[go: up one dir, main page]

JPH05288735A - Ultrasonic probe for flaw-detecting boiler tube - Google Patents

Ultrasonic probe for flaw-detecting boiler tube

Info

Publication number
JPH05288735A
JPH05288735A JP4116824A JP11682492A JPH05288735A JP H05288735 A JPH05288735 A JP H05288735A JP 4116824 A JP4116824 A JP 4116824A JP 11682492 A JP11682492 A JP 11682492A JP H05288735 A JPH05288735 A JP H05288735A
Authority
JP
Japan
Prior art keywords
tube
probe
pipe
boiler tube
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4116824A
Other languages
Japanese (ja)
Other versions
JP2994852B2 (en
Inventor
Masaaki Torii
正明 取違
Keiichi Iwamoto
啓一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4116824A priority Critical patent/JP2994852B2/en
Publication of JPH05288735A publication Critical patent/JPH05288735A/en
Application granted granted Critical
Publication of JP2994852B2 publication Critical patent/JP2994852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform inspection on a crack and a thinned-out volume of a tube in a tube axial direction and a circumferential direction occurring on an attached metal joint of a boiler tube at almost the same time by single insertion for one loop of the boiler tube. CONSTITUTION:A single vertical probe 8 for confirming a welding beam shape and position and measuring a thinned volume of a tube is mounted on a probe body 7 inserted into a boiler tube so that it is movable in an axial direction and rotatable around a tube axis. Further two bevel probes 9a, 9b for the tube axis and two bevel probes 10a, 10b for a circumference are mounted with their backs facing each other respectively. Thus inspection on a crack in a tube axis direction and a circumferential direction and the thinned volume can be performed approximately at the same time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラーチューブの付
着金物溶接部等に発生するき裂や管の減肉量を探傷する
のに好適なボイラーチューブ探傷用超音波探触子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe for boiler tube flaw detection, which is suitable for flaw detection in a welded portion of a metal attachment of a boiler tube or the amount of thinning of the tube.

【0002】[0002]

【従来の技術】火力ボイラーの過熱器や再熱器等でボイ
ラーチューブの付着金物溶接部には、発停に伴う熱応力
に起因する疲労き裂が発生し、またチューブも高温腐蝕
やアッシュカット等により減肉し、応力腐蝕割れ等の原
因となっている。しかし過熱器や再熱器等はチューブ間
隔が50〜100mmと狭いため検査員が接近できず、こ
のため従来は疲労き裂及び減肉量等の確認はサンプル管
を採取することにより行われている。しかしこの方法は
抜取検査であり、検査箇所が限定されるため見落としな
どの不安がある。その解決策の一つとして、近年水浸式
超音波探傷法を利用して、ボイラーチューブの付着金物
溶接部等に発生したき裂やチューブの減肉量を、管の内
側から超音波探触子を用いて非破壊的に検査する方法が
研究され、試験的に適用されるようになっている。
2. Description of the Related Art In a superheater or reheater of a thermal power boiler, a fatigue crack caused by thermal stress due to start and stop occurs in a welded metal part of a boiler tube, and the tube also corrodes at high temperatures and ash cuts. Due to such factors, the thickness is reduced, causing stress corrosion cracking. However, the superheater, reheater, etc., have a narrow tube interval of 50 to 100 mm and are inaccessible to the inspector. Therefore, conventionally, the fatigue crack and the amount of wall thinning are confirmed by collecting the sample tube. There is. However, this method is a sampling inspection, and there are concerns that it may be overlooked because the inspection points are limited. As one of the solutions to this problem, the ultrasonic immersion flaw detection method has been used in recent years to detect the cracks in thin metal deposits on boiler tubes and the thinning amount of the tubes from the inside of the tubes. Non-destructive inspection methods using offspring have been studied and are being applied on a trial basis.

【0003】しかして、ボイラーチューブの付着金物溶
接部等に発生した管軸方向及び円周方向のき裂やチュー
ブの減肉量を、水浸式超音波探傷法を利用して管の内側
から超音波探触子を用いて検査する場合、現在は、各探
傷に必要な専用の超音波探触子、すなわち管軸方向き裂
探傷用探触子,円周方向き裂探傷用探触子,減肉量探傷
用探触子の3種類を、それぞれ盛替えにより管内に挿入
し、個別に各探傷を行っている。しかしながらこの方法
では、挿入のための盛替えに要する時間,各探傷に要す
る時間等検査に要する時間が長くなり、作業効率が悪
く、検査のために許された工程内では対象とするボイラ
ーチューブの全数検査が困難となるおそれがある。
However, cracks in the axial direction and the circumferential direction of the welded metal welded portion of the boiler tube and the amount of wall thinning of the tube can be measured from the inside of the tube by using the water immersion ultrasonic flaw detection method. When inspecting using an ultrasonic probe, currently, there is a dedicated ultrasonic probe required for each flaw detection, that is, a probe for crack detection in the axial direction of the pipe and a probe for crack detection in the circumferential direction. , 3 types of probe for thinning amount flaw detection are inserted into the pipe by reassembling, and each flaw detection is performed individually. However, with this method, the time required for reassembling for insertion, the time required for each flaw detection, etc. becomes long, the work efficiency is poor, and the target boiler tube of the target is in the process permitted for the inspection. 100% inspection may be difficult.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、ボイラーチューブの付
着金物溶接部に発生する管軸方向及び円周方向のき裂や
管の減肉量の検査を、1ループのボイラーチューブにつ
き1回の挿入によりほぼ同一時刻に実施することを可能
ならしめる、ボイラーチューブ探傷用超音波探触子を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and reduces cracks and pipes in the axial direction and the circumferential direction that occur in the welded metal welded portion of the boiler tube. An object of the present invention is to provide an ultrasonic probe for flaw detection in a boiler tube, which enables inspection of the meat amount to be performed at approximately the same time by inserting once for one loop of the boiler tube.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、ボ
イラーチューブの管軸方向及び円周方法のき裂や管の減
肉量を管の内部から水浸式超音波探傷により検査する探
触子であって、管内に管軸方向移動及び管軸周り回転可
能に挿入された探触子本体と、上記探触子本体に搭載さ
れた溶接ビード形状,位置の確認及び管の減肉量測定用
の1個の垂直探触子と、上記探触子本体にそれぞれ背中
合わせに2個づつ搭載された管軸方向及び円周方向き裂
検出用の4個の斜角探触子とを具えたことを特徴とす
る。
To this end, the present invention is a probe for inspecting cracks in the axial direction of a boiler tube and the circumferential direction of the boiler tube and the amount of thinning of the tube from the inside of the tube by means of water immersion ultrasonic flaw detection. A probe body inserted into the pipe so as to be movable in the pipe axis direction and rotatable around the pipe axis, and the shape and position of the weld bead mounted on the probe body, the position is confirmed, and the wall thickness reduction of the pipe is measured. And a beveled probe for detecting cracks in the pipe axis direction and the circumferential direction, which are mounted on the probe body two by two. It is characterized by

【0006】[0006]

【作用】本発明ボイラーチューブ探傷用超音波探触子に
よれば、ボイラーチューブの付着金物溶接部等に発生し
たき裂やチューブの減肉量を、管の内側から水浸式超音
波探傷により非破壊的に検査できるので、検査員が接近
できない過熱器や再熱器等のボイラーチューブでも全数
検査が可能であり、検査のための管外表面の研磨やスケ
ール除去等も不要である。また従来は付着金物溶接部等
に発生した管軸方向及び円周方向のき裂や管の減肉量の
検査に際しては、各専用の探傷用探触子を必要としてい
たものを、それぞれの役割を持つ5個の探触子を複合の
探触子として集合させたことにより、1ループのボイラ
ーチューブについて1回の管内挿入でほぼ同一時刻に複
合検査が可能となり、極めて作業性が向上する。
According to the ultrasonic probe for boiler tube flaw detection of the present invention, the amount of cracks and thinning amount of the tube generated in the welded metal deposit of the boiler tube and the like can be determined from the inside of the pipe by the water immersion type ultrasonic flaw detection. Since non-destructive inspection is possible, 100% inspection is possible even with boiler tubes such as superheaters and reheaters that are inaccessible to inspectors, and polishing of the outer surface of the pipe and scale removal for inspection are unnecessary. Also, in the past, when inspecting cracks in the axial direction and circumferential direction of welded metal welds, etc., and the amount of thinning of the pipe, each one required a dedicated flaw-detection probe. By assembling the five probes having the above as a composite probe, it is possible to perform a composite inspection at approximately the same time with one insertion of one loop of the boiler tube, and the workability is greatly improved.

【0007】なお複数の探傷用探触子を複合の探触子と
して集合させるために、各専用の探傷用探触子に見られ
るような探触子の装着方法により各探触子を配列したの
では、複合の探触子としては管軸方向の長さが長くなり
曲管部等での通過性が悪くなるおそれがある。そのため
に超音波を放射しない側を管軸方向及び円周方向き裂探
傷用の各2個の探触子をそれぞれ背中合わせにし、超音
波の放射軸が同一でかつ互いに180°異なる方向に放
射する状態に装着することで短尺化を図っている。
In order to collect a plurality of flaw detection probes as a composite probe, the probes are arranged by the probe mounting method as seen in each dedicated flaw detection probe. Therefore, as a composite probe, the length in the tube axis direction becomes long, and there is a possibility that the passability through the curved tube portion will deteriorate. Therefore, the two sides of each of the two probes for crack detection in the tube axis direction and the circumferential direction are placed back to back on the side that does not radiate ultrasonic waves, and the ultrasonic waves are radiated in the same 180 ° different directions. The length is shortened by mounting it in the state.

【0008】[0008]

【実施例】本発明ボイラーチューブ探傷用超音波探触子
の一実施例を図面について説明すると、図1は本探触子
を示し、同図(a)は側面図、同図(b)は正面図、図
2は同上の回転機構の縦断面図、図3は垂直探触子によ
る検査要領の説明図、図4は管軸用斜角探触子による検
査要領の説明図、図5は円周用斜角探触子による検査要
領の説明図、図6は本探触子が曲管部を通過する態様を
示す側面図、図7は本探触子が付着金物溶接部を探傷す
る態様を示す斜視図、図8は同上における調心治具の説
明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the ultrasonic probe for boiler tube flaw detection of the present invention will be described with reference to the drawings. FIG. 1 shows the present probe, FIG. 1 (a) is a side view, and FIG. FIG. 2 is a front view, FIG. 2 is a vertical cross-sectional view of the above rotating mechanism, FIG. 3 is an explanatory view of an inspection procedure using a vertical probe, FIG. 4 is an explanatory view of an inspection procedure using a bevel probe for a tube axis, and FIG. FIG. 6 is an explanatory view of an inspection procedure using a bevel probe for a circumference, FIG. 6 is a side view showing a mode in which the present probe passes through a curved pipe portion, and FIG. 7 is a diagram for detecting an adhered metal weld portion by the present probe. FIG. 8 is a perspective view showing a mode, and FIG. 8 is an explanatory view of the aligning jig in the above.

【0009】図1において、管軸方向移動及び管軸周り
回転可能な探触子本体7の中央に、管の減肉量の検査及
び溶接ビードの形状確認用の垂直探触子8が搭載されて
おり、探触子本体7の前方に管軸方向き裂検査用の管軸
用斜角探触子9a,9bが背中合わせに搭載されるとと
もに、探触子本体7の後方に円周方向き裂検査用の円周
用斜角探触子10a,10bが背中合わせに搭載されて
いる。また探触子本体7には1個のカンチレバー11が
ピン12で取付けられており、このカンチレバー11に
は管軸用斜角探触子9a,9bが装着されている。カン
チレバー11は支点部に取付けられたバネ13とピン1
2とにより常に管の外径方向へ偏心しようとするが、探
触子本体7に仕込まれた偏心量調節リング14とリング
固定用袋ナット15により偏心量が拘束され、カンチレ
バー11はリング14と接触する位置までしか偏心でき
ないため、管の仕様に応じた最適偏心量の可変ができ
る。
In FIG. 1, a vertical probe 8 for inspecting the amount of thinning of the pipe and confirming the shape of the weld bead is mounted in the center of a probe body 7 that can move in the pipe axis direction and rotate about the pipe axis. In the front of the probe main body 7, pipe-angle oblique probes 9a and 9b for pipe axial crack inspection are mounted back-to-back, and at the rear of the probe main body 7 in the circumferential direction. Circumferential bevel probes 10a and 10b for crack inspection are mounted back to back. Further, one cantilever 11 is attached to the probe main body 7 with a pin 12, and the cantilever 11 is mounted with the oblique angle probes 9a and 9b for pipe axes. The cantilever 11 has a spring 13 and a pin 1 attached to a fulcrum.
2 always tries to be eccentric in the outer diameter direction of the pipe, but the eccentricity adjustment ring 14 and the ring fixing cap nut 15 provided in the probe main body 7 restrain the eccentricity, and the cantilever 11 moves to the ring 14. Since the eccentricity can be achieved only up to the contact position, the optimum eccentricity amount can be varied according to the pipe specifications.

【0010】また探触子本体7を管軸中心線上に保持さ
せるため、探触子本体7の両端にスプリングシャフト1
6が取付けられており、調心治具が装着される。このス
プリングシャフト16は、図2に示すように、探触子本
体7の両端に取付けられたベアリング18に直結されて
おり、垂直探触子8と4個の斜角探触子9a,9b,1
0a,10bが装着された探触子本体7は、スプリング
シャフト16と二重構造となったロータリシャフト17
で円周方向へ回転駆動される。すなわち探触子本体7と
スプリングシャフト16との間にベアリング18が内蔵
され、探触子本体7とロータリシャフト17が固定ネジ
19で直結されているため、ロータリシャフト17の回
転に伴って探触子本体7も回転することになる。
Further, in order to hold the probe main body 7 on the tube axis center line, the spring shaft 1 is provided at both ends of the probe main body 7.
6 is attached, and a centering jig is attached. As shown in FIG. 2, this spring shaft 16 is directly connected to bearings 18 attached to both ends of the probe main body 7, and the vertical probe 8 and the four beveled probes 9a, 9b, 1
The probe main body 7 on which 0a and 10b are mounted is a rotary shaft 17 having a double structure with the spring shaft 16.
Is driven to rotate in the circumferential direction. That is, since the bearing 18 is built in between the probe main body 7 and the spring shaft 16 and the probe main body 7 and the rotary shaft 17 are directly connected by the fixing screw 19, the probe 18 is rotated as the rotary shaft 17 rotates. The child body 7 also rotates.

【0011】このような超音波探触子において、垂直探
触子8により溶接ビード形状,位置の確認及び減肉量測
定する要領、管軸用斜角探触子9a,9b及び円周用斜
角探触子10a,10bによりき裂検出する要領を図3
〜図5について説明する。図3〜図5において、1はボ
イラーチューブ、2aは管軸付着金物、2bは円周付着
金物、3aは管軸溶接部、3bは円周溶接部、4aは管
軸方向き裂、4bは円周方向き裂、5は水、6は減肉部
分である。まず図3は、垂直探触子8でボイラーチュー
ブ1の減肉部分6を検査するためと、溶接部3a,3b
のビードの形状を確認する様子を示したもので、垂直探
触子8は直径方向管中心線上に保持されており、実際に
は円周方向に回転しかつ管軸方向に移動しながら、管の
減肉部分6の減肉量の検査と溶接部3a,3bのビード
形状及び位置の確認を行う。垂直探触子8が管軸方向ハ
の位置にあるときは管の減肉部分6による超音波多重エ
コーが得られ、同様に管軸方向ロの位置にあるときは管
の母材の肉厚による多重エコーが得られる。一方垂直探
触子8が管軸方向イの位置又は管軸方向ニの位置にある
ときは、管材に入射した超音波が溶接部3a,3bの中
に伝播し、溶接部3a,3bの外表面で乱反射し超音波
反射エコーが得られない。これらに示すように、管の減
肉量の検査には超音波多重エコーが得られる場合を、溶
接ビードの確認には超音波多重エコーが得られない場合
を利用している。
In such an ultrasonic probe, a procedure for confirming the weld bead shape and position and measuring the amount of wall thinning by the vertical probe 8, the oblique angle probes 9a and 9b for pipe axes and the oblique angle for circumference. FIG. 3 shows how to detect cracks by the angle probes 10a and 10b.
5 will be described. In FIGS. 3 to 5, 1 is a boiler tube, 2a is a pipe axis adhered metal, 2b is a circumferential adhered metal, 3a is a pipe axis welded part, 3b is a circumferential welded part, 4a is a pipe axial crack, 4b is Circumferential cracks, 5 is water, and 6 is a thinned portion. First, FIG. 3 shows the inspection of the thinned portion 6 of the boiler tube 1 with the vertical probe 8 and the welding portions 3a and 3b.
The vertical probe 8 is held on the diametrical tube center line, and while actually rotating in the circumferential direction and moving in the tube axial direction, The amount of thinning of the thinned portion 6 and the bead shape and position of the welded portions 3a and 3b are checked. When the vertical probe 8 is at the position of the pipe axial direction c, ultrasonic multiple echo by the thinned portion 6 of the pipe is obtained. Similarly, when it is at the position of the pipe axial direction b, the wall thickness of the base metal of the pipe is obtained. Multiple echoes are obtained. On the other hand, when the vertical probe 8 is in the position of the pipe axis direction a or the position of the pipe axis direction d, the ultrasonic wave incident on the pipe material propagates into the welded portions 3a and 3b, and the outside of the welded portions 3a and 3b. Ultrasound reflection echo cannot be obtained due to diffuse reflection on the surface. As shown in these figures, the case where an ultrasonic multiple echo is obtained is used for the inspection of the thinning amount of the pipe, and the case where the ultrasonic multiple echo is not obtained is used for the confirmation of the welding bead.

【0012】図4は、ボイラーチューブ1の管軸付着金
物2aの管軸溶接部3aに発生した管軸方向き裂4a
を、欠陥検出の方向性を考慮した2個の管軸用斜角探触
子9a,9bで検査する場合を示したもので、斜角探触
子9a,9bは超音波を放射しない側を互いに背中合わ
せにしたうえで、管軸に対して直角かつ管の直径方向に
き裂の検出が最大となる任意の量δだけ偏心させる位置
に保持され、円周方向に回転するとともに管軸方向に移
動する様子を示す。また図5は、ボイラーチューブ1の
円周付着金物2bの円周溶接部3bに発生した円周方向
き裂4bを、欠陥検出の方向性を考慮した2個の円周用
斜角探触子10a,10bで検査する場合を示したもの
で、斜角探触子10a,10bは互いに超音波放射しな
い側を背中合わせにし、管の直径方向管中心線に対し欠
陥の検出が最大となる角度θi だけ管軸方向に傾斜させ
て保持されており、円周方向に回転するとともに管軸方
向に移動する様子を示す。
FIG. 4 shows a crack 4a in the axial direction of the tube, which is generated in the tube axis welded portion 3a of the tube axis attached metal 2a of the boiler tube 1.
Shows the case of inspecting with two tube-angle bevel probes 9a and 9b in consideration of the directionality of defect detection. The bevel probes 9a and 9b are the ones that do not emit ultrasonic waves. They are back-to-back with each other, and are held at a position that is eccentric to the pipe axis by an arbitrary amount δ that maximizes the detection of cracks in the pipe diametrical direction and rotates in the circumferential direction and in the pipe axial direction. It shows how to move. Further, FIG. 5 shows two circumferential bevel probes for the circumferential crack 4b generated in the circumferential welded portion 3b of the circumferentially adhered metal object 2b of the boiler tube 1 in consideration of the directionality of defect detection. In the case of inspecting with 10a, 10b, the beveled probes 10a, 10b have their sides that do not emit ultrasonic waves back to back, and the angle θ at which the detection of a defect is maximum with respect to the diametrical tube center line of the tube is shown. Only i is held by being tilted in the tube axis direction, and it is shown that it rotates in the circumferential direction and moves in the tube axis direction.

【0013】図6は探触子本体7が曲管部を通過する様
子を示したものであり、探触子本体7の両端がスプリン
グシャフト16により支持されているため、ボイラーチ
ューブ1の曲管部での通過が容易である。
FIG. 6 shows a state where the probe main body 7 passes through the curved pipe portion. Since both ends of the probe main body 7 are supported by the spring shafts 16, the curved pipe of the boiler tube 1 is shown. It is easy to pass through the department.

【0014】更にこの超音波探触子を使用してボイラー
チューブの付着金物溶接部(円周方向溶接部)付近を探
傷する態様を図7について説明すると、探触子本体7は
その前後に取付けられた調心治具20により、ボイラー
チューブ1の管軸中心線上に保持される。これにより各
探触子8,9a,9b,10a,10bは常に一定の条
件でボイラーチューブ1内を回転しながら流水等により
管軸方向に送られ、管の減肉量の検査,溶接ビードの形
状及び位置の確認,更に付着金物溶接部等に発生した管
軸方向及び円周方向のき裂の検査を行う。なお図中21
は調心治具押さえバネ、22は押さえバネ調節ナット、
23はガイドである。
Further, referring to FIG. 7, a description will be given of a mode in which the ultrasonic probe is used to detect flaws in the vicinity of the weld metal welded portion (circumferential direction welded portion) of the boiler tube. The centering jig 20 thus prepared holds the boiler tube 1 on the center line of the tube axis. As a result, each probe 8, 9a, 9b, 10a, 10b is constantly fed in the tube axial direction by running water or the like while rotating in the boiler tube 1 under a constant condition, inspecting the amount of thinning of the tube, and welding bead Check the shape and position, and also inspect the cracks in the welded portion of the adhered metal in the axial and circumferential directions. 21 in the figure
Is a centering jig holding spring, 22 is a holding spring adjusting nut,
Reference numeral 23 is a guide.

【0015】ここで、調心治具20の調心機構及びガイ
ド23の構造について説明すると、調心治具20は素材
にナイロン24を使用しており、製造時に1株あたりの
素線数と素材の長さが管理されていて、図8に示すよう
に、調心治具20の径が管の内径より大きい場合、ナイ
ロン24が一様につぶれ、探触子本体7の調心が可能と
なる。この場合探触子本体7の調心が悪いと、回転及び
管軸送り時に各探触子8,9a,9b,10a,10b
の管軸等に対する保持条件が一定せず、検査性能の低下
又は検査不能となる。またガイド23はスプリングシャ
フト16の先端にテフロン製のボールを取付けたもので
あり、溶接部の内面などの突起物にスプリングシャフト
16の先端がつっかえることを防止する。
Now, the aligning mechanism of the aligning jig 20 and the structure of the guide 23 will be described. The aligning jig 20 uses nylon 24 as a material, and the number of strands per share is The length of the material is controlled, and as shown in FIG. 8, when the diameter of the aligning jig 20 is larger than the inner diameter of the tube, the nylon 24 is uniformly crushed and the probe main body 7 can be aligned. Becomes In this case, if the probe main body 7 is not properly aligned, each of the probes 8, 9a, 9b, 10a, 10b during rotation and tube feed.
The holding conditions for the tube axis, etc. are not constant and the inspection performance deteriorates or the inspection becomes impossible. Further, the guide 23 has a Teflon ball attached to the tip of the spring shaft 16 and prevents the tip of the spring shaft 16 from sticking to a protrusion such as the inner surface of the welded portion.

【0016】かくしてこのような超音波探触子によれ
ば、ボイラーチューブ1の内側から水浸式により、ボイ
ラーチューブ1の減肉部分6の減肉量や付着金物溶接部
3a,3b等に生じたき裂4a,4bの検査ができるの
で、検査のための管外面の研磨やスケール除去等が不要
となる。また管の減肉量を検査する垂直探触子8は溶接
ビードの形状及び位置の確認用として利用することによ
り、斜角探触子9a,9b,10a,10bによる溶接
部等に発生するき裂4a,4bを検査する際、溶接ビー
ドと欠陥との識別や位置関係の判定を容易ならしめる。
また管軸方向及び円周方向き裂検査用の斜角探触子9
a,9b,10a,10bはそれぞれ2個を背中合わせ
する形で装着されているため、溶接ルート部及び溶接ト
ウ部に関係なく、常に管表面とき裂によって形成される
コーナ部にどちらか一方のチャンネルの超音波を入射で
きるので、管軸送りの方向に関係なく検査ができるとと
もに、1ループのボイラーチューブについて1回の管内
挿入でほぼ同一時刻に管の減肉量と付着金物溶接部等に
発生した管軸方向及び円周方向き裂の検査ができ、極め
て作業性のよい精密な検査が可能となる。
Thus, according to such an ultrasonic probe, the amount of thinning of the thinned portion 6 of the boiler tube 1 and the adhered metal welded portions 3a, 3b etc. are generated from the inside of the boiler tube 1 by the water immersion method. Since the cracks 4a and 4b can be inspected, it is not necessary to polish the outer surface of the pipe or remove scale for inspection. Further, the vertical probe 8 for inspecting the amount of thinning of the pipe is used for confirming the shape and position of the welding bead, so that it is generated in the welded portion by the beveled probes 9a, 9b, 10a, 10b. When inspecting the cracks 4a and 4b, it is easy to identify the weld bead and the defect and to determine the positional relationship.
Also, a bevel probe 9 for pipe axial and circumferential crack inspection.
a, 9b, 10a, and 10b are mounted so that two of them are back-to-back, regardless of the welding root and welding toe, either channel is always formed at the corner formed by the pipe surface and cracks. Since ultrasonic waves can be injected, it is possible to inspect regardless of the direction of pipe axis feed, and one looped boiler tube is inserted into the pipe once, and the thinning amount of the pipe and the welded metal deposits are generated at approximately the same time. It is possible to inspect cracks in the pipe axial direction and in the circumferential direction, and it is possible to perform precise inspection with extremely good workability.

【0017】[0017]

【発明の効果】要するに本発明によれば、ボイラーチュ
ーブの管軸方向及び円周方法のき裂や管の減肉量を管の
内部から水浸式超音波探傷により検査する探触子であっ
て、管内に管軸方向移動及び管軸周り回転可能に挿入さ
れた探触子本体と、上記探触子本体に搭載された溶接ビ
ード形状,位置の確認及び管の減肉量測定用の1個の垂
直探触子と、上記探触子本体にそれぞれ背中合わせに2
個づつ搭載された管軸方向及び円周方向き裂検出用の4
個の斜角探触子とを具えたことにより、ボイラーチュー
ブの付着金物溶接部に発生する管軸方向及び円周方向の
き裂や管の減肉量の検査を、1ループのボイラーチュー
ブにつき1回の挿入によりほぼ同一時刻に実施すること
を可能ならしめる、ボイラーチューブ探傷用超音波探触
子を得るから、本発明は産業上極めて有益なものであ
る。
In summary, according to the present invention, a probe for inspecting a crack in the axial direction of the boiler tube and a circumferential method and a thinning amount of the tube from the inside of the tube by a water immersion type ultrasonic flaw detection. , A probe body inserted into the pipe so as to be movable in the pipe axis direction and rotatable about the pipe axis, and a shape for welding bead mounted on the probe body, confirmation of the position, and measurement of the amount of wall thinning of the pipe. Two vertical probes and two back to back of the above probe body.
4 for detecting cracks in the axial and circumferential directions mounted individually
Since it is equipped with a single angle probe, it is possible to check the cracks in the axial and circumferential directions of the welded metal parts of the boiler tube and the amount of thinning of the tube per one loop boiler tube. INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially because it provides an ultrasonic probe for boiler tube flaw detection that can be performed at approximately the same time with one insertion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ボイラーチューブ探傷用超音波探触子の
一実施例を示し、同図(a)は側面図、同図(b)は正
面図である。
FIG. 1 shows an embodiment of an ultrasonic probe for boiler tube flaw detection according to the present invention. FIG. 1 (a) is a side view and FIG. 1 (b) is a front view.

【図2】同上の回転機構の縦断面図である。FIG. 2 is a vertical cross-sectional view of the above rotating mechanism.

【図3】垂直探触子による検査要領の説明図である。FIG. 3 is an explanatory diagram of an inspection procedure using a vertical probe.

【図4】管軸用斜角探触子による検査要領の説明図であ
る。
FIG. 4 is an explanatory diagram of an inspection procedure using a bevel probe for a tube axis.

【図5】円周用斜角探触子による検査要領の説明図であ
る。
FIG. 5 is an explanatory diagram of an inspection procedure using a circumferential bevel probe.

【図6】本探触子が曲管部を通過する態様を示す側面図
である。
FIG. 6 is a side view showing a mode in which the present probe passes through a curved tube portion.

【図7】本探触子が付着金物溶接部を探傷する態様を示
す斜視図である。
FIG. 7 is a perspective view showing a mode in which the present probe detects flaws on an adhered metal welded portion.

【図8】同上における調心治具の説明図である。FIG. 8 is an explanatory view of an aligning jig in the above.

【符合の説明】[Explanation of sign]

1 ボイラーチューブ 2a 管軸付着金物 2b 円周付着金物 3a 管軸溶接部 3b 円周溶接部 4a 管軸方向き裂 4b 円周方向き裂 5 水 6 減肉部分 7 探触子本体 8 垂直探触子 9a,9b 管軸用斜角探触子 10a , 10b 円周用斜角探触子 11 カンチレバー 12 ピン 13 バネ 14 偏心量調節リング 15 リング固定用袋ナット 16 スプリングシャフト 17 ロータリシャフト 18 ベアリング 19 固定ネジ 20 調心治具 21 調心治具押さえバネ 22 押さえバネ調節ナット 23 ガイド 24 ナイロン 1 Boiler tube 2a Pipe shaft attached metal 2b Circumferentially attached metal 3a Pipe shaft weld 3b Circumferential weld 4a Pipe axial crack 4b Circumferential crack 5 Water 6 Thin wall portion 7 Probe body 8 Vertical probe 9a, 9b Angle probe for shaft axis 10a, 10b Angle probe for circumference 11 Cantilever 12 Pin 13 Spring 14 Eccentricity adjustment ring 15 Ring fixing cap nut 16 Spring shaft 17 Rotary shaft 18 Bearing 19 Fixed Screw 20 Aligning jig 21 Aligning jig Holding spring 22 Holding spring adjusting nut 23 Guide 24 Nylon

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラーチューブの管軸方向及び円周方
法のき裂や管の減肉量を管の内部から水浸式超音波探傷
により検査する探触子であって、管内に管軸方向移動及
び管軸周り回転可能に挿入された探触子本体と、上記探
触子本体に搭載された溶接ビード形状,位置の確認及び
管の減肉量測定用の1個の垂直探触子と、上記探触子本
体にそれぞれ背中合わせに2個づつ搭載された管軸方向
及び円周方向き裂検出用の4個の斜角探触子とを具えた
ことを特徴とするボイラーチューブ探傷用超音波探触
子。
1. A probe for inspecting a crack in a tube axial direction of a boiler tube and a circumferential method and a thinning amount of the tube by a water immersion ultrasonic flaw detection from the inside of the tube, wherein the tube axial direction is in the tube. A probe main body inserted so as to be movable and rotatable around the pipe axis, and one vertical probe mounted on the probe main body for confirming the weld bead shape and position and measuring the amount of thinning of the pipe. , A super-boiler tube for ultrasonic flaw detection, comprising four beveled probes for detecting cracks in the pipe axial direction and in the circumferential direction, each of which is mounted two back to back on the probe body. Sonic probe.
JP4116824A 1992-04-09 1992-04-09 Ultrasonic probe for boiler tube flaw detection Expired - Fee Related JP2994852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116824A JP2994852B2 (en) 1992-04-09 1992-04-09 Ultrasonic probe for boiler tube flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116824A JP2994852B2 (en) 1992-04-09 1992-04-09 Ultrasonic probe for boiler tube flaw detection

Publications (2)

Publication Number Publication Date
JPH05288735A true JPH05288735A (en) 1993-11-02
JP2994852B2 JP2994852B2 (en) 1999-12-27

Family

ID=14696539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116824A Expired - Fee Related JP2994852B2 (en) 1992-04-09 1992-04-09 Ultrasonic probe for boiler tube flaw detection

Country Status (1)

Country Link
JP (1) JP2994852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536946A (en) * 2010-09-02 2013-09-26 シーメンス エナジー インコーポレイテッド Phased array ultrasonic inspection system for turbine and generator rotors
JP2014085199A (en) * 2012-10-23 2014-05-12 Japan Polyethylene Corp Ultrasonic inspection method and ultrasonic inspection device of outer surface crack in thick tube
JP2016191572A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Ultrasonic inspection equipment
JP2018136271A (en) * 2017-02-23 2018-08-30 三菱日立パワーシステムズ株式会社 Piping inspection sensor, piping inspection device, and piping inspection method using piping inspection sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536946A (en) * 2010-09-02 2013-09-26 シーメンス エナジー インコーポレイテッド Phased array ultrasonic inspection system for turbine and generator rotors
JP2014085199A (en) * 2012-10-23 2014-05-12 Japan Polyethylene Corp Ultrasonic inspection method and ultrasonic inspection device of outer surface crack in thick tube
JP2016191572A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Ultrasonic inspection equipment
JP2018136271A (en) * 2017-02-23 2018-08-30 三菱日立パワーシステムズ株式会社 Piping inspection sensor, piping inspection device, and piping inspection method using piping inspection sensor

Also Published As

Publication number Publication date
JP2994852B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP3186810B2 (en) Apparatus for ultrasonic nondestructive inspection of elongated components having a substantially constant cross section
US7428842B2 (en) Phased array ultrasonic testing system and methods of examination and modeling employing the same
KR100304079B1 (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing and method for inspecting defects in the tubing using the same
EP2669672B1 (en) Apparatus and method for inspecting a tube
JP2013536946A (en) Phased array ultrasonic inspection system for turbine and generator rotors
JPH11512822A (en) Ultrasonic inspection method and apparatus for a disk having an unknown contour shrink-fitted on a shaft
US5377237A (en) Method of inspecting repaired stub tubes in boiling water nuclear reactors
US6222897B1 (en) Wrist raster scan methods
JPH05288735A (en) Ultrasonic probe for flaw-detecting boiler tube
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP2004212366A (en) Creep damage detecting method
EP0429302B1 (en) Ultrasonic testing method for detecting flaws of balls and apparatus for said method
JP3759050B2 (en) Ultrasonic probe holder, ultrasonic flaw detector, and ultrasonic flaw detection method for tubular body
WO2009094627A1 (en) Method and apparatus for inspection of gas turbine discs
JPH0545341A (en) Ultrasonic probe for flaw inspection of boiler tube
CN110006998A (en) A detection system and detection method for detecting welds of hollow pipe fittings
KR102817203B1 (en) A method for detecting defects on the junction interface of objects formed in a hollow shape and formed of dissimilar metals
JP2862397B2 (en) Ultrasonic probe for boiler tube flaw detection
JP2003130855A (en) Ultrasonic flaw detecting method for pipe arrangement and device for the same
WO2004077045A1 (en) Ultrasonic examination method and ultrasonic examination jig
Si et al. CIVA Simulation and Experiment Verification for Thin-Walled Small-Diameter Pipes by Using Phased Array Ultrasonic Testing
JPH0344245B2 (en)
JP4049985B2 (en) Ultrasonic flaw detection apparatus and method
JPH0658910A (en) Pipe insertion type ultrasonic probing device
CN111239243A (en) A non-destructive testing method for longitudinal defects of small-diameter thin-walled pipes based on laser ultrasound and circumferential guided waves

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees