JPH05288041A - Nitrogen oxide decreasing device for continuous combustion device - Google Patents
Nitrogen oxide decreasing device for continuous combustion deviceInfo
- Publication number
- JPH05288041A JPH05288041A JP4088651A JP8865192A JPH05288041A JP H05288041 A JPH05288041 A JP H05288041A JP 4088651 A JP4088651 A JP 4088651A JP 8865192 A JP8865192 A JP 8865192A JP H05288041 A JPH05288041 A JP H05288041A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- combustion
- nitrogen oxide
- temperature
- continuous combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2046—Periodically cooling catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2882—Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/02—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/04—Adding substances to exhaust gases the substance being hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
(57)【要約】
【目的】 本発明は、連続燃焼装置の排気ガス中の窒素
酸化物を、燃焼装置の効率を落とすことなく、排気ガス
中の酸素濃度と無関係に低減浄化させるようにすること
を目的とする。
【構成】 連続燃焼装置の排出通路上に、順次、冷却手
段,水素供給手段及び窒素酸化物浄化用の触媒装置を設
け、排気ガス中の窒素酸化物を浄化する前に排気ガスの
温度を最適浄化率を示す領域まで降温させて、窒素酸化
物の浄化率を向上させた。
(57) [Abstract] [PROBLEMS] The present invention is intended to reduce and purify nitrogen oxides in exhaust gas of a continuous combustion device regardless of the oxygen concentration in the exhaust gas without reducing the efficiency of the combustion device. The purpose is to [Composition] A cooling device, a hydrogen supply device, and a catalyst device for purifying nitrogen oxides are sequentially installed on the exhaust passage of the continuous combustion device to optimize the temperature of the exhaust gas before purifying the nitrogen oxides in the exhaust gas. By lowering the temperature to a region showing a purification rate, the purification rate of nitrogen oxides was improved.
Description
【0001】[0001]
【産業上の利用分野】本発明は、外燃機関およびボイラ
などの連続燃焼装置より排出される窒素酸化物の低減装
置に係り、特にスターリング機関などのエンジンの燃費
の良さを損なうことなく、窒素酸化物を有効に還元浄化
する浄化シスムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for reducing nitrogen oxides discharged from a continuous combustion device such as an external combustion engine and a boiler, and particularly to a device for reducing nitrogen oxides without impairing the fuel economy of an engine such as a Stirling engine. The present invention relates to a purification system for effectively reducing and purifying oxides.
【0002】[0002]
【従来の技術】外燃機関の一つであるスターリング機関
では、燃焼室に配置したバーナで燃料を燃焼して作動ガ
スを加熱膨張させる過程を有する。このバーナの燃焼に
よる作動ガスの加熱は、通常、燃焼室内に燃料と燃焼用
空気とを供給して高温燃焼することで発生する燃焼熱を
利用している。そして燃焼排気ガスは排出通路を通じて
大気中に排出されている。この場合、燃料は燃焼用空気
と共に高温で完全燃焼され、排気ガス中には有害成分を
含まないようにしており、未燃焼分のHC、COは少な
いが、窒素酸化物(NOx)の含有は避けられない。2. Description of the Related Art A Stirling engine, which is one of external combustion engines, has a process in which a burner disposed in a combustion chamber burns fuel to heat and expand a working gas. The heating of the working gas by the combustion of the burner normally utilizes combustion heat generated by high temperature combustion by supplying fuel and combustion air into the combustion chamber. Then, the combustion exhaust gas is discharged into the atmosphere through the discharge passage. In this case, the fuel is completely combusted at a high temperature together with the combustion air, and the exhaust gas does not contain harmful components. Although the unburned HC and CO are small, nitrogen oxide (NOx) is not contained. Inevitable.
【0003】連続燃焼装置における排気ガス中の窒素酸
化物の低減方法には、希薄燃焼法、三元系浄化触媒を使
用する方法などが考えられる。しかしながら、スターリ
ング機関の連続燃焼装置について考えると、希薄燃焼法
では空気の供給量を多くし燃焼火炎温度を下げるために
熱効率が下がるという不具合や、空気供給量を多くする
ために空気供給用ブロアーの消費動力が増大してエンジ
ン効率の低下を招くという不具合がある。As a method for reducing nitrogen oxides in exhaust gas in a continuous combustion device, a lean combustion method, a method using a ternary purification catalyst, etc. can be considered. However, when considering the continuous combustion device of the Stirling engine, in the lean burn method, the air supply amount is increased and the combustion flame temperature is lowered to lower the thermal efficiency, and the air supply blower is used to increase the air supply amount. There is a problem that power consumption increases and engine efficiency decreases.
【0004】そこで三元系浄化触媒の使用が有効と考え
られる。この三元系浄化触媒を使用する方法では、排気
ガス中に存在するNOx、CO、HCを浄化触媒で
N2 、CO2 、H2 Oなどの無害成分に化学変化させる
方法である。この化学変化は酸化と還元が同時に進行す
るため、還元の効率を高めるため排気ガスを低酸素濃度
の状態に保つ必要があり、かつその酸素濃度変化の許容
量の幅が極めて狭い。そのためこの方法を採用する場合
には、極めて正確に燃料と燃焼用空気の供給量を制御す
る必要がある。また、元来連続燃焼では低空気過剰率で
あつても、HC、COなどの成分は少ないので、特に三
元系触媒を使用する必要はない。もしこの三元系触媒を
使用する場合は、排気ガス温度を400〜450℃以上
にする必要があり、その場合には排気ガスによる空気の
予熱が充分にできず、燃焼部に供給される空気の温度が
低くなり、その結果エンジン効率低下の要因となり好ま
しくない。さらに、排気ガスが高温となるので触媒の耐
久性の低下や、高価な貴金属を使用するためコスト高に
なるという問題がある。Therefore, it is considered effective to use a ternary purification catalyst. The method using the ternary purification catalyst is a method in which NOx, CO, and HC present in the exhaust gas are chemically converted into harmless components such as N 2 , CO 2 , and H 2 O by the purification catalyst. Since this chemical change proceeds simultaneously with oxidation and reduction, it is necessary to keep the exhaust gas in a low oxygen concentration state in order to improve the reduction efficiency, and the allowable range of the oxygen concentration change is extremely narrow. Therefore, when this method is adopted, it is necessary to control the supply amounts of fuel and combustion air extremely accurately. Further, in the continuous combustion, even if the air excess ratio is low, the components such as HC and CO are small, so that it is not necessary to use the ternary catalyst. If this three-way catalyst is used, the exhaust gas temperature must be 400 to 450 ° C or higher. In that case, the air cannot be sufficiently preheated by the exhaust gas, and the air supplied to the combustion unit cannot be preheated. Is low, which results in a decrease in engine efficiency, which is not preferable. Further, the exhaust gas has a high temperature, so that the durability of the catalyst is deteriorated and the cost is increased because an expensive precious metal is used.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、外燃機関およびボイラなどの連
続燃焼装置から排出される排気ガス中の窒素酸化物を、
燃焼装置の効率を落とすことなく、排気ガス中の酸素濃
度と無関係に低減浄化させるようにすることを、その技
術的課題とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is possible to reduce nitrogen oxides in exhaust gas discharged from a continuous combustion device such as an external combustion engine and a boiler.
The technical problem is to reduce and purify the exhaust gas regardless of the oxygen concentration in the exhaust gas without lowering the efficiency of the combustion device.
【0006】[0006]
【課題を解決するための手段】上述した本発明の技術的
課題を解決するために講じた本発明の技術的手段は、燃
焼室と、燃焼室にて生成された排気ガスを排出する排出
通路と、排出通路上に配設された触媒装置と、排出通路
上において触媒装置の上流側に配設された水素供給手段
および排気ガス冷却手段とから連続燃焼装置の窒素酸化
物低減装置を構成したことである。The technical means of the present invention taken to solve the above-mentioned technical problem of the present invention is a combustion chamber and an exhaust passage for exhausting exhaust gas generated in the combustion chamber. And a catalyst device arranged on the discharge passage, and a hydrogen supply means and an exhaust gas cooling means arranged on the upstream side of the catalyst device on the discharge passage, to form a nitrogen oxide reduction device of a continuous combustion device. That is.
【0007】[0007]
【作用】本発明の燃焼装置における窒素酸化物の低減装
置によれば、燃焼室より排出された排気ガスは、まず、
触媒装置が高効率で作用できるように、排気ガス冷却手
段により適宜冷却された後、水素が混入された状態で触
媒装置へと流入し、低温状態にて窒素酸化物が接触還元
され浄化される。According to the nitrogen oxide reducing apparatus in the combustion apparatus of the present invention, the exhaust gas discharged from the combustion chamber is
After being appropriately cooled by the exhaust gas cooling means so that the catalyst device can operate with high efficiency, hydrogen flows into the catalyst device in a mixed state, and nitrogen oxides are catalytically reduced and purified in a low temperature state. ..
【0008】[0008]
【実施例】以下、上述した本発明の技術的手段を具体化
した実施例を説明する。Embodiments Embodiments embodying the above-mentioned technical means of the present invention will be described below.
【0009】図1に基づいて、本発明第1実施例の連続
燃焼装置の窒素酸化物低減装置10を説明する。この実
施例ではスターリング機関の燃焼装置に応用している。A nitrogen oxide reducing apparatus 10 for a continuous combustion apparatus according to a first embodiment of the present invention will be described with reference to FIG. In this embodiment, it is applied to a combustion device of a Stirling engine.
【0010】ここで、燃焼室11は周囲を断熱壁面12
で覆われた有底の円筒形状を呈しており、その底部には
スターリング機関を作動させる作動ガスが充填された加
熱管13が略放射状に設けられている。また、断熱壁面
12の内側には燃焼用空気を高温排気ガスの熱で予熱す
る空気予熱器14が略円筒状に配置されている。この空
気予熱器14は図示しない排気ガス通路と燃焼用空気通
路を有している。そして加熱管13に対向する頂部中央
には、燃料噴射ノズル15および図示しない着火装置な
どからなる着火部16が設けられている。また、着火部
16には図示しないブロワから圧送される燃焼用空気が
空気予熱器14にて予熱された後、スワラ17により旋
回流を与えられた状態で供給される。Here, the combustion chamber 11 is surrounded by a heat insulating wall surface 12.
It has a bottomed cylindrical shape covered with, and a heating pipe 13 filled with a working gas for operating the Stirling engine is provided substantially radially at the bottom thereof. Further, an air preheater 14 for preheating the combustion air with the heat of the high-temperature exhaust gas is arranged inside the heat insulating wall surface 12 in a substantially cylindrical shape. The air preheater 14 has an exhaust gas passage and a combustion air passage which are not shown. An ignition unit 16 including a fuel injection nozzle 15 and an ignition device (not shown) is provided at the center of the top facing the heating pipe 13. Further, the combustion air, which is pressure-fed from a blower (not shown), is preheated by the air preheater 14 and then supplied to the ignition unit 16 in a state where a swirl flow is applied by the swirler 17.
【0011】排出通路18は燃焼室11の底部に近い一
部の側壁に開口し、燃焼室11と外部とを連通してい
る。そして排出通路14上には、順次、冷却手段19,
ミキサ20及び触媒装置(NOx還元触媒)21が配置
されている。The discharge passage 18 opens in a part of the side wall near the bottom of the combustion chamber 11 and connects the combustion chamber 11 and the outside. Then, on the discharge passage 14, cooling means 19,
A mixer 20 and a catalyst device (NOx reduction catalyst) 21 are arranged.
【0012】まず、冷却手段19において、クーラ29
は所謂水冷タイプであり、図示しない排気ガス通路と冷
却水通路とを有し、排気ガス通路はその両端が排出通路
14と連通すると共に、冷却水通路は一端が供給管22
と連通し、他端が排出管23と連通している。供給管2
2上には制御弁24が配設され、その開度は制御装置2
5により制御される。また、制御弁24の開度を制御す
るために、制御装置25には触媒装置21の入口部に配
設された温度センサ26を介して触媒装置21へ流入す
る排気ガスの温度情報が入力されている。ここで、排出
管23から排出される冷却水は高温であり、別途図示し
ない外部の冷却手段により冷却された後、再び供給管2
2へと供給される。First, in the cooling means 19, the cooler 29
Is a so-called water-cooled type, and has an exhaust gas passage and a cooling water passage (not shown), both ends of the exhaust gas passage communicate with the discharge passage 14, and one end of the cooling water passage has a supply pipe 22.
And the other end communicates with the discharge pipe 23. Supply pipe 2
A control valve 24 is arranged above the control valve 2, and the opening degree of the control valve 24 is controlled by the control device 2.
Controlled by 5. Further, in order to control the opening degree of the control valve 24, the temperature information of the exhaust gas flowing into the catalyst device 21 is input to the control device 25 via the temperature sensor 26 arranged at the inlet of the catalyst device 21. ing. Here, the cooling water discharged from the discharge pipe 23 has a high temperature, is cooled by an external cooling means (not shown), and is then supplied again to the supply pipe 2.
2 is supplied.
【0013】次に、ミキサ20は、図示しない水素供給
源や燃焼室11における燃焼熱を利用した燃料改質によ
り得られる水素を排気ガス中に混入させる水素供給手段
27を構成する。Next, the mixer 20 constitutes a hydrogen supply means 27 for mixing hydrogen obtained by fuel reforming utilizing combustion heat in the hydrogen supply source and the combustion chamber 11 (not shown) into the exhaust gas.
【0014】以上の構成を有する連続燃焼装置の窒素酸
化物低減装置10の作動について説明する。The operation of the nitrogen oxide reduction system 10 of the continuous combustion system having the above construction will be described.
【0015】燃料噴射ノズル15から例えばLNG燃料
が着火部16に噴射される。同時にブロワから圧送され
た空気は、空気予熱器14にて予熱された後にスワラ1
7により旋回流を与えられ着火部16に供給される。こ
こで、燃料と空気とが混合され、着火されて火炎となり
燃焼室11内へ噴出する。燃焼室11内では、着火部1
6から噴出する火炎および火炎により生成される燃焼ガ
スによつて加熱管13が加熱され、スターリング機関が
連続的に駆動される。そして、燃焼排気ガスは空気予熱
器14で燃焼用空気と熱交換されて冷却され、クーラ2
9へと流入していく。For example, LNG fuel is injected from the fuel injection nozzle 15 to the ignition section 16. At the same time, the air sent under pressure from the blower is preheated by the air preheater 14 and then swirler 1
A swirl flow is given by 7 and supplied to the ignition part 16. Here, the fuel and air are mixed and ignited to form a flame, which is ejected into the combustion chamber 11. In the combustion chamber 11, the ignition part 1
The heating pipe 13 is heated by the flame ejected from 6 and the combustion gas generated by the flame, and the Stirling engine is continuously driven. Then, the combustion exhaust gas is cooled by exchanging heat with the combustion air in the air preheater 14, and the cooler 2
It flows into 9.
【0016】図2に示すように、触媒装置21における
NOxの浄化率は、そこに流入する排気ガス温度と密接
な関係がある。図2に示す実験例によると、水素の混入
濃度に係わらず排気ガス温度が100℃前後の時に高い
浄化率が示される。例えば、空気予熱器14において
は、排気ガスは850℃程度から230℃程度にまでし
か冷却されないので、冷却手段19を用いて排気ガスを
更に冷却する必要がある。即ち、制御装置25は触媒装
置21に流入する排気ガス温度を温度センサ26により
チエツクし、その温度が100℃前後となるように制御
弁24の開度を制御する。この結果、制御弁24の開度
に見合つた冷却水がクーラ29へと供給され、触媒装置
21に流入する排気ガスの温度は100℃前後に保たれ
る。As shown in FIG. 2, the NOx purification rate in the catalyst device 21 is closely related to the temperature of the exhaust gas flowing therein. According to the experimental example shown in FIG. 2, a high purification rate is exhibited when the exhaust gas temperature is around 100 ° C. regardless of the concentration of hydrogen mixed. For example, in the air preheater 14, the exhaust gas is cooled only to about 850 ° C. to about 230 ° C., and therefore the exhaust gas needs to be further cooled by using the cooling means 19. That is, the control device 25 checks the temperature of the exhaust gas flowing into the catalyst device 21 with the temperature sensor 26, and controls the opening degree of the control valve 24 so that the temperature is around 100 ° C. As a result, the cooling water corresponding to the opening degree of the control valve 24 is supplied to the cooler 29, and the temperature of the exhaust gas flowing into the catalyst device 21 is maintained at around 100 ° C.
【0017】更に、排気ガスにはミキサ20を介して水
素が混入されて、触媒装置21へと流入する。そして、
排気ガス中の窒素酸化物は水素ガスにより還元され浄化
された状態で大気中に排出される。尚、水素の混入量に
ついては、適宜の制御手段により触媒装置21における
窒素酸化物の浄化率が最適となるように制御される。Further, hydrogen is mixed into the exhaust gas via the mixer 20 and flows into the catalyst device 21. And
Nitrogen oxides in the exhaust gas are discharged into the atmosphere in a state of being reduced and purified by hydrogen gas. The amount of hydrogen mixed is controlled by an appropriate control means so that the purification rate of nitrogen oxides in the catalyst device 21 is optimized.
【0018】次に、図3に基づいて、本発明第2実施例
の連続燃焼装置の窒素酸化物低減装置40を説明する。
この実施例では、冷却手段19の構成が第1実施例と異
なつているだけなので、他の部分については第1実施例
と同一の番号符号を付すことにより、その説明を省略す
る。Next, a nitrogen oxide reducing apparatus 40 for a continuous combustion apparatus according to a second embodiment of the present invention will be described with reference to FIG.
In this embodiment, only the structure of the cooling means 19 is different from that of the first embodiment. Therefore, the other parts are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
【0019】冷却手段19において、クーラ30は所謂
空冷タイプであり、図示しない排気ガス通路と冷却フイ
ンとを有し、排気ガス通路はその両端が排出通路14と
連通している。クーラ30には冷却フアン31が面して
おり、その回転数は制御装置25により制御される。ま
た、冷却フアン31の回転数を制御するために、制御装
置25には触媒装置21の入口部に配設された温度セン
サ26を介して触媒装置21へ流入する排気ガスの温度
情報が入力されている。In the cooling means 19, the cooler 30 is of a so-called air-cooling type and has an exhaust gas passage and a cooling fin (not shown), and both ends of the exhaust gas passage communicate with the exhaust passage 14. A cooling fan 31 faces the cooler 30, and its rotation speed is controlled by the controller 25. Further, in order to control the rotation speed of the cooling fan 31, the temperature information of the exhaust gas flowing into the catalyst device 21 is input to the control device 25 via the temperature sensor 26 arranged at the inlet of the catalyst device 21. ing.
【0020】従つて、制御装置25は触媒装置21に流
入する排気ガス温度を温度センサ26によりチエツク
し、その温度が100℃前後となるように冷却フアン3
1の回転数を制御する。この結果、触媒装置21に流入
する排気ガスの温度は100℃前後に保たれる。尚、そ
の他の作動については、第1実施例と略同一であり、そ
の説明を省略する。Accordingly, the control device 25 checks the temperature of the exhaust gas flowing into the catalyst device 21 with the temperature sensor 26, and the cooling fan 3 is controlled so that the temperature becomes around 100.degree.
Controls the number of rotations of 1. As a result, the temperature of the exhaust gas flowing into the catalyst device 21 is maintained at around 100 ° C. The other operations are substantially the same as those in the first embodiment, and the description thereof will be omitted.
【0021】[0021]
【発明の効果】本発明によれば、外燃機関およびボイラ
などの連続燃焼装置での燃焼により排出される排気ガス
中に含まれる窒素酸化物を、その窒素酸化物の量に応じ
た量の水素ガスを供給することにより、また、冷却手段
により触媒装置に流入する排気ガスを事前に冷却するこ
とで、排気ガス中の酸素濃度に左右されず100℃前後
の低温の条件で容易に低減除去できる。According to the present invention, the nitrogen oxide contained in the exhaust gas discharged by the combustion in the external combustion engine and the continuous combustion device such as the boiler is controlled in an amount corresponding to the amount of the nitrogen oxide. By supplying hydrogen gas and by cooling the exhaust gas flowing into the catalyst device in advance by the cooling means, it is possible to easily reduce and remove under low temperature conditions of about 100 ° C. regardless of the oxygen concentration in the exhaust gas. it can.
【図1】本発明第1実施例の連続燃焼装置の窒素酸化物
低減装置の構成図を示す。FIG. 1 is a configuration diagram of a nitrogen oxide reduction device of a continuous combustion device according to a first embodiment of the present invention.
【図2】窒素酸化物浄化率の特性図を示す。FIG. 2 shows a characteristic diagram of nitrogen oxide purification rate.
【図3】本発明第2実施例の連続燃焼装置の窒素酸化物
低減装置の構成図を示す。FIG. 3 is a configuration diagram of a nitrogen oxide reduction device of a continuous combustion device according to a second embodiment of the present invention.
11 燃焼室、 18 排出通路、 19 排気ガス冷却手段、 20 水素供給手段、 21 触媒装置。 11 combustion chamber, 18 exhaust passage, 19 exhaust gas cooling means, 20 hydrogen supply means, 21 catalyst device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 皆 本 直 樹 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 藤 原 康 司 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 大 島 雄次郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 村 木 秀 昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 阿 部 勝 司 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 横 田 幸 治 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 河 原 和 生 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Naoki Minamoto, Inventor Naoki Minamoto 2-1, Asahi-cho, Kariya city, Aichi Aisin Seiki Co., Ltd. (72) Inventor, Yasushi Fujiwara 2-chome, Asahi-cho, Kariya city, Aichi prefecture Address: Aisin Seiki Co., Ltd. (72) Inventor Yujiro Oshima, 41, Nagakute, Nagakute-cho, Aichi-gun, Aichi-gun, No. 41 Yokomichi, Toyota Central Research Institute Co., Ltd. (72) Inventor Hideaki Muraki Nagakute, Aichi-gun, Aichi 1 in 41 Chuo-ken Yokodori, Machi-cho, Toyota Central Research Institute Co., Ltd. (72) Inventor Katsushi Abe 1 in 41-long Yokochi, Nagakute-cho, Aichi-gun, Aichi Prefecture Toyota Central Research Institute (72) Invention Person Yokota Koji Harajuku, Aichi-gun, Aichi-gun, Nagakute-cho 1 41, Yokomichi Toyota Central Research Institute Co., Ltd. (72) Inventor Kasei Kawahara Aichi-gun, Aichi Nagakute-machi, Oita, Nagaminato, Yoko 41, 1
Claims (2)
と、 前記排出通路上に配設された触媒装置と、 前記排出通路上において、前記触媒装置の上流側に配設
された水素供給手段および排気ガス冷却手段とを有する
連続燃焼装置の窒素酸化物低減装置。1. A combustion chamber, a discharge passage for discharging exhaust gas generated in the combustion chamber, a catalyst device arranged on the discharge passage, and an upstream side of the catalyst device on the discharge passage. A nitrogen oxide reduction device of a continuous combustion device having a hydrogen supply means and an exhaust gas cooling means disposed on the side.
る排気ガス温度に応じて、その作動が制御されることを
特徴とする請求項1記載の連続燃焼装置の窒素酸化物低
減装置。2. The nitrogen oxide reducing apparatus for a continuous combustion device according to claim 1, wherein the cooling means is controlled in operation according to the temperature of exhaust gas flowing into the catalyst device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4088651A JPH05288041A (en) | 1992-04-09 | 1992-04-09 | Nitrogen oxide decreasing device for continuous combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4088651A JPH05288041A (en) | 1992-04-09 | 1992-04-09 | Nitrogen oxide decreasing device for continuous combustion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05288041A true JPH05288041A (en) | 1993-11-02 |
Family
ID=13948726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4088651A Pending JPH05288041A (en) | 1992-04-09 | 1992-04-09 | Nitrogen oxide decreasing device for continuous combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05288041A (en) |
-
1992
- 1992-04-09 JP JP4088651A patent/JPH05288041A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0571334A (en) | Method and apparatus for reducing nitrogen oxides in combustion apparatus for continuous combustion | |
US4599100A (en) | Melting glass with port and melter burners for NOx control | |
KR970009487B1 (en) | Reduction of NOx emissions during combustion of air-fuel mixtures | |
JP2000514911A (en) | Catalytic combustion chamber and method for ignition and control of the catalytic combustion chamber | |
JPS5827621A (en) | Control of nox generation | |
JPH1150838A (en) | Auxiliary heater for automobile having internal combustion engine | |
JP3359284B2 (en) | Method for reducing NOx emissions in a glass melting furnace | |
JPS60147243A (en) | Gas turbine combustor | |
JPH05288041A (en) | Nitrogen oxide decreasing device for continuous combustion device | |
JP4797491B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH01210707A (en) | Device and method of catalytic combustion device | |
JPS63213723A (en) | catalytic combustion device | |
JPH05272328A (en) | Nitrogen oxide reducing device for continuous combustion device | |
JPH05280325A (en) | Nitrogen oxide reduction device for continuous combustion equipment | |
JPS6090915A (en) | Exhaust emission control apparatus internal-combustion for engine | |
JP2997655B2 (en) | Combustion method for industrial combustion equipment | |
US11939901B1 (en) | Oxidizing reactor apparatus | |
JP3627388B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0828821A (en) | Radiant tube burner device with low nitrogen oxide generation and combustion method thereof | |
JP3521013B2 (en) | Catalytic combustion boiler | |
JP2004508158A (en) | Method for controlling the concentration of nitrogen oxides, hydrocarbons and carbon monoxide while purifying exhaust gas | |
JP2006242009A (en) | Exhaust emission control device and exhaust gas purifying method | |
KR200178228Y1 (en) | Cyclone thermo reactor | |
JP2996030B2 (en) | Catalyst warm-up device for internal combustion engine | |
JPH05115749A (en) | Exhaust gas purifier |