることもできる。
As a device for obtaining good measurement results, either the substrate 2 or the cover member 3 may be an opaque member which is colored in contrast with the color tone of the carrier particles F. For example, the carrier particles F are a light color system. In that case, it is possible to make the member easy by identifying the member as a dark color system.

【0014】また、反応液Lが間隙に侵入し易いように
反応液Lの液体媒体と親和性の良い物質を間隙の表面に
コートすると、更に良好な測定結果が得られる。このコ
ート材としては、例えば液体媒体が水である場合には、
親水性の物質、界面活性剤、メチルセルロース、カルボ
キシメチルセルロース、ポリビニルアルコール、ポリア
クリルアミド等の水溶性高分子が好ましい。
Further, if the surface of the gap is coated with a substance having a good affinity with the liquid medium of the reaction liquid L so that the reaction liquid L can easily enter the gap, a better measurement result can be obtained. As the coating material, for example, when the liquid medium is water,
Hydrophilic substances, surfactants, water-soluble polymers such as methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, and polyacrylamide are preferred.

【0015】更に、この実施例においては、基板2を水
平に設置して水平方向に反応液Lを注入するが、図1で
A方向を上にして、基板2を垂直方向に立てた状態で測
定を行ってもよく、重力の効果によって反応液Lの侵入
が促進され、良好な測定結果が得られる。
Further, in this embodiment, the substrate 2 is installed horizontally and the reaction solution L is injected in the horizontal direction. However, with the direction A in FIG. The measurement may be performed, and the penetration of the reaction liquid L is promoted by the effect of gravity, and a good measurement result is obtained.

【0016】また、担体粒子Fが蛍光を発するようにす
ると光学的に測定を行うことができる。用いられる蛍光
を発する担体粒子は、例えば次の方法で得られる。担体
粒子の材料としてはポリマ粒子、ガラス粒子、セラミッ
ク球、カオリン、カーボンブラック等が従来用いられて
いるが、その中でも蛍光粒子化のし易さからポリマ粒子
が好ましい。蛍光粒子を得る方法は、担体粒子の素材、
蛍光物質の種類等により適宜選択すれよい。ポリスチレ
ン、ポリアクリル酸エステル、ポリエステル、ポリカー
ボネイト、ポリアミド等のポリマ粒子を例にすると、こ
れらのポリマ粒子に蛍光性を発する物質、例えば蛍光色
素を混合し、化学結合、物理結合等によって蛍光色素を
固定化する方法、ポリマ粒子と蛍光色素を溶融混練する
方法等がある。
Further, when the carrier particles F emit fluorescence, the measurement can be performed optically. The fluorescent carrier particles used are obtained, for example, by the following method. As the material for the carrier particles, polymer particles, glass particles, ceramic spheres, kaolin, carbon black and the like have been conventionally used, but among them, polymer particles are preferable because they are easily made into fluorescent particles. The method of obtaining the fluorescent particles, the material of the carrier particles,
It may be appropriately selected depending on the type of fluorescent substance. Taking polymer particles such as polystyrene, polyacrylic acid ester, polyester, polycarbonate, and polyamide as an example, a substance that emits fluorescence, such as a fluorescent dye, is mixed with these polymer particles, and the fluorescent dye is fixed by a chemical bond or a physical bond. There is a method of melting and kneading polymer particles and a fluorescent dye.

【0017】図5は第2の実施例の試料台1の構成図で
あり、図6は図5のAーB方向の縦断面図である。透明
部材によって形成される平板状の基板2の上には、透明
部材によって形成され中央内側に凹部3aを設けた平板
状のカバー部材3が、基板2に密着されて間隙を形成し
ている。この凹部3aは、凹部3aと基板2との間隙の
高さがA方向からB方向に例えば4段階に減少するよう
にされていて、B方向端部の開口の垂直間隔DBは使用す
る担体粒子Fの径よりも小さくされており、A方向の端
部の開口の垂直間隔DAは凝集体Gを通過できるように、
垂直間隔DBの数倍〜数100倍とされている。また、凹
部3aの両側面には対向電極3e、3fが設けられ、更
にカバー部材3のB側側面には電極3g、3hがアルミ
ニウム蒸着によって形成されている。対向電極3e及び
3fは電極3g及び3hとそれぞれ導通され取出電極と
されている。なお、接着部分は導電性ペーストが使用さ
れている。
FIG. 5 is a block diagram of the sample table 1 of the second embodiment, and FIG. 6 is a vertical sectional view taken along the line AB of FIG. On the flat plate-shaped substrate 2 formed by the transparent member, the flat plate-shaped cover member 3 formed by the transparent member and having the concave portion 3a inside the center is closely attached to the substrate 2 to form a gap. The recess 3a is formed such that the height of the gap between the recess 3a and the substrate 2 decreases from the A direction to the B direction in, for example, four steps, and the vertical spacing DB of the opening at the end in the B direction is the carrier particle to be used. The diameter is smaller than the diameter of F, and the vertical distance DA of the opening at the end in the A direction allows the aggregate G to pass through.
It is set to several times to several hundred times the vertical interval DB. Opposite electrodes 3e and 3f are provided on both side surfaces of the recess 3a, and electrodes 3g and 3h are formed on the side surface of the cover member 3 on the B side by aluminum vapor deposition. The counter electrodes 3e and 3f are electrically connected to the electrodes 3g and 3h, respectively, and serve as extraction electrodes. A conductive paste is used for the adhesive portion.

【0018】この第2の実施例における作用効果は、先
の第1の実施例とほぼ同様であり、図7に示すように凝
集体Gの大きさは段階的に分離されることになる。
The operation and effect of the second embodiment are almost the same as those of the first embodiment, and the size of the aggregate G is separated stepwise as shown in FIG.

【0019】図8は蛍光を発するようにした反応液中の
凝集体の状態を自動的に読み取るための実施例の構成図
である。試料台1は図1の試料台1と同様のものであ
り、この試料台1の間隙内に注入された蛍光を発する単
体粒子等を光学的に検出するために、試料台1の上方に
はバンドパスフィルタを経て蛍光担体粒子を励起するた
めの光源5、試料台1の下方には結像レンズ、屈折率分
布型レンズ等によって構成される結像光学系6が配置さ
れ、その結像位置には受光光学系7が設けられている。
受光光学系7には、枠体7aの内部に例えば768×4
93の2048個の感光素子を二次元配列したCCDア
レイ7bが配置され、このCCDアレイ7bは枠体7a
に取り付けられた透明ガラス保護板7cによって保護さ
れている。CCDアレイ7bの各感光素子の出力はケー
ブル8を介して信号処理装置9に接続され、信号処理装
置9の出力はモニタ10に接続されている。また、凹部
3aに設けられた対向電極3e、3fは、電源11とケ
ーブル12を介し接続され、電源11の出力は波形発生
装置13によって制御されている。
FIG. 8 is a constitutional view of an embodiment for automatically reading the state of aggregates in a reaction solution which is made to emit fluorescence. The sample table 1 is the same as the sample table 1 of FIG. 1, and in order to optically detect single particles or the like which emit fluorescence and are injected into the gap of the sample table 1, the sample table 1 is provided above the sample table 1. A light source 5 for exciting the fluorescent carrier particles through a band pass filter, and an image forming optical system 6 including an image forming lens, a gradient index lens, and the like are arranged below the sample stage 1, and the image forming position thereof. Is provided with a light receiving optical system 7.
The light receiving optical system 7 includes, for example, 768 × 4 inside the frame 7a.
A CCD array 7b in which 2048 photosensitive elements 93 are two-dimensionally arranged is arranged. The CCD array 7b is a frame 7a.
It is protected by a transparent glass protection plate 7c attached to the. The output of each photosensitive element of the CCD array 7b is connected to the signal processing device 9 via the cable 8, and the output of the signal processing device 9 is connected to the monitor 10. The counter electrodes 3e and 3f provided in the recess 3a are connected to the power supply 11 via the cable 12, and the output of the power supply 11 is controlled by the waveform generator 13.

【0020】図9は信号処理装置9の内部構成を示し、
CCDアレイ7bの出力はCCDドライバ回路9a、演
算回路9bに接続され、CCDドライバ回路9aの出力
は演算回路9bに接続され、演算回路9bの出力は表示
回路9cに接続され、表示回路9cの出力はモニタ10
に接続されている。
FIG. 9 shows the internal structure of the signal processing device 9,
The output of the CCD array 7b is connected to the CCD driver circuit 9a and the arithmetic circuit 9b, the output of the CCD driver circuit 9a is connected to the arithmetic circuit 9b, the output of the arithmetic circuit 9b is connected to the display circuit 9c, and the output of the display circuit 9c. Is monitor 10
It is connected to the.

【0021】蛍光を発する担体粒子Fにモノクローナル
抗体等の免疫学的活性物質を感作させ、その担体粒子F
を水を主体とする液体媒体中に分散させた試薬と検体と
を混合すると、複数個の免疫学的活性物質と担体粒子F
とが凝集体Gを形成する。十分に反応させた後に、この
反応液Lを試料台1の間隙に注入すると、表面張力によ
って反応液Lは垂直間隔の狭い奥方向に浸入してゆく。
未凝集の単一担体粒子Fは径が小さいので奥まで移動で
きるが、凝集体Gはその大きさに依存して途中でトラッ
プされて移動できなくなる。
The carrier particles F that emit fluorescence are sensitized with an immunologically active substance such as a monoclonal antibody, and the carrier particles F are sensitized.
When a reagent and a sample prepared by dispersing water in a liquid medium mainly containing water are mixed, a plurality of immunologically active substances and carrier particles F are obtained.
And form an aggregate G. When the reaction liquid L is injected into the gap of the sample table 1 after sufficiently reacting, the reaction liquid L intrudes in the depth direction with a small vertical interval due to the surface tension.
Since the unaggregated single carrier particles F have a small diameter, they can move to the inner part, but the agglomerates G are trapped and cannot move depending on the size.

【0022】試料台1内の反応液Lの蛍光像は、結像光
学系6を介して受光光学系7のCCDアレイ7b上に結
像され、CCDドライバ回路9aによって光電変換され
て、CCDアレイ7bの各感光素子の出力電圧値が演算
回路9bに入力される。
The fluorescent image of the reaction solution L in the sample stage 1 is imaged on the CCD array 7b of the light receiving optical system 7 through the imaging optical system 6, photoelectrically converted by the CCD driver circuit 9a, and the CCD array. The output voltage value of each photosensitive element 7b is input to the arithmetic circuit 9b.

【0023】図10は図4に示す凝集体Gの分離状態像
に対応したCCDアレイ7bの各感光素子の出力電圧を
示している。単体粒子F、凝集体Gが発する蛍光によ
り、トラップされた部位では出力電圧が大きくなり、そ
の存在が検知される。
FIG. 10 shows the output voltage of each photosensitive element of the CCD array 7b corresponding to the separated state image of the aggregate G shown in FIG. Due to the fluorescence emitted by the single particles F and the aggregates G, the output voltage increases at the trapped portion, and its presence is detected.

【0024】実際には、既知の免疫学的活性物質を含有
する検量用検体と反応させた反応液L中の凝集体Gとの
二次元的位置情報及び出力電圧の強度に応じて、予め検
量線を作成しておき、それと比較することによって目的
の免疫学的活性物質の定量を行う。
In practice, the calibration is performed in advance according to the two-dimensional position information of the aggregate G in the reaction solution L reacted with the calibration sample containing the known immunologically active substance and the intensity of the output voltage. The target immunologically active substance is quantified by preparing a line and comparing it.

【0025】本発明では、2種類の担体粒子F1とF2それ
ぞれに対して異なる免疫学的活性物質を感作させ、この
感作された2種の担体粒子F1、F2を用いることで、検体
中の微量物質の多項目の検査が可能である。
In the present invention, different immunologically active substances are sensitized to the two types of carrier particles F1 and F2, respectively, and the sensitized two types of carrier particles F1 and F2 are used in the sample. It is possible to inspect many items of the trace substances.

【0026】図11は比重の異なる2種類の担体粒子F
1、F2を含む試薬と検体を混合し、反応させた反応液を
図8の検体測定装置で測定した際の凹部3a中の様子を
示す。印加する電界Eの大きさを適切に選択すると、2
種の担体粒子F1、F2の比重に応じて、凝集体GをCD方
向に分離することができる。この二次的分離状態は二次
元的受光素子で検出され、信号処理装置9を経てモニタ
10上に表示される。
FIG. 11 shows two types of carrier particles F having different specific gravities.
9 shows a state in the concave portion 3a when a reaction solution obtained by mixing a reagent containing 1, F2 and a sample and reacting them is measured by the sample measuring device in FIG. If the magnitude of the applied electric field E is properly selected, 2
The aggregate G can be separated in the CD direction depending on the specific gravity of the seed carrier particles F1 and F2. This secondary separation state is detected by the two-dimensional light receiving element, and is displayed on the monitor 10 via the signal processing device 9.

【0027】[0027]

【発明の効果】以上説明したように本発明に係る検体測
定装置は、担体粒子の径よりも十分に大きい最大間隔か
ら最小間隔まで、一様に又は段階的に減少した間隙部
と、反応液の浸入方向と垂直に電界を印加するための対
向電極を設けた構造を有し、この間隙に最大間隔の開口
から反応液を注入すると、間隔差と電界の作用によって
大きさ等が異なる担体粒子、凝集体が二次元的に分離で
きるため測定感度が向上し、検体中の免疫学的活性物質
が定性的及び定量的に高精度に検出できる。また、同時
多項目の免疫学的活性物質の定性及び定量的検出も簡便
に行うことができる。
As described above, the sample measuring device according to the present invention has a gap portion that is uniformly or stepwise reduced from the maximum interval to the minimum interval that is sufficiently larger than the diameter of the carrier particles, and the reaction solution. Has a structure in which a counter electrode for applying an electric field is provided in a direction perpendicular to the infiltration direction of the carrier particles. Since the aggregates can be separated two-dimensionally, the measurement sensitivity is improved, and the immunologically active substance in the sample can be detected qualitatively and quantitatively with high accuracy. In addition, qualitative and quantitative detection of multiple immunologically active substances can be easily performed at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例試料台の斜視図である。FIG. 1 is a perspective view of a first embodiment sample table.

【図2】試料台の縦断面図である。FIG. 2 is a vertical sectional view of a sample table.

【図3】試料台の隙間部における凝集体の分離状態の説
明図である。
FIG. 3 is an explanatory diagram of a separated state of aggregates in a gap portion of a sample table.

【図4】電界による凝集体の分離状態の説明図である。FIG. 4 is an explanatory diagram of a separated state of aggregates by an electric field.

【図5】第2の実施例の試料台の斜視図である。FIG. 5 is a perspective view of a sample table according to a second embodiment.

【図6】試料台の縦断面図である。FIG. 6 is a vertical sectional view of a sample table.

【図7】試料台の隙間部における凝集体の分離状態の説
明図である。
FIG. 7 is an explanatory diagram of a separated state of aggregates in a gap portion of a sample table.

【図8】第3の実施例の構成図である。FIG. 8 is a configuration diagram of a third embodiment.

【図9】信号処理装置の構成図である。FIG. 9 is a configuration diagram of a signal processing device.

【図10】凝集体の分離状態に対応した感光素子の出力
電圧をモデル的に示す説明図である。
FIG. 10 is an explanatory diagram showing, as a model, an output voltage of a photosensitive element corresponding to a separated state of aggregates.

【図11】2種類の担体粒子を用いたときの電界に寄る
凝集体の分離状態の説明図である。
FIG. 11 is an explanatory diagram of a separated state of an aggregate due to an electric field when two types of carrier particles are used.

【符号の説明】[Explanation of symbols]

1 試料台 2 基板 3 カバー部材 3a 凹部 3e〜3h 電極 5 光源 6 結像光学系 7 受光光学系 7b CCDアレイ 8 ケーブル 9 信号処理装置 9a CCDドライバ回路 9b 演算回路 9c 表示回路 10 モニタ 11 電源 13 波形発生装置 1 sample table 2 substrate 3 cover member 3a recess 3e to 3h electrode 5 light source 6 imaging optical system 7 light receiving optical system 7b CCD array 8 cable 9 signal processing device 9a CCD driver circuit 9b arithmetic circuit 9c display circuit 10 monitor 11 power supply 13 waveform Generator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 和實 東京都大田区下丸子三丁目30番2号 キヤ ノン株式会社内 (72)発明者 宮崎 健 東京都大田区下丸子三丁目30番2号 キヤ ノン株式会社内 (72)発明者 星 宏明 東京都大田区下丸子三丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazumi Tanaka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Ken Ken Miyazaki 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non Inc. (72) Inventor Hiroaki Hoshi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 特定物質と特異的に結合する物資を担持
させた担体粒子と検体との反応液中における前記担体粒
子の凝集の程度により、検体中の前記特定物質の測定を
行う装置において、前記担体粒子の径よりも大きい最大
間隔から一様又は段階的に間隙が減少し、前記最大間隔
部から前記反応液が浸入し得る間隙部と、反応液の浸入
方向に対して垂直方向に電界を印加するための対向電極
と、該対向電極に電圧を印加する手段とを有することを
特徴とする検体測定装置。
1. An apparatus for measuring the specific substance in a sample according to the degree of aggregation of the carrier particle in a reaction solution of a carrier particle carrying a substance that specifically binds to a specific substance and a sample, The gap decreases uniformly or stepwise from the maximum spacing larger than the diameter of the carrier particles, and the gap into which the reaction solution can enter from the maximum spacing, and the electric field in the direction perpendicular to the intrusion direction of the reaction solution. An analyte measuring device comprising: a counter electrode for applying a voltage and means for applying a voltage to the counter electrode.
【請求項2】 特定物質と特異的に結合する物資を担持
させた担体粒子と検体との反応液中における前記担体粒
子の凝集の程度により、検体中の前記特定物質の測定を
行う装置において、前記担体粒子の径よりも大きい最大
間隔から一様又は段階的に間隙が減少し、該最大間隙部
から前記反応液が浸入し得る間隙部と、前記間隙部内に
浸入した反応液中の担体粒子の二次元的分布を検出する
検出手段と、該検出手段からの出力を基に前記特定物質
の定量的又は定性的測定の演算を行う演算手段とを有す
ることを特徴とする検体測定装置。
2. An apparatus for measuring the specific substance in a sample according to the degree of agglomeration of the carrier particle in a reaction solution of a carrier particle carrying a substance that specifically binds to a specific substance and a sample, A gap portion in which the gap is uniformly or stepwise reduced from the maximum gap larger than the diameter of the carrier particles, and the reaction liquid can infiltrate from the maximum gap portion, and the carrier particles in the reaction liquid that have penetrated into the gap portion. 2. A sample measuring apparatus, comprising: a detection unit that detects the two-dimensional distribution of the above; and a calculation unit that performs a quantitative or qualitative measurement calculation of the specific substance based on the output from the detection unit.
JP11805092A 1992-04-10 1992-04-10 Subject measuring apparatus Pending JPH05288751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11805092A JPH05288751A (en) 1992-04-10 1992-04-10 Subject measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11805092A JPH05288751A (en) 1992-04-10 1992-04-10 Subject measuring apparatus

Publications (1)

Publication Number Publication Date
JPH05288751A true JPH05288751A (en) 1993-11-02

Family

ID=14726786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11805092A Pending JPH05288751A (en) 1992-04-10 1992-04-10 Subject measuring apparatus

Country Status (1)

Country Link
JP (1) JPH05288751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034508A1 (en) * 2005-09-19 2007-03-29 Indian Institute Of Science An ultra-sensitive method for detection and quantification of substance
WO2009066472A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Measuring chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034508A1 (en) * 2005-09-19 2007-03-29 Indian Institute Of Science An ultra-sensitive method for detection and quantification of substance
WO2009066472A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Measuring chip
JP2009128105A (en) * 2007-11-21 2009-06-11 Panasonic Corp Measuring chip
US8329116B2 (en) 2007-11-21 2012-12-11 Panasonic Corporation Measuring chip

Similar Documents

Publication Publication Date Title
EP0479231B1 (en) Apparatus and method for measuring specimen
US5093268A (en) Apparatus for conducting a plurality of simultaneous measurements of electrochemiluminescent phenomena
US4421860A (en) Homogeneous fluoroimmunoassay involving autocorrelation processing of optically sensed signals
US4400353A (en) Electro-optical system for use in evaluating immunological reactions
GB2040441A (en) Apparatus and method for qualitative and quantitative determination of immunological reactions
US4407964A (en) Homogeneous fluoroimmunoassay involving sensing radiation for forward and back directions
US10684278B1 (en) Bead-based analysis of a sample
US12241893B2 (en) Bead-based analysis of a sample
EP0301584B1 (en) Immunological measuring method
JP2023543119A (en) Auxiliary electrode and its use and manufacturing method
KR20220165759A (en) Bead-based analysis of samples
JP2691266B2 (en) Sample measurement device
AU619842B2 (en) Apparatus for conducting a plurality of simultaneous measurements of electrochemiluminescent phenomena
US5380490A (en) Apparatus for measuring a test specimen
JPH05288751A (en) Subject measuring apparatus
JP2652293B2 (en) Sample measurement device
WO2019093542A1 (en) Microchip and device for quantitative analysis of antigen, and method for quantitative analysis of antigen using same
US20240125698A1 (en) Gadget for measuring retroreflected signal
JP2652288B2 (en) Sample measurement method
JP3058766B2 (en) Sample measuring method and sample measuring device
JPH1172437A (en) Cell for measuring electrochemical light-emission
KR102543112B1 (en) Method for detecting particles of a target substance contained in a small amount in a fluid sample
JPH028270B2 (en)
JPH05288752A (en) Subject measuring apparatus
JPH0552848A (en) Immunoassays and devices