[go: up one dir, main page]

JPH05286738A - Formation of titanium dioxide optical thin film - Google Patents

Formation of titanium dioxide optical thin film

Info

Publication number
JPH05286738A
JPH05286738A JP4129236A JP12923692A JPH05286738A JP H05286738 A JPH05286738 A JP H05286738A JP 4129236 A JP4129236 A JP 4129236A JP 12923692 A JP12923692 A JP 12923692A JP H05286738 A JPH05286738 A JP H05286738A
Authority
JP
Japan
Prior art keywords
titanium dioxide
titanium
film
thin film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4129236A
Other languages
Japanese (ja)
Inventor
Yoshio Morita
嘉男 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4129236A priority Critical patent/JPH05286738A/en
Publication of JPH05286738A publication Critical patent/JPH05286738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To apply a transparent ornament of uniform and clear colors on the surface of a rugged body or on the inner surface of a transparent vessel. CONSTITUTION:Titanium tetrachloride and glycerol are thermally condensed to synthesize a water-soluble titanium ester, tin chloride is dissolved in 2:1 to 1:9 molar ratio of Ti/Sn, and pure water is added to obtain the aq. dil. soln. A body with the surface cleaned is dipped in the dil. soln. which is boiled to deposit the hydrolyzate on the surface, and the surface is coated with a film of the mixture of titanium dioxide and tin oxide. Alternatively, a soln. contg. tiatnium and tin is applied on the body surface and baked to obtain the oxide coating film. The surface is pretreated in this way. The body is then heated in a film forming soln. prepared by adding a minute amt. of polycarboxylic acids to an aq. soln. of titanium tetrachloride acidified with hydrochloric acid, and the formed titanium dioxide is deposited on the pretreated surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として装飾用途の二酸
化チタン光学薄膜の形成方法に関し、ガラス、陶磁器、
プラスチックなどの表面に光の干渉現象によって生ずる
光沢と色彩(以下「虹彩」と記す)を与えることを目的
とするが、光学用途にも応用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a titanium dioxide optical thin film mainly for decorative use, and relates to glass, ceramics,
The purpose is to give gloss and color (hereinafter referred to as "iris") generated on the surface of plastic or the like by the phenomenon of light interference, but it is also applicable to optical applications.

【0002】[0002]

【従来の技術】凹面に二酸化チタン膜を形成する方法と
しては、公開平4−34502および公開平4−345
03に開示された二酸化チタンの散乱蒸着による方法が
あり、これは酸素とアルゴンガスの存在下10ないし
10Pa程度の真空で蒸着を行うものである。この方
法で得られる二酸化チタン膜の屈折率は2.3と記載さ
れており、2.6以上の屈折率を有するルチル型二酸化
チタンと較べ明らかに低く、アナターゼ型と推定でき
る。また形成可能な凹面は平滑な開曲面である。本発明
者は、特許第1432039号(特公昭61−2191
8)において水溶液反応による二酸化チタン光学薄膜の
形成方法を開示し、また特許第1641229号(特公
平03−7754)において光学的厚さを制御した二酸
化チタン薄膜の形成方法を開示したが、前者は鉄塩を含
む水溶液中で加熱することにより表面にコーティング処
理をした物体を、四塩化チタンの塩酸酸性水溶液中で加
熱して熱加水分解反応によって生ずる二酸化チタンを前
記コーティング処理した表面に析出させて、二酸化チタ
ンの薄膜を形成するものである。後者は水溶性チタンエ
ステルを含む水溶液中で加熱することにより表面にコー
ティング処理した物体を、四価チタン塩の強酸性水溶液
中で加熱して熱加水分解によって生ずる二酸化チタンを
前記コーティングした表面に析出させて二酸化チタンの
薄膜を形成するものである。これらの方法はいずれも鉄
塩および/または水溶性チタンエステルを含む水溶液中
で目的の物体を加熱して表面にコーティング処理をした
後、四価チタン塩の酸性水溶液中で加熱して、熱加水分
解によって生ずる二酸化チタンを前記コーティング処理
した表面に析出させて、真空を用いることなく水溶液反
応により二酸化チタンの薄膜を形成するものである。
2. Description of the Related Art As a method for forming a titanium dioxide film on a concave surface, there are disclosed in JP-A-4-34502 and JP-A-4-345.
There is a method of scattering vapor deposition of titanium dioxide disclosed in No. 03, which performs vapor deposition in the presence of oxygen and argon gas in a vacuum of about 10 1 to 10 3 Pa. The titanium dioxide film obtained by this method has a refractive index of 2.3, which is clearly lower than rutile titanium dioxide having a refractive index of 2.6 or more, and can be estimated to be anatase type. The concave surface that can be formed is a smooth open curved surface. The inventor of the present invention has disclosed Japanese Patent No. 1432039 (Japanese Patent Publication No. 61-191
8) disclosed a method for forming a titanium dioxide optical thin film by an aqueous solution reaction, and disclosed a method for forming a titanium dioxide thin film in which the optical thickness was controlled in Japanese Patent No. 1641229 (Japanese Patent Publication No. 03-7754). An object whose surface is coated by heating in an aqueous solution containing an iron salt is heated in a hydrochloric acid-acidic aqueous solution of titanium tetrachloride to deposit titanium dioxide produced by a thermal hydrolysis reaction on the coated surface. , To form a thin film of titanium dioxide. The latter is the object whose surface is coated by heating in an aqueous solution containing a water-soluble titanium ester, and which is heated in a strongly acidic aqueous solution of a tetravalent titanium salt to deposit titanium dioxide produced by thermal hydrolysis on the coated surface. Then, a thin film of titanium dioxide is formed. In all of these methods, a target object is heated in an aqueous solution containing an iron salt and / or a water-soluble titanium ester to coat the surface of the object, and then heated in an acidic aqueous solution of a tetravalent titanium salt to be subjected to thermal hydrolysis. Titanium dioxide produced by decomposition is deposited on the coating-treated surface to form a thin film of titanium dioxide by an aqueous solution reaction without using a vacuum.

【0003】[0003]

【発明が解決しようとする課題】前記特許第14320
39号の方法は、本来均一系の反応である四塩化チタン
の熱加水分解反応を利用するものであるから、二酸化チ
タンの生成は溶液内で均一に起き、したがって前記コー
ティング処理した表面における二酸化チタン薄膜の形成
と同時に溶液中に二酸化チタンの沈澱粒子を生ずるた
め、溶液は次第に濁って二酸化チタン薄膜の成長を直接
観察することが困難になり、さらに形成された二酸化チ
タン薄膜は多くの場合完全に透明ではなく僅かな曇りが
認められる。すなわち完全に透明な二酸化チタン薄膜の
形成は条件範囲が非常に狭く、従って再現性に乏しい。
また特許第164229号に開示した方法では二酸化チ
タン薄膜の成長が非常に遅く、特に四塩化チタンの塩酸
酸性水溶液を用いた場合は沈澱の発生が著しく、成長は
さらに遅くなる。いずれの場合にも四価チタン塩の硫酸
酸性水溶液を用いれば濁度発生を液の透明度を著しくそ
こなわないい範囲に押さえることができ、形成される二
酸化チタン薄膜は透明であるが、二酸化チタンがアナタ
ーゼ型結晶になるために光沢は四塩化チタンの塩酸酸性
水溶液を用いた場合に比べて明らかに劣る。本発明は、
前記特許第1432039号の上記欠点を改良して溶液
の透明度を保ったまま完全に透明なルチル型二酸化チタ
ンの光学薄膜を任意の形状の表面に再現性よく成長させ
ることを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Since the method of No. 39 utilizes a thermal hydrolysis reaction of titanium tetrachloride, which is an essentially homogeneous reaction, the production of titanium dioxide occurs uniformly in the solution, and therefore the titanium dioxide on the coated surface is Since the titanium dioxide precipitate particles are formed in the solution at the same time as the formation of the thin film, the solution gradually becomes turbid, making it difficult to directly observe the growth of the titanium dioxide thin film. It is not transparent and a slight cloudiness is observed. That is, the formation of a completely transparent titanium dioxide thin film has a very narrow range of conditions, and therefore has poor reproducibility.
Further, in the method disclosed in Japanese Patent No. 164229, the growth of the titanium dioxide thin film is very slow, and particularly when an acidic aqueous solution of titanium tetrachloride in hydrochloric acid is used, precipitation is remarkable and the growth is further slowed down. In any case, if a sulfuric acid aqueous solution of a tetravalent titanium salt is used, the turbidity generation can be suppressed within a range that does not significantly impair the transparency of the solution, and the titanium dioxide thin film formed is transparent. Since it becomes an anatase type crystal, the gloss is obviously inferior to that in the case of using an aqueous solution of titanium tetrachloride in hydrochloric acid. The present invention is
The object of the present invention is to improve the above-mentioned drawbacks of Japanese Patent No. 1432039 and to grow a completely transparent optical thin film of rutile type titanium dioxide on the surface of an arbitrary shape with good reproducibility while maintaining the transparency of the solution.

【0004】[0004]

【課題を解決するための手段】前記特許第143203
9号における物体表面の前処理の条件を詳しく調べた結
果、水溶性チタンエステルと塩化錫を含む希薄水溶液を
用いる前処理により、光の吸収による着色を全く伴うこ
となく透明なルチル型二酸化チタンの光学薄膜を成長さ
せることに成功した。さらに四塩化チタンと塩化錫を含
む希薄水溶液を物体表面に塗布してから300℃以上に
加熱して焼き付けた場合にも、四塩化チタンの塩酸酸性
水溶液中で加熱することにより溶液を塗布した部分に透
明なルチル型二酸化チタンの光学薄膜が形成されること
が判った。しかしながら反応中に沈澱生成によって溶液
が濁る傾向に大差はなく、これと共に生ずる二酸化チタ
ン薄膜の痕跡的な曇りも解消し難かった。この欠点は四
塩化チタンの酸性水溶液中に微量のポリカルボン酸を共
存させることによって解決された。すなわちアクリル酸
を始めとする重合性のカルボン酸より得られる水溶性ポ
リカルボン酸が共存するとき、四塩化チタンの塩酸酸性
水溶液を加熱しても沈澱を生ずることなく溶液が透明に
保たれ、しかも溶液中に上記にしたがって前処理した表
面または前記四塩化チタンと塩化錫の混合水溶液を塗布
して焼き付けた表面が存在するとき、二酸化チタン薄膜
の形成が進行し、完全に透明な二酸化チタン光学薄膜が
得られることを発見した。
[Patent Document 1] Said Patent No. 143203
As a result of detailed examination of the conditions for pretreatment of the object surface in No. 9, the pretreatment using a dilute aqueous solution containing a water-soluble titanium ester and tin chloride produces a transparent rutile titanium dioxide without any coloring due to absorption of light. Succeeded in growing an optical thin film. Furthermore, even when a dilute aqueous solution containing titanium tetrachloride and tin chloride is applied to the surface of an object and then heated to 300 ° C. or higher and baked, the solution is applied by heating in an acidic hydrochloric acid solution of titanium tetrachloride. It was found that a transparent rutile-type titanium dioxide optical thin film was formed on the surface. However, there was no great difference in the tendency of the solution to become turbid due to the formation of a precipitate during the reaction, and it was difficult to eliminate the trace cloudiness of the titanium dioxide thin film that was generated along with it. This deficiency was solved by making a trace amount of polycarboxylic acid coexist in an acidic aqueous solution of titanium tetrachloride. That is, when a water-soluble polycarboxylic acid obtained from a polymerizable carboxylic acid such as acrylic acid coexists, the solution is kept transparent without precipitation even when an acidic hydrochloric acid aqueous solution of titanium tetrachloride is heated, and When there is a surface pretreated according to the above in the solution or a surface coated with the mixed aqueous solution of titanium tetrachloride and tin chloride and baked, the formation of a titanium dioxide thin film proceeds and a completely transparent titanium dioxide optical thin film is formed. I have found that.

【0005】物体表面に前処理層として形成する二酸化
チタンと酸化錫を含む混合酸化物の被膜における二酸化
チタンと酸化錫のモル比は1:1から1:9の範囲が好
ましい。二酸化チタンの割合が多すぎると成長速度は遅
くなり、形成される二酸化チタン薄膜の透明度に影響が
あり、また酸化錫単独では効果が劣る。溶液の塗布によ
る場合、被膜形成に用いる溶液は四塩化チタンと塩化第
二錫の組み合わせが最も便利であるが、焼き付けにより
二酸化チタンと酸化錫を含む混合酸化物に酸化されるか
ら、三塩化チタンと塩化第二錫または塩化第一錫の組み
合わせでも、さらに有機チタン化合物および/または有
機錫化合物を用いた組み合わせでも用いることができ
る。水溶液中の熱加水分解反応によって二酸化チタンと
酸化錫を含む混合酸化物の被膜形成を行う場合は水溶性
チタンエステルと塩化錫、好ましくは塩化第二錫の組み
合わせを用いる。この場合は水溶性チタンエステルの形
が不可欠であり、四塩化チタンと塩化第二錫の組み合わ
せでは均一な二酸化チタン薄膜の形成は困難である。水
溶液中のチタンおよび錫の濃度は、チタン5〜30μm
ol/l,錫25〜50μmol/lの範囲が好まし
く、10〜7×10Nの塩酸酸性液として用いる。
このようにして形成した被膜は、ガラス、陶磁器などの
耐熱性物体の場合は表面層の軟化点または融点を超えな
い300℃以上の温度で焼き付けることにより、密着を
よくすることが可能であるが、二酸化チタン薄膜の形成
には焼き付け処理は不可欠ではない。
The molar ratio of titanium dioxide to tin oxide in the mixed oxide film containing titanium dioxide and tin oxide formed as a pretreatment layer on the surface of the object is preferably in the range of 1: 1 to 1: 9. If the proportion of titanium dioxide is too large, the growth rate will be slow, which will affect the transparency of the titanium dioxide thin film formed, and tin oxide alone will be less effective. In the case of applying a solution, a combination of titanium tetrachloride and stannic chloride is the most convenient solution for forming a film, but since it is oxidized to a mixed oxide containing titanium dioxide and tin oxide, titanium trichloride is used. And stannic chloride or stannous chloride, or a combination using an organic titanium compound and / or an organic tin compound. When a film of a mixed oxide containing titanium dioxide and tin oxide is formed by a thermal hydrolysis reaction in an aqueous solution, a combination of a water-soluble titanium ester and tin chloride, preferably stannic chloride is used. In this case, the form of water-soluble titanium ester is indispensable, and it is difficult to form a uniform titanium dioxide thin film with a combination of titanium tetrachloride and stannic chloride. The concentration of titanium and tin in the aqueous solution is titanium 5 to 30 μm.
ol / l, tin is preferably in the range of 25 to 50 μmol / l, and used as a 10 4 to 7 × 10 3 N hydrochloric acid acidic solution.
In the case of a heat-resistant object such as glass or ceramics, the coating film formed in this manner can improve adhesion by baking at a temperature of 300 ° C. or higher which does not exceed the softening point or melting point of the surface layer. The baking process is not essential for forming the titanium dioxide thin film.

【0006】ポリカルボン酸は、アクリル酸、メタクリ
ル酸、イタコン酸などの不飽和カルボン酸を重合させて
得られるものが便利であるが、カルボキシル基を多く含
むポリエステルでもよい。クエン酸のような三塩基酸を
単体で用いても効果はないが、グリセロールなどと加熱
縮合させてポリカルボン酸の形にすることにより効果が
得られる。アクリル酸で比較した結果では10量体に近
い平均組成のものでも、これより高い重合度の広い範囲
でも効果が認められた。またポリマー中にメタクリル酸
メチルのような疎水性成分が混在しても、ポリマーが水
溶性であれば効果がある。水溶性ポリマーを得るには、
アクリル酸、メタクリル酸などのモノマーを過酸化ベン
ゾイルまたはAIBN(アゾビスイソブチロニトリル)
などの重合開始剤、によって重合させて水に溶解する。
重合開始剤はモノマーに対し10分の1から100分の
1の範囲の重量割合が好ましいが、より少なくてもよ
い。重合反応は触媒量が多いため爆発的に起こるから、
5g以下の量で行うのが好都合である。このようにして
得られたポリカルボン酸は塩酸酸性の四塩化チタン水溶
液に微量を加えて、前記前処理した表面を有する物体を
入れて加熱することにより熱加水分解反応を進行させる
と、表面に光沢を有する二酸化チタンの透明な薄膜が形
成される。
The polycarboxylic acid is conveniently obtained by polymerizing an unsaturated carboxylic acid such as acrylic acid, methacrylic acid or itaconic acid, but may be a polyester containing a large amount of carboxyl groups. Using a tribasic acid such as citric acid alone does not have any effect, but the effect can be obtained by heating and condensing with glycerol or the like to form a polycarboxylic acid. As a result of comparison with acrylic acid, the effect was recognized even with an average composition close to that of a decamer and in a wide range of higher polymerization degree. Even if a hydrophobic component such as methyl methacrylate is mixed in the polymer, it is effective if the polymer is water-soluble. To obtain a water-soluble polymer,
Benzoyl peroxide or AIBN (azobisisobutyronitrile) is used for monomers such as acrylic acid and methacrylic acid.
It is polymerized by a polymerization initiator such as and is dissolved in water.
The weight ratio of the polymerization initiator to the monomer is preferably in the range of 1/10 to 1/100, but may be lower. Since the polymerization reaction is explosive due to the large amount of catalyst,
It is convenient to carry out in an amount of 5 g or less. The polycarboxylic acid thus obtained is added to a hydrochloric acid-acidified titanium tetrachloride aqueous solution in a trace amount, and a thermohydrolysis reaction is allowed to proceed by putting an object having the pretreated surface and heating the surface, A transparent thin film of titanium dioxide with a gloss is formed.

【0007】ポリカルボン酸の使用濃度は非常に低く、
ミクロモルオーダーでよい。濃度が高すぎると熱加水分
解反応は完全に抑制されて、100℃で加熱を続けても
全く変化を生じない。最適濃度は反応液の酸濃度および
チタン濃度によって異なるが、特許第1432039号
の条件範囲ではカルボン酸当量で10ないし10
ルの間が適当である。このようにして形成した二酸化チ
タンの光学薄膜はルチル型であることが、硫酸酸性の条
件で成膜した場合との比較によって確かめられる。すな
わち前記のように二酸化チタンと酸化錫を含む混合酸化
物の被膜でコーティングした表面を硫酸酸性のチタン塩
水溶液中で加熱して熱加水分解反応を行うと、形成され
る二酸化チタン薄膜は光沢が前記ポリカルボン酸の存在
のもとに四塩化チタンの塩酸酸性水溶液中で加熱した場
合に較べて明らかに劣り、虹彩膜としての効果も低い。
これに対し塩酸酸性の四塩化チタン水溶液中で一旦光沢
薄膜が形成されると、反応液を硫酸酸性のチタン塩水溶
液に切り替えて反応を続けてもルチルの結晶成長がその
まま継続し、透明で光沢、彩度の優れた光学薄膜が得ら
れる。したがってポリカルボン酸を含む塩酸酸性の四塩
化チタン水溶液中で初期成膜を行えば、そのまま成長を
続けても、あるいは硫酸酸性のチタン塩水溶液に成膜反
応液を切り替えて成長を行っても本発明の目的は十分に
達せられる。
The use concentration of polycarboxylic acid is very low,
Micromolar order is sufficient. If the concentration is too high, the thermal hydrolysis reaction is completely suppressed and no change occurs even if heating is continued at 100 ° C. The optimum concentration varies depending on the acid concentration and titanium concentration of the reaction solution, but in the range of the conditions of Japanese Patent No. 1432039, the carboxylic acid equivalent is preferably between 10 6 and 10 5 mol. It can be confirmed by comparison with the case where the titanium dioxide optical thin film thus formed is of the rutile type in comparison with the case where the film is formed under the condition of sulfuric acid acidity. That is, when the surface coated with the mixed oxide film containing titanium dioxide and tin oxide as described above is heated in a sulfuric acid-acidic titanium salt aqueous solution to undergo a thermal hydrolysis reaction, the titanium dioxide thin film formed has a gloss. Compared with the case of heating in an aqueous hydrochloric acid solution of titanium tetrachloride in the presence of the above polycarboxylic acid, it is clearly inferior and the effect as an iris film is low.
On the other hand, once a glossy thin film is formed in a hydrochloric acid-acidified titanium tetrachloride aqueous solution, rutile crystal growth continues as it is, even if the reaction solution is switched to a sulfuric acid-acidified titanium salt aqueous solution and the reaction is continued. An optical thin film with excellent saturation can be obtained. Therefore, if the initial film formation is performed in a hydrochloric acid-acidified titanium tetrachloride aqueous solution containing a polycarboxylic acid, the growth can be continued even if it is continued, or if the film formation reaction solution is switched to a sulfuric acid-acidified titanium salt aqueous solution. The object of the invention is fully achieved.

【0008】[0008]

【作用】二酸化チタンと酸化錫の混合酸化物被膜が特許
第1432039号における二酸化チタンと酸化鉄の混
合酸化物被膜と較べて優れた効果を示す理由は、酸化鉄
が塩酸に容易に溶解するのに対し酸化錫は塩酸に溶解し
難いことも一因と思われるが、ドイツ特許DE2522
572C2の記載によれば、酸化錫にはアナターゼをル
チルに転化する触媒効果があり、したがって二酸化チタ
ンと酸化錫の混合酸化物被膜上に二酸化チタンを析出さ
せるときは、ルチル型の薄膜が容易に得られるものと解
される。すなわちこのようなコーティングが施された表
面を四塩化チタンの塩酸酸性水溶液中に浸して四塩化チ
タンの熱加水分解反応を行うと、表面の混合酸化物が核
となってルチル型二酸化チタンのエピタキシャルな成長
が進行するものと考えられる。ポリカルボン酸の存在に
より二酸化チタンの薄膜形成を妨げることなく反応液中
の沈澱生成が抑制される機構は不明であるが、このよう
な作用は硫酸酸性の条件下では発現しない。三塩基酸、
四塩基酸等の単体多塩基酸では効果がないこと、また存
在するチタンのイオン濃度と較べて非常に低い濃度で効
果を示すことから、反応液中での核形成がポリカルボン
酸の立体化学的封鎖作用によって阻止され、既に核の存
在するコーティング面でのみ選択的に二酸化チタンの結
晶成長が進行することが考えられる。単層膜の場合2.
6以上の屈折率を有するルチル型と屈折率が2.3のア
ナターゼ型では、最大反射率は前者が後者の1.3倍以
上になることを計算によって容易に確かめることができ
る。したがって本発明のルチル型二酸化チタン膜は最大
反射率と最低反射率の差が従来技術に較べて大きく、よ
り鮮明な干渉色を呈し著しく優れた虹彩的効果が得られ
る。
The reason why the mixed oxide film of titanium dioxide and tin oxide exhibits an excellent effect as compared with the mixed oxide film of titanium dioxide and iron oxide in Japanese Patent No. 1432039 is that iron oxide is easily dissolved in hydrochloric acid. On the other hand, tin oxide seems to be difficult to dissolve in hydrochloric acid, but German Patent DE2522
According to the description of 572C2, tin oxide has a catalytic effect of converting anatase into rutile, and therefore, when titanium dioxide is deposited on a mixed oxide film of titanium dioxide and tin oxide, a rutile type thin film is easily formed. It is understood that it can be obtained. That is, when the surface coated with such a coating is immersed in an aqueous hydrochloric acid solution of titanium tetrachloride to carry out the thermal hydrolysis reaction of titanium tetrachloride, the mixed oxide on the surface serves as nuclei to form the rutile titanium dioxide epitaxial layer. It is thought that various growth will proceed. The mechanism by which the presence of polycarboxylic acid suppresses the formation of precipitates in the reaction solution without hindering the formation of a titanium dioxide thin film is unknown, but such an action does not occur under the condition of sulfuric acid acidity. Tribasic acid,
Nucleation in the reaction solution is a stereochemistry of polycarboxylic acid because it has no effect with simple polybasic acids such as tetrabasic acid, and it has an effect at a very low concentration compared to the ion concentration of existing titanium. It is considered that the crystal growth of titanium dioxide proceeds selectively only on the coating surface on which nuclei are already present, which is prevented by the selective blocking effect. In the case of a single layer film 2.
In the rutile type having a refractive index of 6 or more and the anatase type having a refractive index of 2.3, it can be easily confirmed by calculation that the maximum reflectance is 1.3 times or more that of the latter. Therefore, the rutile type titanium dioxide film of the present invention has a larger difference between the maximum reflectance and the minimum reflectance as compared with the prior art, exhibits a clearer interference color, and has a remarkably excellent iris effect.

【0009】[0009]

【実施例】以下ガラス表面に二酸化チタン光学薄膜を形
成する場合を例にとって、更に詳しく説明する。以下の
実施例1ないし6では窓ガラス板をアルカリ水溶液で拭
いてから水洗して表面を清浄にし、次のように前処理し
たものを用いて二酸化チタンの光学薄膜を形成させた。
即ち特許第1432039号の記述にしたがって四塩化
チタンとグリセロールを加熱することにより水溶性チタ
ンエステルを用意し、純水を加えてチタン濃度約35m
mol/lの水溶液に希釈する。この水溶液にさらに塩
酸を加えてチタン濃度約25mmol/l、塩酸濃度約
3.35Nとしたもの12mlに塩化第二錫の結晶0.
1gを溶解して、前処理液の原液を得る。純水で250
倍に希釈した液中にガラス板を浸して約30分煮沸して
加水分解を行った後、純水で静かに洗浄、乾燥の後、最
高温度が350℃ないし400℃になるような条件で焼
き付け、試験管に入る大きさに切り分ける。成膜反応液
を次のように調製して、適量のポリカルボン酸を加え、
上記のように前処理したガラス板と共に試験管中で加熱
した。 原液組成: 四塩化チタン 10g 塩酸(36.46%) 330ml 純水 1000ml Ti濃度 52.8mmol/l HCl濃度 約3.87N 反応液組成: 原液 20ml 純水 500ml Ti濃度 約2mmol/l HCl濃度 約0.15N ポリカルボン酸はクエン酸グリセロールエステル、ポリ
アクリル酸、ポリメタアクリル酸、アクリル酸−イタコ
ン酸コポリマー、メタクリル酸メチル−アクリル酸コポ
リマーをそれぞれ次のようにして用意し、上記組成の反
応液に加えて二酸化チタンの薄膜形成をおこなった。 実施例1 クエン酸3.0gをグリセロール1.0gに溶解し、約
0.7g脱水するまで加熱して樹脂状の固形物とし、2
0mlの純水に溶解する。脱水量より計算上この溶液の
COOH当量は約910μmol/mlと推定された。
これを更に1000倍に希釈し、0.44mlを上記組
成の反応液50mlに加えて、推定有効COOH当量約
8μmol/mlのポリカルボン酸を含む成膜反応液と
する。 実施例2 アクリル酸1.0gに0.1gのAIBNを溶解し、純
水1mlを加えて湯浴で加熱して重合させ、更に飽和水
蒸気中で60分加熱を続けた後、純水に溶解して全量3
0gとする。アルカリ滴定によりCOOH当量は410
μmol/ml前後と推定された。KMn0による不
飽和結合の検出を行ったが、残留モノマーは殆ど存在し
ないと判定された。純水を加えて500倍に希釈した液
を前記反応液50mlに対して0.49ml加え、CO
OH当量約8μmol/mlのポリカルボン酸を含む成
膜反応液とする。 実施例3 メタクリル酸2.0gに0.1gのAIBNを溶解し、
純水1mlを加えて湯浴で加熱して重合させ、更に飽和
水蒸気中で60分加熱を続けた後、純水に溶解して全量
30gとする。アルカリ滴定によりCOOH当量は約7
50μmol/mlと推定された。KMn0による不
飽和結合の検出を行ったが、残留モノマーは殆ど存在し
ないと判定された。純水を加えて900倍に希釈した液
を前記反応液50mlに対して0.48ml加え、CO
OH当量約8μmol/mlのポリカルボン酸を含む成
膜反応液とする。 実施例4 アクリル酸1.0gに0.1gのAIBNを溶解し、純
水1mlを加え、更に0.9gのイタコン酸を加えて溶
解したものを湯浴で加熱して重合させ、更に飽和水蒸気
中で60分加熱を続けた後、純水に溶解して全量30g
とする。アルカリ滴定によりCOOH当量は約920μ
mol/mlと推定された。KMn0による不飽和結
合の検出の結果は有意の残留モノマーが検出されたが、
COOH当量に換算すると無視できるほどに微小な値で
あった。これを更に1000倍に希釈し、上記組成の反
応液50mlに0.44ml加えて、COOH等当約8
μmol/mlのポリカルボン酸を含む成膜反応液とす
る。 実施例5 メタクリル酸メチル0.1gとアクリル酸0.6gの混
合液に0.05gのAIBNを溶解し、純水1mlを加
えて湯浴で加熱して重合させ、更に飽和水蒸気中で60
分加熱を続けた後、純水に溶解して全量30gとする。
アルカリ滴定によりCOOH当量は約400μmol/
mlと推定された。KMn0による不飽和結合の検出
を行ったが、残留モノマーは殆ど存在しないと判定され
た。純水を加えて500倍に希釈した液を前記反応液5
0mlに対して0.5ml加え、COOH当量約8μm
ol/mlのポリカルボン酸を含む成膜反応液とする。 実施例6 実施例2におけるアクリル酸/AIBN比の30倍まで
の範囲で重合開始剤の量を種々に変えて重合度の異なる
ポリアクリル酸を用意し、それぞれCOOH当量約8μ
mol/mlのポリカルボン酸を含む成膜反応液を調製
した。以上実施例1から実施例6までの成膜反応液を用
いて前記にしたがって前処理したガラス板を入れ、10
0℃の湯浴で加熱して、熱加水分解反応を行った。いず
れの場合も液が濁ることなく、約10ないし12分でガ
ラス板表面に光沢が現れ、約30分で黄色の干渉色を呈
する完全に透明な二酸化チタン光学薄膜が得られた。さ
らに反応を継続すると、薄膜が成長するにつれてピン
ク、紫、青、緑の干渉色が現れることは、特許第143
2039号における記載と同様であるが、液は最後まで
透明に保たれた。以上の実施例は全て任意の形状および
大きさのガラスまたは陶磁器にそのまま応用することが
できる。たとえば複雑な凹凸模様の表面を有する陶磁
器、立体的な造形のガラス細工品の表面、あるいはガラ
ス電球またはガラスびんの内面に所望の虹彩膜を同様の
手順で形成することが容易にできる。 実施例7 清浄なガラス板に前記の水溶性チタンエステルに塩化第
二錫を溶解した前処理原液で文字を書き、360℃で焼
き付けたものを用いて実施例1の組成で約2時間反応を
続けた結果、無色透明な背景に緑色の虹彩色文字が現出
し、液は透明に保たれた。 比較例1 ポリカルボン酸を含まない成膜反応液を用いて同様な反
応を行ったが、光沢が発現するに従って反応液は次第に
濁りを生じ30分後には液は全く不透明になり、生成し
た二酸化チタン薄膜には曇りが認められた。 比較例2 ポリカルボン酸の代わりに単体のカルボン酸、すなわち
酒石酸、クエン酸、乳酸、コハク酸、酢酸、シュウ酸、
フタル酸、マレイン酸、グリコール酸、エチレンヂアミ
ン四酢酸などの有機酸を種々の割合に加えた成膜反応液
を用いて同様な反応を行ったが、二酸化チタン薄膜の形
成を妨げることなしに液の濁りを防止することはできな
かった。 比較例3 塩化第二錫の水溶液でガラス表面に文字を書き、360
℃で焼き付けたものを実施例1の組成で30分間反応を
続けた結果、文字の周囲に二酸化チタンの光沢膜を生じ
たが、液は半透明に乳濁し、膜には曇りが認められた。 比較例4 100mlのメスフラスコに50%硫酸3mlと、濃度
3.5モルの四塩化チタン水溶液1滴(約0.05m
l)を入れ、純水で100mlとした溶液中で前記前処
理したガラス板を処理したが、得られた二酸化チタン膜
は光沢が実施例1ないし6のものに較べ明らかに劣るも
ので、したがって虹彩効果も不十分であった。これに対
し実施例1によって形成した銀白色を呈する二酸化チタ
ン膜を同様の溶液で処理した場合は、処理時間に応じて
黄、ピンク、紫、青、緑の鮮明な干渉色が発現し、強い
光沢を伴うものであった。
EXAMPLES The present invention will be described in more detail below by taking the case of forming a titanium dioxide optical thin film on the surface of glass as an example. In Examples 1 to 6 below, the window glass plate was wiped with an alkaline aqueous solution and then washed with water to clean the surface, and an optical thin film of titanium dioxide was formed using the one pretreated as follows.
That is, a water-soluble titanium ester is prepared by heating titanium tetrachloride and glycerol in accordance with the description in Japanese Patent No. 1432039, and pure water is added to the titanium concentration of about 35 m.
Dilute to a mol / l aqueous solution. Hydrochloric acid was further added to this aqueous solution so that the titanium concentration was about 25 mmol / l and the hydrochloric acid concentration was about 3.35 N.
Dissolve 1 g to obtain a stock solution of the pretreatment liquid. 250 with pure water
Immerse the glass plate in the diluted solution twice and boil it for about 30 minutes to hydrolyze it, then gently wash it with pure water and dry it. Bake and cut into pieces that fit into test tubes. Prepare the film-forming reaction solution as follows, add an appropriate amount of polycarboxylic acid,
Heated in a test tube with a glass plate pretreated as described above. Stock solution composition: Titanium tetrachloride 10 g Hydrochloric acid (36.46%) 330 ml Pure water 1000 ml Ti concentration 52.8 mmol / l HCl concentration about 3.87 N Reaction solution composition: Stock solution 20 ml Pure water 500 ml Ti concentration about 2 mmol / l HCl concentration about 0 For 15N polycarboxylic acid, glycerol citrate, polyacrylic acid, polymethacrylic acid, acrylic acid-itaconic acid copolymer, and methyl methacrylate-acrylic acid copolymer were prepared as follows, and added to the reaction solution having the above composition. In addition, a thin film of titanium dioxide was formed. Example 1 3.0 g of citric acid was dissolved in 1.0 g of glycerol, and about 0.7 g was heated until dehydrated to obtain a resin-like solid substance.
Dissolve in 0 ml of pure water. The COOH equivalent of this solution was estimated from the dehydration amount to be about 910 μmol / ml.
This is further diluted 1000 times, and 0.44 ml is added to 50 ml of the reaction solution having the above composition to obtain a film formation reaction solution containing a polycarboxylic acid having an estimated effective COOH equivalent of about 8 μmol / ml. Example 2 0.1 g of AIBN was dissolved in 1.0 g of acrylic acid, 1 ml of pure water was added, and the mixture was heated in a hot water bath to polymerize and further heated in saturated steam for 60 minutes, and then dissolved in pure water. And the total amount 3
It is set to 0 g. COOH equivalent is 410 by alkali titration
It was estimated to be around μmol / ml. KMn0 4 was detected unsaturated bond by, but is determined residual monomer is hardly present. A solution diluted with pure water by a factor of 500 was added 0.49 ml to 50 ml of the reaction solution, and CO was added.
The film-forming reaction liquid contains a polycarboxylic acid having an OH equivalent of about 8 μmol / ml. Example 3 0.1 g of AIBN was dissolved in 2.0 g of methacrylic acid,
1 ml of pure water is added and the mixture is heated in a hot water bath to polymerize and further heated in saturated steam for 60 minutes, then dissolved in pure water to a total amount of 30 g. COOH equivalent is about 7 by alkali titration
It was estimated to be 50 μmol / ml. KMn0 4 was detected unsaturated bond by, but is determined residual monomer is hardly present. 0.48 ml of a solution obtained by adding pure water and diluting 900 times was added to 50 ml of the reaction solution, and CO
The film-forming reaction liquid contains a polycarboxylic acid having an OH equivalent of about 8 μmol / ml. Example 4 0.1 g of AIBN was dissolved in 1.0 g of acrylic acid, 1 ml of pure water was added, and 0.9 g of itaconic acid was added and dissolved to heat and polymerize in a water bath, and saturated water vapor was added. After heating for 60 minutes in it, dissolve in pure water and total 30g
And COOH equivalent is about 920μ by alkali titration
It was estimated to be mol / ml. KMn0 4 by results in significant residual monomers detected unsaturated bond is detected,
When converted into COOH equivalents, the values were so small that they could be ignored. This is further diluted 1000 times, and 0.44 ml is added to 50 ml of the reaction solution having the above composition, and COOH or the like is added to about 8 times.
The film-forming reaction solution contains μmol / ml polycarboxylic acid. Example 5 0.05 g of AIBN was dissolved in a mixed solution of 0.1 g of methyl methacrylate and 0.6 g of acrylic acid, 1 ml of pure water was added, and the mixture was heated in a hot water bath to polymerize, and further in saturated steam.
After continuing heating for a minute, it is dissolved in pure water to a total amount of 30 g.
COOH equivalent is about 400μmol / by alkali titration
It was estimated to be ml. KMn0 4 was detected unsaturated bond by, but is determined residual monomer is hardly present. The reaction solution 5 was prepared by adding pure water and diluting it 500 times.
Add 0.5 ml to 0 ml, COOH equivalent is about 8 μm
The film-forming reaction solution contains ol / ml of polycarboxylic acid. Example 6 Polyacrylic acids having different degrees of polymerization were prepared by varying the amount of the polymerization initiator in the range of up to 30 times the acrylic acid / AIBN ratio in Example 2, and each had a COOH equivalent of about 8 μm.
A film forming reaction solution containing mol / ml of polycarboxylic acid was prepared. As described above, the glass plate pretreated as described above using the film-forming reaction solutions of Examples 1 to 6 was placed and
A thermal hydrolysis reaction was carried out by heating in a water bath at 0 ° C. In each case, the liquid did not become turbid, and a gloss appeared on the surface of the glass plate in about 10 to 12 minutes, and a completely transparent titanium dioxide optical thin film showing a yellow interference color was obtained in about 30 minutes. If the reaction is further continued, the interference colors of pink, purple, blue, and green appear as the thin film grows.
Similar to the description in No. 2039, but the liquid remained transparent until the end. All the above examples can be directly applied to glass or ceramics of any shape and size. For example, it is possible to easily form a desired iris film on the surface of a ceramic having a surface with a complicated uneven pattern, the surface of a glass work having a three-dimensional shape, or the inner surface of a glass bulb or a glass bottle by the same procedure. Example 7 A letter was written on a clean glass plate with a pretreatment stock solution prepared by dissolving stannic chloride in the water-soluble titanium ester, and the mixture was baked at 360 ° C., and the reaction was carried out for about 2 hours with the composition of Example 1. As a result of continuing, a green iris color character appeared on a colorless transparent background, and the liquid was kept transparent. Comparative Example 1 A similar reaction was carried out using a film-forming reaction solution containing no polycarboxylic acid, but the reaction solution gradually became cloudy as the gloss was developed, and after 30 minutes the solution became completely opaque, and the formed dioxide was generated. Fogging was observed in the titanium thin film. Comparative Example 2 Instead of polycarboxylic acid, a simple carboxylic acid, that is, tartaric acid, citric acid, lactic acid, succinic acid, acetic acid, oxalic acid,
A similar reaction was carried out using a film-forming reaction solution in which organic acids such as phthalic acid, maleic acid, glycolic acid, and ethylenediaminetetraacetic acid were added in various proportions, but without disturbing the formation of a titanium dioxide thin film. The turbidity of the liquid could not be prevented. Comparative Example 3 Writing letters on the glass surface with an aqueous solution of stannic chloride, 360
After baking at 0 ° C. and continuing the reaction with the composition of Example 1 for 30 minutes, a glossy film of titanium dioxide was formed around the characters, but the liquid became translucent and turbid. .. Comparative Example 4 3 ml of 50% sulfuric acid and 1 drop of an aqueous solution of titanium tetrachloride having a concentration of 3.5 mol (about 0.05 m in a 100 ml volumetric flask).
1) was added and the pretreated glass plate was treated in a solution made up to 100 ml with pure water. The titanium dioxide film obtained was clearly inferior in gloss to those of Examples 1 to 6, The iris effect was also insufficient. On the other hand, when the silver-white titanium dioxide film formed in Example 1 was treated with the same solution, clear interference colors of yellow, pink, purple, blue, and green were developed depending on the treatment time, and it was strong. It was accompanied by luster.

【0010】[0010]

【発明の効果】以上のように本発明は水溶液中の均一系
反応である四塩化チタンの熱加水分解反応により、ポリ
カルボン酸の存在下で液の透明度を維持したまま二酸化
チタンと酸化錫の混合酸化物被膜でコーティングした表
面で二酸化チタンの結晶成長を行うものであるから、物
体表面の形状が凹凸に富むものであっても、塗布法では
不可避な凹部の液溜まりの問題がない。また拡散真空蒸
着の場合と異なり、ガラスびんの内面のような閉曲面に
近い表面にも容易に形成できる。したがって本発明によ
れば均一で任意の厚さの完全に透明なルチル型の二酸化
チタン光学薄膜を、ガラス、陶磁器、プラスチックなど
広範囲な物質からなる、広範囲な形状の物体表面に、ほ
ぼ寸法の制限なしに容易に形成することができ、真空装
置を必要とせず再現性も高い。このように本発明の方法
は高価な設備を必要とせず工業的に有利であるほか、簡
単な化学実験用具があれば実施できるから、趣味の工芸
として応用することも可能である。また沈澱を伴わない
から溶液中のチタンは二酸化チタン膜の成長のみに消費
され、したがって特許第1432039号の場合より著
しく早い成長速度が得られる。反応液が透明に保たれる
から、透明の反応容器を用いて薄膜の成長を肉眼で追跡
することが容易で、従って膜厚の制御も簡単である。一
旦光沢膜が形成されれば、反応液を硫酸酸性のものに切
り替えて成長を続けても、ルチル型の二酸化チタン光学
薄膜が結晶形を維持したまま成長するから、作業環境の
塩酸蒸気による汚染を問題にしなくて済む。このように
して複雑な形状をもったガラス容器の内面にも均一な虹
彩膜を容易に形成する事ができるから、蒸着法や塗布法
では実現不可能な新規な装飾効果を得ることができ、例
えば公開平3−12830に開示した装飾用虹彩色光線
反射体も容易に実現することができる。さらに公開昭6
3−14877に開示した硅酸被膜の形成方法を組み合
わせることにより、彩度の一段と優れた多層膜の形成も
容易に達成できる。
As described above, according to the present invention, by the thermal hydrolysis reaction of titanium tetrachloride, which is a homogeneous reaction in an aqueous solution, titanium dioxide and tin oxide are retained in the presence of polycarboxylic acid while maintaining the transparency of the liquid. Since the crystal growth of titanium dioxide is carried out on the surface coated with the mixed oxide film, there is no problem of liquid pooling in the recesses, which is unavoidable by the coating method, even if the shape of the object surface is uneven. Further, unlike the case of diffusion vacuum deposition, it can be easily formed on a surface close to a closed curved surface such as the inner surface of a glass bottle. Therefore, according to the present invention, a completely transparent rutile titanium dioxide optical thin film having a uniform thickness and an arbitrary thickness is formed on a surface of a wide range of objects made of a wide range of materials such as glass, ceramics and plastics, and its size is substantially limited. It can be easily formed without the need for a vacuum device and has high reproducibility. As described above, the method of the present invention does not require expensive equipment and is industrially advantageous, and since it can be carried out with a simple chemical experiment tool, it can be applied as a hobby craft. Also, since there is no precipitation, the titanium in the solution is consumed only for the growth of the titanium dioxide film, so that a significantly higher growth rate can be obtained than in the case of Japanese Patent No. 1432039. Since the reaction solution is kept transparent, it is easy to visually observe the growth of the thin film using a transparent reaction container, and thus the film thickness can be easily controlled. Once the glossy film is formed, the rutile titanium dioxide optical thin film grows while maintaining its crystalline form even if the reaction solution is switched to sulfuric acid-acidified one and continues to grow. Does not have to be a problem. In this way, it is possible to easily form a uniform iris film on the inner surface of a glass container having a complicated shape, and thus it is possible to obtain a new decorative effect that cannot be realized by the vapor deposition method or the coating method. For example, the decorative iris color light ray reflector disclosed in JP-A-3-12830 can be easily realized. Open to the public 6
By combining the method for forming a silicate film disclosed in 3--14877, it is possible to easily achieve the formation of a multilayer film having more excellent saturation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二酸化チタンと酸化錫を含む混合酸化物
の被膜でコーティングした表面を有する物体をポリカル
ボン酸の存在のもとに四塩化チタンの塩酸酸性水溶液中
で加熱し、熱加水分解反応によって生ずる二酸化チタン
を前記コーティング処理した表面に析出させてルチル型
二酸化チタンの光沢薄膜の形成を行う初期成膜段階を含
むことを特徴とする、強酸性四価チタン塩水溶液の熱加
水分解反応による二酸化チタン光学薄膜の形成方法。
1. A thermal hydrolysis reaction is carried out by heating an object having a surface coated with a film of a mixed oxide containing titanium dioxide and tin oxide in the presence of polycarboxylic acid in an acidic aqueous solution of titanium tetrachloride in hydrochloric acid. By a thermal hydrolysis reaction of a strongly acidic tetravalent titanium salt aqueous solution, characterized in that it comprises an initial film-forming step of depositing titanium dioxide generated by the method on the coated surface to form a glossy thin film of rutile-type titanium dioxide. Method for forming titanium dioxide optical thin film.
JP4129236A 1992-04-07 1992-04-07 Formation of titanium dioxide optical thin film Pending JPH05286738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129236A JPH05286738A (en) 1992-04-07 1992-04-07 Formation of titanium dioxide optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129236A JPH05286738A (en) 1992-04-07 1992-04-07 Formation of titanium dioxide optical thin film

Publications (1)

Publication Number Publication Date
JPH05286738A true JPH05286738A (en) 1993-11-02

Family

ID=15004549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129236A Pending JPH05286738A (en) 1992-04-07 1992-04-07 Formation of titanium dioxide optical thin film

Country Status (1)

Country Link
JP (1) JPH05286738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611039A1 (en) * 1993-02-10 1994-08-17 Tioxide Specialties Limited Preparation of titanium dioxide
WO1998052871A1 (en) * 1997-05-23 1998-11-26 Kyorasha Co., Ltd. Titanium oxide-containing material and process for preparing the same
US6265064B1 (en) 1997-05-23 2001-07-24 Kyorasha Co., Ltd. Natural fibers containing titanium oxide and process for producing the same
WO2003031683A1 (en) * 2001-10-04 2003-04-17 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
JP2007507618A (en) * 2003-10-07 2007-03-29 デポジション・サイエンシイズ・インコーポレイテッド Apparatus and method for depositing rutile titanium dioxide at high speed

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611039A1 (en) * 1993-02-10 1994-08-17 Tioxide Specialties Limited Preparation of titanium dioxide
US5456899A (en) * 1993-02-10 1995-10-10 Tioxide Specialties Limited Preparation of titanium dioxide
WO1998052871A1 (en) * 1997-05-23 1998-11-26 Kyorasha Co., Ltd. Titanium oxide-containing material and process for preparing the same
US6265064B1 (en) 1997-05-23 2001-07-24 Kyorasha Co., Ltd. Natural fibers containing titanium oxide and process for producing the same
US6376023B1 (en) 1997-05-23 2002-04-23 Kyorasha Co., Ltd. Titanium oxide-containing material and process for preparing the same
WO2003031683A1 (en) * 2001-10-04 2003-04-17 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
EA005342B1 (en) * 2001-10-04 2005-02-24 Ниттецу Майнинг Ко., Лтд. Powder coated with titania film and method for production thereof
US7169443B2 (en) 2001-10-04 2007-01-30 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
CN1320159C (en) * 2001-10-04 2007-06-06 日铁矿业株式会社 Powder coated with titania film and method for production thereof
JP2007507618A (en) * 2003-10-07 2007-03-29 デポジション・サイエンシイズ・インコーポレイテッド Apparatus and method for depositing rutile titanium dioxide at high speed

Similar Documents

Publication Publication Date Title
US4735869A (en) Optical film
JP2938376B2 (en) Liquid for forming titania film, titania film and method for producing the same
WO2000010921A1 (en) Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance
EP0068800B1 (en) Process for improving the surface characteristics of contact lenses
JPH11171591A (en) Sticking method of optical layer
US3536520A (en) Nickel coated flake pigments and methods for their preparation
JPH05286738A (en) Formation of titanium dioxide optical thin film
JPH01132770A (en) Composition for titanium-containing oxide film and formation of said film
JP2608758B2 (en) Method for producing titanium oxide thin film forming material
US6093259A (en) Color development method of metallic titanium and black and colored titanium manufactured by this method
CN101565565B (en) Preparation method of Co2O3/Al2O3/TiO2/mica/TiO2/Al2O3/Co2O3 seven-layer structure color-dependent pigment
JPH01110568A (en) Production of colored aluminum powder pigment
JP2946569B2 (en) Composition for forming high heat resistant high refractive index composite oxide thin film
JP2003277056A (en) Silica-titania composite film, method for producing the same, and composite structure
JPS59141441A (en) Method for producing glass coated with titanium oxide film
JPH10139482A (en) Formation of titanium oxide membrane
JPH10158014A (en) Production of titanium dioxide coating film
WO2003078320A1 (en) Thin silica film and silica-titania composite film, and method for preparing them
JPS6314877A (en) Formation of oxide film
CN106810907A (en) A kind of preparation method of the colorful pearlescent pigment of interference high
JPH10114874A (en) Paint composition
JPH03150237A (en) Glass with transparent protective film and production thereof
TWI293126B (en)
JPH037754B2 (en)
JPS63502516A (en) optical thin film