[go: up one dir, main page]

JPH0528746B2 - - Google Patents

Info

Publication number
JPH0528746B2
JPH0528746B2 JP15973487A JP15973487A JPH0528746B2 JP H0528746 B2 JPH0528746 B2 JP H0528746B2 JP 15973487 A JP15973487 A JP 15973487A JP 15973487 A JP15973487 A JP 15973487A JP H0528746 B2 JPH0528746 B2 JP H0528746B2
Authority
JP
Japan
Prior art keywords
film
oligomer
present
diphenylamine
general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15973487A
Other languages
Japanese (ja)
Other versions
JPS646060A (en
Inventor
Nobuyuki Kuroda
Yutaka Shikatani
Yoshuki Shimo
Naoki Kataoka
Kazuo Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP15973487A priority Critical patent/JPS646060A/en
Publication of JPS646060A publication Critical patent/JPS646060A/en
Publication of JPH0528746B2 publication Critical patent/JPH0528746B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はP型電気活性導電材料の製造方法に関
する。 (従来の技術) 従来、有機導電性ポリマーとしてはポリアセチ
レン、ポリピロール、ポリアニリン等が知られて
いる。しかし、これらの有機導電性ポリマーは一
般に不溶、不融であるため成形性および加工性に
乏しくフイルム状の導電性ポリマーを得ることは
困難であつた。 従つて、フイルム状の導電性ポリマーを得るた
めに特殊な方法が種々提案されている。例えば、
(1)重合触媒をガラス壁に塗布し、その上にアセチ
レンガスを吹きつけてポリアセチレンフイルムを
形成させた後、剥離する方法、(2)チオフエンある
いはピロールを電気化学的酸化反応により重合さ
せて電極上にポリチオフエンあるいはポリピロー
ルのフイルム状物質を形成させた後、電極からフ
イルムを剥離する方法、(3)電極基板上に熱可塑性
樹脂フイルムを形成した後、電気化学的酸化反応
によりピロールを重合させて、電極基板上に熱可
塑性樹脂とポリピロールの複合フイルムを形成す
る方法などが提案されている。 しかしながら、前記(1)の方法で形成したフイル
ムは空気中で不安定で容易で酸化劣化し機械的強
度が弱くなるという欠点がある。また(2)および(3)
の方法ではフイルムの大きさが電極の大きさに規
制されると共に、特別な装置および電解質を使用
するため製造法が煩雑でコスト高になるという欠
点がある。 一方、分子量が小さいため特定の溶媒の可溶と
なる導電性オリゴマーがある。しかし、この低分
子量の導電性オリゴマーをキヤスト法によりフイ
ルムを形成しても、そのフイルムは脆く、機械的
強度が弱いという欠点がある。ときには分子量が
低すぎるためフイルム化ができない場合もある。 さらに、このフイルムを電極に使用しても電解
質中に溶出してしまい、電気化学的酸化、還元反
応(ドーピング、脱ドーピング)の繰り返し性が
悪いという欠点があり実用上使用できないのが現
状である。 (発明が解決しようとする問題点) 本発明は低分子の導電性オリゴマーの欠点を解
決し、機械的強度が強く、かつ電気化学的酸化、
還元反応の繰り返し性のよいP型電気活性導電材
料の製造方法を提供するものである。 (問題点を解決するための手段) 本発明者らは導電性オリゴマーとしてジフエニ
ルアミンオリゴマーについて鋭意研究した結果、
本発明を完成したものである。 すなわち、本発明は一般式 (ここでRは水素または炭素数1〜20の炭化水素
残基を示し、nは2≦n≦50である)で表わされ
るジフエニルアミンオリゴマーと汎用高分子を有
機溶媒に溶解させ、しかるのち該有機溶媒を除去
することを特徴とするP型電気活性導電材料の製
造方法に関する。 本発明の方法により得られる導電材料は機械的
強度が強いばかりか、本発明の方法によつて複合
化することにより電解質溶液中にジフエニルアミ
ンオリゴマーが溶出しないという全く予期せざる
効果を有し、従つて電気化学的酸化、還元反応の
繰り返し性がきわめて優れている。 本発明において用いるジフエニルアミンオリゴ
マーは公知の方法で合成することができる。たと
えば、特開昭61−206170号もしくは特開昭61−
28524号で使用されている酸化カツプリング法も
しくはグリニヤールカツプリング法など公知の方
法で合成することができる。一般式
(Industrial Field of Application) The present invention relates to a method for producing a P-type electroactive conductive material. (Prior Art) Conventionally, polyacetylene, polypyrrole, polyaniline, etc. are known as organic conductive polymers. However, since these organic conductive polymers are generally insoluble and infusible, they have poor moldability and processability, and it has been difficult to obtain a film-like conductive polymer. Therefore, various special methods have been proposed to obtain film-like conductive polymers. for example,
(1) A method in which a polymerization catalyst is applied to a glass wall, acetylene gas is sprayed onto it to form a polyacetylene film, and then it is peeled off. (2) A method in which thiophene or pyrrole is polymerized by an electrochemical oxidation reaction and an electrode is formed. (3) After forming a film-like material of polythiophene or polypyrrole on the electrode substrate, the film is peeled off from the electrode. (3) After forming a thermoplastic resin film on the electrode substrate, pyrrole is polymerized by an electrochemical oxidation reaction. , a method of forming a composite film of thermoplastic resin and polypyrrole on an electrode substrate has been proposed. However, the film formed by the above method (1) has the disadvantage that it is unstable in air, easily deteriorates due to oxidation, and its mechanical strength becomes weak. Also (2) and (3)
This method has disadvantages in that the size of the film is limited by the size of the electrode, and that special equipment and electrolytes are used, making the manufacturing process complicated and expensive. On the other hand, there are conductive oligomers that are soluble in specific solvents due to their small molecular weights. However, even if a film is formed from this low molecular weight conductive oligomer by a casting method, the film has the disadvantage that it is brittle and has low mechanical strength. In some cases, the molecular weight is too low to form a film. Furthermore, even if this film is used as an electrode, it will be eluted into the electrolyte, and the repeatability of electrochemical oxidation and reduction reactions (doping and dedoping) is poor, making it currently unusable. . (Problems to be Solved by the Invention) The present invention solves the drawbacks of low-molecular conductive oligomers, has strong mechanical strength, and has high electrochemical oxidation resistance.
The present invention provides a method for producing a P-type electroactive conductive material with good repeatability of reduction reactions. (Means for Solving the Problems) As a result of the inventors' intensive research on diphenylamine oligomers as conductive oligomers,
This completes the present invention. That is, the present invention is based on the general formula (Here, R represents hydrogen or a hydrocarbon residue having 1 to 20 carbon atoms, and n is 2≦n≦50) and a general-purpose polymer are dissolved in an organic solvent, and then The present invention relates to a method for producing a P-type electroactive conductive material, which comprises removing the organic solvent. The conductive material obtained by the method of the present invention not only has high mechanical strength, but also has the completely unexpected effect that diphenylamine oligomers do not elute into the electrolyte solution when composited by the method of the present invention. Therefore, the repeatability of electrochemical oxidation and reduction reactions is extremely excellent. The diphenylamine oligomer used in the present invention can be synthesized by a known method. For example, JP-A-61-206170 or JP-A-61-
It can be synthesized by a known method such as the oxidation coupling method or Grignard coupling method used in No. 28524. general formula

【式】においてRは水 素または炭素数1〜20、好ましくは1〜8の炭化
水素残基を示し、炭化水素残基としては、メチル
基、エチル基、n−プロピル基、i−プロピル
基、n−ブチル基、i−ブチル基、n−ヘキシル
基またはアリル基を、またフエニル基、トリル
基、エチルフエニル基などの各種アリール基、ア
ラルキル基およびその誘導体が例示できる。また
nは2≦n≦50、好ましくは2≦n≦30、さらに
好ましくは2≦n≦10である。 本発明に使用される汎用高分子としては有機溶
媒に可溶性でフイルム形成性のある公知の重合体
が適宜選ばれ、具体的には、ポリビニルクロライ
ド、ポリメチルメタクリル酸、クロロメチル化ポ
リスチレン、ポリスチレン、スチレン−ブタジエ
ン共重合体、エチルセルロース、酢酸セルロー
ス、ポリエチレンテレフタレート、ポリエチレン
オキサイド、ポリアクリロニトリル、ポリ酢酸ビ
ニル、ボリビニルアルコール、ポリエチレン、ポ
リプロピレン、ポリクロロプレン、天然ゴム、フ
エノール樹脂等を挙げることができる。 本発明に使用される有機溶媒はジフエニルアミ
ンオリゴマーおよび汎用高分子を同時に溶解させ
ることができる溶媒であることが必須である。好
ましい有機溶媒としてテトラヒドロフラン、ジエ
チルエーテル、ジイソプロピルエーテル、ジイソ
アミルエーテル等のエーテル類、ベンゼン、ニト
ロベンゼン、オルトジクロロベンゼン、トリクロ
ロベンゼン等の芳香族ニトロ化物またはハロゲン
化物、クロロホルム、塩化メチレン等の有機ハロ
ゲン化物、ジメチルフオルムアミド、N−メチル
−2−ピロリドン等を挙げることができる。 ジフエニルアミンオリゴマーと汎用高分子の均
一複合物を得る方法としては、(1)ジフエニルアミ
ンオリゴマーおよび汎用高分子をそれぞれ別々に
有機溶媒に溶かしておき、ついで両溶液を混合し
キヤストしてから有機溶媒を真空乾燥する方法、
(2)ジフエニルアミンオリゴマーおよび汎用高分子
の混合物に有機溶媒を接触させて溶解して均一溶
液にしてからキヤストし有機溶媒を減圧除去する
方法が好ましく採用される。 ジフエニルアミンオリゴマーと汎用高分子の混
合割合はジフエニルアミンオリゴマーの割合があ
まり大きいと機械的強度が弱くなる傾向を示し、
また小さ過ぎても電気化学的活性が低くなる。通
常、ジフエニルアミンオリゴマーと汎用高分子の
割合が重量比で1:1000〜1:0.1の範囲が好ま
しく、1:10〜1:1の範囲がさらに好ましい。
なおジフエニルアミンオリゴマーと汎用高分子を
混合する際に有機溶媒に可溶な電子受容体たとえ
ば塩素、臭素、ヨウ素等のハロゲン、塩化第2
鉄、四塩化スズ、二塩化銅等のルイス酸、塩化水
素、臭化水素、硫酸、硫酸等の無機酸、またはピ
クリン酸、p−トルエンスルホン酸等の有機酸を
共存させてもよい。 (発明の効果) 本発明の方法により機械的強度の強い、電気化
学的酸化、還元反応の繰り返し性のよいP型電気
活性導電材料を容易に得ることができる。また本
発明により得られた材料は、電子材料、有機半導
体材料として広く利用できる。 (実施例) 以下に実施例により本発明を具体的に説明する
が本発明はこれらに限定されるものではない。 実施例 1 (a) N−メチルジフエニルアミン重合体の合成 300ml三口フラスコに無水FeCl350.0gを入
れ、150mlのエタノールを加えて溶解させた後、
18.4gのN−メチルジフエニルアミンを加えて
室温下、窒素雰囲気中で撹拌しながら24時間反
応させた。反応後生成した青緑色の沈澱をろ過
しエタノール、イオン交換水で洗浄した後、再
びエタノールで洗浄後乾燥して12.1gの青色固
体を得た。 得られた固体をさらに200mlのジクロロメタ
ンに溶解させてろ過し、ろ液を回収してジクロ
ロメタンを除いた後乾燥してジクロロメタンに
可溶なN−メチルジフエニルアミン重合体11.6
gを得た。 得られたN−メチルジフエニルアミン重合体
は、質量分析の結果から質量数364と545に主ピ
ークが検出され、重合度が2および3のN−メ
チルジフエニルアミンのオリゴマーであつた。
また、赤外吸収スペクトル測定を行い、パラ置
換ベンゼンに由来する820cm-1の吸収が認めら
れることから、この重合体がN−メチルジフエ
ニルアミンのフエニル基でパラ位で連結した構
造を持つものであることがわかつた。 (b) 複合フイルムの合成 (a)で得られたN−メチルジフエニルアミンオ
リゴマー0.1gを2mlのテトラヒドロフランに
溶解した(溶液(A))。別にポリ塩化ビニル2.0g
を20mlのテトラヒドロフランに溶解した(溶液
(B))。溶液(A)1mlおよび溶液(B)5mlを混合し均
一溶液としたのちテフロン板上に流えんした。
5時間風乾後2時間真空乾燥し厚さ30μの均一
なフイルムを得た。 (c) サイクリツクボルタメトリー測定 前項(b)においてテフロン板のかわりにITOの
ガラスを使用したことを除いては前項(b)と同様
の操作によりITOガラス上に均一な複合フイル
ムを調製し測定用電極とした。電解液として
0.07mol/の(n−C4H94NClO4のアセトニ
トリル溶液、対極として白金板、参照電極とし
てAg/AgNO3電極を用いて乾燥窒素雰囲気中
で上述の電極のサイクリツクボルタメトリーを
測定した。掃引速度は50mV/secを用いた。
得られた結果を第1図に示す。数十回の酸化還
元サイクルでも変化がなく、可逆的で極めて安
定な酸化還元挙動を示した。酸化還元電位は
0.38VVS.Ag/AgNO3であつた。 実施例 2 実施例1においてポリ塩化ビニルのかわりにポ
リメチルメタアクリレートを使用した以外は実施
例1と同様の操作でITOガラス上にN−メチルジ
フエニルアミンオリゴマーとの複合フイルムを調
製した。また実施例1と同様の操作でサイクリツ
クボルタモメトリーを測定したところ数十回の酸
化還元サイクルでも変化なく、可逆的で極めて安
定な酸化還元挙動を示した。酸化還元電位は
0.45V VS Ag/AgNO3であつた。 実施例 3 実施例1においてポリ塩化ビニルのかわりにポ
リエチレンオキシドを使用した以外は実施例1と
同様の操作でITOガラス上にN−メチルジフエニ
ルアミンオリゴマーとの複合フイルムを調製し
た。また実施例1と同様の操作でサイクリツクボ
ルタモメトリーを測定したところ数十回の酸化還
元サイクルでも変化なく、可逆的で極めて安定な
酸化還元挙動を示した。酸化還元電位は0.50V
VS Ag/AgNO3であつた。
In the formula, R represents hydrogen or a hydrocarbon residue having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, and examples of the hydrocarbon residue include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, Examples include n-butyl group, i-butyl group, n-hexyl group, or allyl group, various aryl groups such as phenyl group, tolyl group, and ethyl phenyl group, aralkyl group, and derivatives thereof. Further, n is 2≦n≦50, preferably 2≦n≦30, and more preferably 2≦n≦10. As the general-purpose polymer used in the present invention, known polymers that are soluble in organic solvents and have film-forming properties are appropriately selected, and specifically, polyvinyl chloride, polymethyl methacrylic acid, chloromethylated polystyrene, polystyrene, Examples include styrene-butadiene copolymer, ethyl cellulose, cellulose acetate, polyethylene terephthalate, polyethylene oxide, polyacrylonitrile, polyvinyl acetate, polyvinyl alcohol, polyethylene, polypropylene, polychloroprene, natural rubber, and phenolic resin. It is essential that the organic solvent used in the present invention is a solvent that can simultaneously dissolve the diphenylamine oligomer and the general-purpose polymer. Preferred organic solvents include ethers such as tetrahydrofuran, diethyl ether, diisopropyl ether, and diisoamyl ether; aromatic nitrates or halides such as benzene, nitrobenzene, orthodichlorobenzene, and trichlorobenzene; organic halides such as chloroform and methylene chloride; Dimethylformamide, N-methyl-2-pyrrolidone and the like can be mentioned. The method for obtaining a homogeneous composite of diphenylamine oligomer and general-purpose polymer is as follows: (1) diphenylamine oligomer and general-purpose polymer are each dissolved in an organic solvent separately, and then both solutions are mixed and cast. A method for vacuum drying organic solvents,
(2) A method is preferably employed in which a mixture of a diphenylamine oligomer and a general-purpose polymer is brought into contact with an organic solvent and dissolved to form a homogeneous solution, which is then cast and the organic solvent is removed under reduced pressure. The mixing ratio of diphenylamine oligomer and general-purpose polymer shows that if the ratio of diphenylamine oligomer is too large, the mechanical strength tends to weaken.
Moreover, if it is too small, the electrochemical activity will be low. Usually, the weight ratio of diphenylamine oligomer to general-purpose polymer is preferably in the range of 1:1000 to 1:0.1, more preferably in the range of 1:10 to 1:1.
When mixing diphenylamine oligomers and general-purpose polymers, electron acceptors that are soluble in organic solvents, such as halogens such as chlorine, bromine, and iodine, and dichloride
Lewis acids such as iron, tin tetrachloride, and copper dichloride; inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, and sulfuric acid; and organic acids such as picric acid and p-toluenesulfonic acid may also be present. (Effects of the Invention) By the method of the present invention, it is possible to easily obtain a P-type electroactive conductive material with high mechanical strength and good repeatability of electrochemical oxidation and reduction reactions. Furthermore, the materials obtained according to the present invention can be widely used as electronic materials and organic semiconductor materials. (Example) The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. Example 1 (a) Synthesis of N-methyldiphenylamine polymer 50.0 g of anhydrous FeCl 3 was placed in a 300 ml three-necked flask, and 150 ml of ethanol was added to dissolve it.
18.4 g of N-methyldiphenylamine was added, and the mixture was reacted for 24 hours at room temperature with stirring in a nitrogen atmosphere. The blue-green precipitate formed after the reaction was filtered, washed with ethanol and ion-exchanged water, washed again with ethanol, and dried to obtain 12.1 g of blue solid. The obtained solid was further dissolved in 200 ml of dichloromethane and filtered, and the filtrate was collected, dichloromethane was removed, and then dried to obtain dichloromethane-soluble N-methyldiphenylamine polymer 11.6
I got g. The obtained N-methyldiphenylamine polymer was an oligomer of N-methyldiphenylamine with a degree of polymerization of 2 and 3, with main peaks detected at mass numbers 364 and 545 from the results of mass spectrometry.
In addition, infrared absorption spectroscopy was performed and absorption at 820 cm -1 derived from para-substituted benzene was observed, indicating that this polymer has a structure linked at the para position with the phenyl group of N-methyldiphenylamine. It turns out that it is. (b) Synthesis of composite film 0.1 g of the N-methyldiphenylamine oligomer obtained in (a) was dissolved in 2 ml of tetrahydrofuran (solution (A)). Separately, 2.0g of polyvinyl chloride
was dissolved in 20 ml of tetrahydrofuran (solution
(B)). 1 ml of solution (A) and 5 ml of solution (B) were mixed to form a homogeneous solution, which was then poured onto a Teflon plate.
After air drying for 5 hours, vacuum drying was performed for 2 hours to obtain a uniform film with a thickness of 30 μm. (c) Cyclic voltammetry measurement Prepare and measure a uniform composite film on ITO glass using the same procedure as in the previous section (b), except that ITO glass was used instead of the Teflon plate in the previous section (b). It was used as an electrode for use. as an electrolyte
Measure the cyclic voltammetry of the above electrode in a dry nitrogen atmosphere using a solution of 0.07 mol/(n- C4H9 ) 4NClO4 in acetonitrile, a platinum plate as a counter electrode, and an Ag/ AgNO3 electrode as a reference electrode. did. A sweep rate of 50 mV/sec was used.
The results obtained are shown in FIG. There was no change even after dozens of redox cycles, indicating reversible and extremely stable redox behavior. The redox potential is
It was 0.38VVS.Ag/AgNO 3 . Example 2 A composite film with N-methyldiphenylamine oligomer was prepared on ITO glass in the same manner as in Example 1 except that polymethyl methacrylate was used instead of polyvinyl chloride. Further, when cyclic voltammometry was measured in the same manner as in Example 1, there was no change even after several tens of redox cycles, indicating reversible and extremely stable redox behavior. The redox potential is
It was 0.45V VS Ag/AgNO 3 . Example 3 A composite film with N-methyldiphenylamine oligomer was prepared on ITO glass in the same manner as in Example 1 except that polyethylene oxide was used instead of polyvinyl chloride. Further, when cyclic voltammometry was measured in the same manner as in Example 1, there was no change even after several tens of redox cycles, indicating reversible and extremely stable redox behavior. Redox potential is 0.50V
It was VS Ag/AgNO 3 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1におけるサイクリツクボルタ
メトリーの測定結果を示す。
FIG. 1 shows the measurement results of cyclic voltammetry in Example 1.

Claims (1)

【特許請求の範囲】 1 一般式 (ここでRは水素または炭素数1〜20の炭化水素
残基を示し、nは2≦n≦50である)で表わされ
るジフエニルアミンオリゴマーと汎用高分子を有
機溶媒に溶解させ、しかるのち該有機溶媒を除去
することを特徴とするP型電気活性導電材料の製
造方法。
[Claims] 1. General formula (Here, R represents hydrogen or a hydrocarbon residue having 1 to 20 carbon atoms, and n is 2≦n≦50) and a general-purpose polymer are dissolved in an organic solvent, and then A method for producing a P-type electroactive conductive material, which comprises removing the organic solvent.
JP15973487A 1987-06-29 1987-06-29 Production of p-type electrically active and conductive material Granted JPS646060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15973487A JPS646060A (en) 1987-06-29 1987-06-29 Production of p-type electrically active and conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15973487A JPS646060A (en) 1987-06-29 1987-06-29 Production of p-type electrically active and conductive material

Publications (2)

Publication Number Publication Date
JPS646060A JPS646060A (en) 1989-01-10
JPH0528746B2 true JPH0528746B2 (en) 1993-04-27

Family

ID=15700105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15973487A Granted JPS646060A (en) 1987-06-29 1987-06-29 Production of p-type electrically active and conductive material

Country Status (1)

Country Link
JP (1) JPS646060A (en)

Also Published As

Publication number Publication date
JPS646060A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
Diaz et al. Synthesis, characterization and electrical properties of polyimines derived from selenophene
EP0804497B1 (en) Soluble, electroconductive polypyrrole and method for preparing the same
JPS61278526A (en) Conductive solution and method for forming conductive products from the solution
JPH07734B2 (en) Conductive plastic composite
Maruyama et al. . pi.-Conjugated soluble poly (6-hexylpyridine-2, 5-diyl) and poly (6, 6'-dihexyl-2, 2'-bipyridine-5, 5'-diyl) with high molecular weights and n-type conducting properties. Synthesis, electrical and optical properties, and chemical reactivities of the polymers
US5006633A (en) Novel compolymers and electroactive polymers derived therefrom
JP3182239B2 (en) Novel water-soluble conductive polymer and method for producing the same
JP2609439B2 (en) Method for producing polyaniline film and composite thereof
Sezer et al. Synthesis and electrochemical polymerization of ter‐arenes based on N‐ethyl carbazole and thiophene
EP0350166B1 (en) Polymer compositions
JPH0528746B2 (en)
AU619521B2 (en) Electrically conducting polymers with improved solubility
JPH02218716A (en) Organic semiconductor and production thereof
WO2002010251A1 (en) Method for making polypyrrole
JPH05262993A (en) Polymer conductor and method for producing the same
Wang et al. Electrochemical polymerization of thianaphthene
JP3058735B2 (en) Polypyrrole derivative and method for producing the same
JP3536546B2 (en) Water-soluble conductive polymer and method for producing the same
JP2835816B2 (en) Method for producing polyaniline composite molded article
JP3058737B2 (en) Polypyrrole derivative and method for producing the same
Sabatini et al. Electrodes modified with poly (3, 4-Ethylenedioxythiophene) doped with sulfonated polyarylethersulfones: Towards new conducting polymers
JP3088525B2 (en) Polypyrrole derivative and method for producing the same
JPH059308A (en) Production of conductive organic polymer fiber or film
JP2730444B2 (en) Conductive polymer
JPS60238316A (en) Manufacture of organic semiconductor sheet