[go: up one dir, main page]

JPH0528553A - Magneto-optical recording medium and production thereof - Google Patents

Magneto-optical recording medium and production thereof

Info

Publication number
JPH0528553A
JPH0528553A JP18104791A JP18104791A JPH0528553A JP H0528553 A JPH0528553 A JP H0528553A JP 18104791 A JP18104791 A JP 18104791A JP 18104791 A JP18104791 A JP 18104791A JP H0528553 A JPH0528553 A JP H0528553A
Authority
JP
Japan
Prior art keywords
layer
magneto
optical recording
artificial lattice
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18104791A
Other languages
Japanese (ja)
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18104791A priority Critical patent/JPH0528553A/en
Publication of JPH0528553A publication Critical patent/JPH0528553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the coercive force and perpendicular magnetic anisotropy of the artificial lattice films of the magneto-optical recording medium formed with the artificial lattice films of an iron family-platinum group system as a recording layer. CONSTITUTION:The artificial lattice films constituted by using the laminate laminated with a 1st layer 2 consisting of the metals selected from Co, Fe and Co-Fe alloy and a 2nd layer 3 consisting of the metal selected from Pt, Pd and Pt-Pd alloy as a repetitive unit 4 are formed on a substrate 1 consisting of a suitable material, such as glass or plastic. The artificial lattice films are formed in a gaseous atmosphere contg. elements (for example, O, N, H, C, S, F) which can decrease the saturation magnetization of the 1st layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を利用し
てレーザー光などにより情報の記録・再生を行なう光磁
気記録媒体に関し、特に良好な垂直磁気異方性と高い保
磁力を実現できる光磁気記録媒体およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information with a laser beam or the like by utilizing the magneto-optical effect, and can realize particularly good perpendicular magnetic anisotropy and high coercive force. The present invention relates to a magneto-optical recording medium and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、書き換え可能な高密度記録方法と
して半導体レーザー光などにより記録・再生を行う光磁
気記録媒体が注目されている。
2. Description of the Related Art In recent years, as a rewritable high-density recording method, a magneto-optical recording medium for recording / reproducing with a semiconductor laser beam has attracted attention.

【0003】従来、光磁気記録媒体に使用される磁性材
料としては、Gd,Tb,Dyなどの希土類元素とFe,
Coなどの遷移金属元素とを組合わせた非晶質合金が用
いられてきた。しかし、これらの非晶質合金を構成して
いる希土類元素やFeは酸化されやすく、高温多湿の環
境下では腐食が起こりやすいという欠点がある。
Conventionally, as magnetic materials used in magneto-optical recording media, rare earth elements such as Gd, Tb and Dy and Fe,
Amorphous alloys in combination with transition metal elements such as Co have been used. However, the rare earth elements and Fe constituting these amorphous alloys are easily oxidized, and there is a drawback that corrosion is likely to occur in a hot and humid environment.

【0004】一方、希土類元素の代わりにPt,Pdな
どの貴金属を使用したCo−Pt系、あるいはCo−P
d系の記録材料は耐食性に優れたものであり、この系を
人工格子膜として保磁力を高くした技術が、特開平1−
98144号、特開平1−162257号の各公報など
に開示されている。これらによれば、200Å程度の極
めて薄い膜厚の範囲において、Co−Pt系の人工格子
膜では100〜200Oe、Co−Pd系の人工格子膜
では500〜2000Oe程度の保磁力が得られ、垂直
磁気膜となる。ここで人工格子膜とは、いわゆる超格子
膜や変調構造膜のことであって、異なる成分からなり厚
さが数十原子層以下である複数の層が、それぞれ所定の
厚さで規則正しく繰り返し積層されたもののことであ
る。
On the other hand, a Co-Pt system using a noble metal such as Pt or Pd instead of the rare earth element, or Co-P
The d-type recording material is excellent in corrosion resistance, and a technique in which this system is used as an artificial lattice film to increase the coercive force is disclosed in Japanese Patent Laid-Open No.
No. 98144, JP-A-1-162257, and the like. According to these, in an extremely thin film thickness range of about 200 Å, a coercive force of about 100 to 200 Oe is obtained for a Co-Pt-based artificial lattice film, and a coercive force of about 500 to 2000 Oe is obtained for a Co-Pd-based artificial lattice film. It becomes a magnetic film. Here, the artificial lattice film is a so-called superlattice film or a modulation structure film, and a plurality of layers having different constituents and having a thickness of several tens of atomic layers or less are regularly and repeatedly laminated with a predetermined thickness. That is what was done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述した
従来の人工格子膜を用いた光磁気記録媒体は、その記録
層の保磁力の大きさと垂直磁気異方性の大きさが、光磁
気記録を安定して行なうにはまだ不十分であるという問
題点がある。
However, in the magneto-optical recording medium using the above-mentioned conventional artificial lattice film, the magnitude of the coercive force and the perpendicular magnetic anisotropy of the recording layer stabilizes the magneto-optical recording. There is a problem that it is not enough to carry out.

【0006】本発明の目的は、記録層として使用される
人工格子膜の保磁力と垂直磁気異方性が十分大きく、か
つより広い成膜条件の下で製造することができる光磁気
記録媒体と、その製造方法を提供することにある。
An object of the present invention is to provide a magneto-optical recording medium which has a sufficiently large coercive force and perpendicular magnetic anisotropy of an artificial lattice film used as a recording layer and which can be manufactured under wider film forming conditions. , To provide a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の光磁気記録媒体
の製造方法は、Co,FeおよびCo−Fe合金の中か
ら選ばれた金属からなる第1の層と、Pt,Pdおよび
Pt−Pd合金の合金の中から選ばれた金属からなる第
2の層とがくり返し積層された人工格子膜を記録層とす
る光磁気記録媒体の製造方法において、前記第1の層の
飽和磁化を減少させることのできる元素を含有するガス
雰囲気下で、前記人工格子膜の成膜を行なうことを特徴
とする。
A method of manufacturing a magneto-optical recording medium according to the present invention comprises a first layer made of a metal selected from Co, Fe and Co-Fe alloys, and Pt, Pd and Pt-. In a method of manufacturing a magneto-optical recording medium having an artificial lattice film in which a second layer made of a metal selected from the alloys of Pd alloys is repeatedly laminated, the saturation magnetization of the first layer is reduced. It is characterized in that the artificial lattice film is formed in a gas atmosphere containing an element capable of being added.

【0008】本発明の光磁気記録媒体は、Co,Feお
よびCo−Fe合金の中から選ばれた金属からなる第1
の層と、Pt,PdおよびPt−Pd合金の合金の中か
ら選ばれた金属からなる第2の層とがくり返し積層され
た人工格子膜を記録層とする光磁気記録媒体であって、
本発明の光磁気記録媒体の製造方法で製造され、前記第
1の層の飽和磁化を減少させることのできる少なくとも
1種以上の元素が、前記第1の層に原子数比で1〜30
%含まれている。
The magneto-optical recording medium of the present invention comprises a first metal selected from Co, Fe and Co--Fe alloys.
And a second layer made of a metal selected from the alloys of Pt, Pd, and Pt-Pd alloy, which are repeatedly laminated to form an artificial lattice film as a recording layer.
At least one element produced by the method for producing a magneto-optical recording medium according to the present invention and capable of decreasing the saturation magnetization of the first layer is contained in the first layer in an atomic ratio of 1 to 30.
%include.

【0009】以下、本発明の光磁気記録媒体について詳
しく説明する。
The magneto-optical recording medium of the present invention will be described in detail below.

【0010】図1は、本発明に基づく光磁気記録媒体の
一例の断面図である。この図1に示された光磁気記録媒
体は、Co,FeおよびCo−Fe合金の中から選ばれ
た金属からなる第1の層2と、Pt,PdおよびPt−
Pd合金の中から選ばれた金属からなる第2の層3とが
積層されたものを繰り返し単位4として、この繰り返し
単位4を規則正しく多数回くり返し積層された構成の人
工格子膜を記録層とするものである。この記録層は、ガ
ラスやプラスチックなどの適当な材料からなる基板1上
に、設けられている。
FIG. 1 is a sectional view of an example of a magneto-optical recording medium according to the present invention. The magneto-optical recording medium shown in FIG. 1 includes a first layer 2 made of a metal selected from Co, Fe and Co-Fe alloys, and Pt, Pd and Pt-.
A repeating unit 4 is formed by stacking a second layer 3 made of a metal selected from Pd alloys, and an artificial lattice film having a structure in which the repeating unit 4 is regularly and repeatedly stacked is used as a recording layer. It is a thing. This recording layer is provided on the substrate 1 made of an appropriate material such as glass or plastic.

【0011】ここで第1の層2の層厚は2〜30Å程度
とするのが望ましく、第2の層3の層厚は3〜40Å程
度とすることが望ましい。各繰り返し単位4の中で、第
1の層2の層厚は均一であり、また、第2の層3の層厚
も均一である。最終的に積層された人工格子膜すなわち
記録層の厚さは、50〜800Å程度とすることが望ま
しい。
The layer thickness of the first layer 2 is preferably about 2 to 30Å, and the layer thickness of the second layer 3 is preferably about 3 to 40Å. In each repeating unit 4, the layer thickness of the first layer 2 is uniform, and the layer thickness of the second layer 3 is also uniform. It is desirable that the finally laminated artificial lattice film, that is, the recording layer has a thickness of about 50 to 800 Å.

【0012】これらの各層には、O,N,H,C,Sなどの
元素が原子数比で1%〜30%程度含有されている。上
述の人工格子膜を構成する界面すなわち第1の層と第2
の層との界面は、両側の層の原子が互いに入り乱れず平
坦であることが望ましいが、界面にやや乱れを生じなが
らも全体としては、一定の周期を保って組成が変動する
組成変調構造であってもよい。この人工格子膜は、スパ
ッタリング、真空蒸着、あるいは分子線エピタキシー
(MBE)などによって形成することができる。また熱
安定性を高めたりキュリー温度を変化させるなどの目的
で各種元素を添加してもよい。例えば第1の層に添加す
る元素としては、B,C,Al,Si,P,Ti,V,Ni,C
u,Ga,Ge,Zr,Nb,Mo,In,Sn,Sbの少なく
とも一種であることが好ましい。例えば、第2の層に添
加する元素としては、第1の層と同様の元素のほか、C
r,Mn,Co,Zn,Y,Rh,Ag,La,Nd,Sm,E
u,Ho,Hf,W,Ir,Au,Pb,Biなどが挙げられ
る。
Each of these layers contains elements such as O, N, H, C and S in an atomic number ratio of about 1% to 30%. The interface constituting the artificial lattice film described above, that is, the first layer and the second layer
It is desirable that the interface with the layer is flat, with atoms in both layers not disturbing each other, but it is a composition-modulated structure in which the composition fluctuates while maintaining a constant period even though the interface is slightly disturbed. It may be. This artificial lattice film can be formed by sputtering, vacuum deposition, molecular beam epitaxy (MBE), or the like. In addition, various elements may be added for the purpose of increasing thermal stability or changing the Curie temperature. For example, as the element added to the first layer, B, C, Al, Si, P, Ti, V, Ni, C
It is preferably at least one of u, Ga, Ge, Zr, Nb, Mo, In, Sn and Sb. For example, as the element to be added to the second layer, in addition to the same element as the first layer, C
r, Mn, Co, Zn, Y, Rh, Ag, La, Nd, Sm, E
Examples include u, Ho, Hf, W, Ir, Au, Pb and Bi.

【0013】上述の人工格子膜を光磁気記録媒体の記録
層として使用する場合、この記録層は一般的に透明な基
板の上に形成される。この場合、この記録層の両側に、
金属、半金属や半導体、誘電体を使用した保護層を設け
ることが可能である。保護層として、金属材料を用いる
場合には、面心立方構造を有するCu,Rh,Pd,Ag,
Ir,Pt,Auおよび体心立方構造を有するWなどを5
〜500Åの膜厚にて設けるとよい。誘電体を用いる場
合には、Al23,Ta25,MgO,SiO2,Fe23,
ZrO2,Bi23などの酸化物系化合物、あるいはZr
N,TiN,Si34,AlN,AlSiN,BN,TaN,
NbNなどの窒素物系化合物などを5〜5000Åの膜
厚にて設けるとよい。また半金属あるいは半導体を用い
る場合には、Si,Ge,ZnSe,SiC,ZnSなどを
5〜5000Åの膜厚にて設けるとよい。
When the above-mentioned artificial lattice film is used as a recording layer of a magneto-optical recording medium, this recording layer is generally formed on a transparent substrate. In this case, on both sides of this recording layer,
It is possible to provide a protective layer using a metal, a semimetal, a semiconductor, or a dielectric. When a metal material is used as the protective layer, Cu, Rh, Pd, Ag, which has a face-centered cubic structure,
Ir, Pt, Au and W having a body-centered cubic structure
It is preferable to provide the film with a film thickness of up to 500 Å. When a dielectric is used, Al 2 O 3 , Ta 2 O 5 , MgO, SiO 2 , Fe 2 O 3 ,
Oxide compounds such as ZrO 2 and Bi 2 O 3 , or Zr
N, TiN, Si 3 N 4 , AlN, AlSiN, BN, TaN,
It is preferable to provide a nitrogen compound such as NbN with a film thickness of 5 to 5000 Å. When a semi-metal or a semiconductor is used, Si, Ge, ZnSe, SiC, ZnS or the like may be provided in a film thickness of 5 to 5000Å.

【0014】さらに上記記録層と保護層のほかに、高い
反射率を有する層を設けることも可能である。例えば、
記録層を200Å以下の極薄膜にすると、入射光の多く
は記録層を透過することになる。一般に記録および読み
出しのための光は、透明な材料からなる基板側から入射
するから、基板側から見て、記録層の反対側に反射層を
設けることにより、記録層を透過する光の磁気光学効果
を充分に利用できるようになる。この反射層としては、
適宜の金属を使用することができる。
In addition to the recording layer and the protective layer, it is possible to provide a layer having a high reflectance. For example,
If the recording layer is an ultrathin film of 200 Å or less, most of the incident light will pass through the recording layer. In general, light for recording and reading is incident from the side of a substrate made of a transparent material, and therefore, by providing a reflective layer on the side opposite to the recording layer when viewed from the side of the substrate, the magneto-optical of light transmitted through the recording layer is provided. The effect can be fully utilized. As this reflective layer,
Appropriate metals can be used.

【0015】[0015]

【作用】従来のCo−Pd系あるいはCo−Pt系の人
工格子膜を記録層とする光磁気記録媒体では、記録層で
ある人工格子膜の飽和磁化が大きく、そのため保磁力や
膜面垂直方向の磁気異方性すなわち垂直磁気異方性が十
分ではなかった。ここで、Co,FeおよびCo−Fe
合金の中から選ばれた金属からなる層の飽和磁化を減少
させることができるような元素がこの層に混入するよう
な条件で、記録層である人工格子膜を成膜するようにす
ると、その分、飽和磁化が減少して、希土類−遷移金属
非晶質合金系に近い保磁力と垂直磁気異方性を示すよう
になる。
In a conventional magneto-optical recording medium using a Co-Pd or Co-Pt artificial lattice film as a recording layer, the saturation magnetization of the artificial lattice film, which is the recording layer, is large. The magnetic anisotropy of (i.e., perpendicular magnetic anisotropy) was not sufficient. Where Co, Fe and Co-Fe
When an artificial lattice film that is a recording layer is formed under the condition that an element capable of reducing the saturation magnetization of a layer made of a metal selected from the alloy is mixed in this layer, As a result, the saturation magnetization decreases and the coercive force and perpendicular magnetic anisotropy close to those of the rare earth-transition metal amorphous alloy system are exhibited.

【0016】[0016]

【実施例】次に本発明の実施例について、比較例と数値
を参照しながら説明する。 [実施例1]直径3インチのCoおよびPdのターゲッ
トをそれぞれマグネトロンスパッタリング装置内に設置
した。以下に詳しく説明するように、これらのターゲッ
トと対向する位置にスライドガラス基板を置き、スパッ
タ時のガス圧が5mTorrであるような条件でスパッタリ
ングを行なって、スライドガラス基板の上に人工格子膜
からなる記録層を形成し、光磁気記録媒体の試料(実施
例1−1〜6)を作成した。
EXAMPLES Next, examples of the present invention will be described with reference to comparative examples and numerical values. [Example 1] Co and Pd targets each having a diameter of 3 inches were placed in a magnetron sputtering apparatus. As described in detail below, a slide glass substrate is placed at a position facing these targets, sputtering is performed under conditions such that the gas pressure during sputtering is 5 mTorr, and an artificial lattice film is formed on the slide glass substrate. The following recording layers were formed to prepare samples of magneto-optical recording media (Examples 1-1 to 6).

【0017】スパッタリングは、Arに表1に示したよ
うなガスを混合したものを使用し、全体のガスの流量が
20SCCM(標準状態[0℃,1気圧]で、20cc相
当)となるようにして行なった。例えば実施例1−1で
は、純Arガスを10SCCM,Arに5%のO2を混入さ
せたガスを10SCCM、それぞれを混合しながら装置内に
導入した。このときのO2の濃度(体積比)は2.5%と
いうことになる。
For sputtering, a mixture of Ar and a gas as shown in Table 1 was used, and the flow rate of the entire gas was set to 20 SCCM (equivalent to 20 cc at standard condition [0 ° C., 1 atmosphere]). I did it. For example, in Example 1-1, 10 SCCM of pure Ar gas and 10 SCCM of gas in which Ar is mixed with 5% of O 2 are introduced into the apparatus while being mixed. At this time, the O 2 concentration (volume ratio) is 2.5%.

【0018】Coのターゲットには0.1A−300V
の直流が印加され、Pdのターゲットには0.15A−
300Vの直流が印加されるような条件で同時直流スパ
ッタリングを行ない、これら各ターゲットの上に設けた
シャッター板を交互に開閉することにより、スライドガ
ラス基板の上に、CoとPdが交互に積層された人工格
子膜を形成した。Co層(第1の層)とPd層(第2の
層)の膜厚、人工格子膜全体としての総膜厚は、表1に
示す通りである。
The target of Co is 0.1A-300V
DC of 0.15A- is applied to the Pd target.
Simultaneous DC sputtering is performed under the condition that a DC of 300 V is applied, and by alternately opening and closing the shutter plates provided on each of these targets, Co and Pd are alternately laminated on the slide glass substrate. Formed artificial lattice film. Table 1 shows the film thicknesses of the Co layer (first layer) and the Pd layer (second layer), and the total film thickness of the artificial lattice film as a whole.

【0019】次に試料振動型磁化測定器(VSM)と、
830nmの波長のレーザー光を使用したカー効果測定
器とにより、得られた試料それぞれの飽和磁化(emu
/cc)、保磁力(kOe)、膜面垂直方向に磁化飽和
させるために必要な磁界(kOe)、人工格子膜面から
のカー回転角(°)を測定した。続いて、各試料中の
O,N,S,C,H,Fなどの軽元素の濃度を蛍光X線分析
により定量した。これらの結果を表1に示す。なお、表
1に示した混合ガスの体積比は、導入したガス中の添加
ガス(Ar以外のガスのこと)の体積比を示す。[比較
例1]スパッタリングで使用するArガスに添加ガスを
加えないこと以外は上述の実施例1と同様にして、光磁
気記録媒体の試料を作成し、比較例1−1,2とした。
この比較例1−1,2についても同様に各種磁気特性を
測定した。その結果を表1に示す。
Next, a sample vibration type magnetization measuring instrument (VSM),
Saturation magnetization (emu) of each of the obtained samples was measured by a Kerr effect measuring instrument using a laser beam with a wavelength of 830 nm.
/ Cc), coercive force (kOe), magnetic field (kOe) necessary for saturation of magnetization in the direction perpendicular to the film surface, and Kerr rotation angle (°) from the artificial lattice film surface were measured. Subsequently, the concentrations of light elements such as O, N, S, C, H and F in each sample were quantified by fluorescent X-ray analysis. The results are shown in Table 1. In addition, the volume ratio of the mixed gas shown in Table 1 shows the volume ratio of the additive gas (the gas other than Ar) in the introduced gas. [Comparative Example 1] Samples of magneto-optical recording media were prepared in the same manner as in Example 1 except that the additive gas was not added to the Ar gas used in sputtering, and Comparative Examples 1-1 and 2 were obtained.
Various magnetic properties were similarly measured for Comparative Examples 1-1 and 2. The results are shown in Table 1.

【0020】以上の実施例1−1〜6、比較例1−1,
2の結果から、比較例1−1すなわち添加物を含まない
Co−Pd系の人工格子膜の基準試料では、飽和磁化
(垂直方向、面内方向とも)が大きく、垂直方向に磁化
飽和させるには2.8kOeもの印加磁界が必要であっ
た。ここでPdの比率を増加させた試料(比較例1−
2)では、飽和磁化をある程度減少させることは可能で
あったが、保磁力は0.6kOeまで減少し、垂直方向
に磁化が飽和するための印加磁界は3.0kOeとかえ
って増加した。これは、Pdの比率を増加しCoの磁性
を希釈するだけでは、飽和磁化は減少するが、垂直磁気
異方性は向上しないことを示している。
The above Examples 1-1 to 6 and Comparative Example 1-1,
From the results of No. 2, in Comparative Example 1-1, that is, the reference sample of the artificial lattice film of the Co—Pd system containing no additive, the saturation magnetization (both in the perpendicular direction and the in-plane direction) was large, and the magnetization saturation in the perpendicular direction was observed. Requires an applied magnetic field of 2.8 kOe. Here, a sample with an increased Pd ratio (Comparative Example 1-
In 2), it was possible to reduce the saturation magnetization to some extent, but the coercive force decreased to 0.6 kOe, and the applied magnetic field for saturation of the magnetization in the perpendicular direction increased to 3.0 kOe. This indicates that the saturation magnetization is reduced but the perpendicular magnetic anisotropy is not improved only by increasing the ratio of Pd and diluting the magnetism of Co.

【0021】これに対して実施例1−1〜6の試料は、
いずれもCoとPdの相互間の組成比が比較例1−1と
同じであるにもかかわらず、飽和磁化(特に面内方向)
が減少し、垂直方向に磁化飽和させるための印加磁界も
大きく減少し、垂直方向の磁気異方性が向上した。
On the other hand, the samples of Examples 1-1 to 6 are
In both cases, although the composition ratio between Co and Pd is the same as in Comparative Example 1-1, the saturation magnetization (especially in-plane direction)
, The applied magnetic field for saturation of magnetization in the perpendicular direction was greatly reduced, and the magnetic anisotropy in the perpendicular direction was improved.

【0022】実施例1−1〜6と比較例1−2との違い
は、これら各実施例では、スパッタリング時に添加した
O,N,Sなどの軽元素がCoあるいはFe格子中に混入
し磁性を弱めるだけでなく、このような組成域を外周に
もつ円柱状のものが形成されて何らかの形状的な異方性
も生じているためと考えられる。
The difference between Examples 1-1 to 6 and Comparative Example 1-2 is that in each of these Examples, light elements such as O, N, and S added at the time of sputtering are mixed in the Co or Fe lattice and the magnetic properties are reduced. It is thought that this is because not only is the strength weakened, but also a columnar shape having such a composition region on the outer periphery is formed to cause some form anisotropy.

【0023】[0023]

【表1】 [実施例2、比較例2]実施例1、比較例1と同様のス
パッタリングにより、2つのターゲットのそれぞれに配
置する材料、膜厚、あるいは添加するガスの種類、流量
などをそれぞれ表2に示すように変えながら試料(実施
例2−1〜4、比較例2−1〜3)を作成した。また、
作成した試料の評価も、上述の実施例1や比較例1と同
様にして行なった。その結果を表2に示す。
[Table 1] [Example 2 and Comparative Example 2] Table 2 shows the materials and film thicknesses to be placed on each of the two targets, the kind of gas to be added, the flow rate, etc., by the same sputtering as in Example 1 and Comparative Example 1. Samples (Examples 2-1 to 4 and Comparative examples 2-1 to 3) were prepared while changing the above. Also,
The evaluation of the prepared sample was also performed in the same manner as in Example 1 and Comparative Example 1 described above. The results are shown in Table 2.

【0024】実施例2、比較例2の各試料は、いずれも
Fe元素を含むもので、Co元素のみを含む系よりも面
内異方性の膜になりやすい傾向を示した。実施例2−
1,2と比較例2−1との結果から、Fe−Pd系にお
いても、O,Nの元素を添加したものが飽和磁化を小さ
くし垂直方向飽和磁界を小さくすることが分かった。実
施例2−3と比較例2−2はいずれもFeCo合金−P
t系であるが、N元素を添加している実施例2−3の方
が飽和磁化が減少し、垂直方向の異方性が増大し、カー
回転角の値も測定可能となった。実施例2−4と比較例
2−3はいずれもFeCo合金−PtPd合金系である
が、O元素を添加している実施例2−4の方において、
飽和磁化が減少し、垂直方向の残留磁化の大きさが飽和
磁化にほぼ近い垂直磁化膜となった。
Each of the samples of Example 2 and Comparative Example 2 contained the Fe element, and tended to be an in-plane anisotropic film as compared with the system containing only the Co element. Example 2-
From the results of Nos. 1 and 2 and Comparative Example 2-1, it was found that even in the Fe-Pd system, the addition of the elements O and N reduces the saturation magnetization and the vertical saturation magnetic field. In both Example 2-3 and Comparative example 2-2, FeCo alloy-P
Although it was a t-based system, Example 2-3 in which the N element was added had a decreased saturation magnetization, increased anisotropy in the vertical direction, and the Kerr rotation angle value was also measurable. Although both Example 2-4 and Comparative Example 2-3 are FeCo alloy-PtPd alloy system, in Example 2-4 in which O element is added,
The saturation magnetization decreased, and the magnitude of the residual magnetization in the perpendicular direction became a perpendicular magnetization film which was almost close to the saturation magnetization.

【0025】[0025]

【表2】 これらの結果から、従来、垂直磁化膜とすることが難し
いとされていたCo−Fe−Pt−Pd系薄膜におい
て、くりかえし積層された人工格子膜とすることと、C
o,Feの磁化を希釈する効果を示す軽元素をスパッタ
中に混入させることとにより、従来用いられている希土
類元素−遷移金属元素非晶質合金に近い磁化の大きさま
で磁化を小さくすることができ、これにより垂直磁気異
方性が向上することが分かる。
[Table 2] From these results, it was found that Co-Fe-Pt-Pd-based thin films, which were conventionally difficult to be made into a perpendicular magnetization film, were repeatedly laminated to form an artificial lattice film, and C
By mixing a light element having the effect of diluting the magnetization of o and Fe into the sputtering, the magnetization can be reduced to a magnitude close to that of a rare earth element-transition metal element amorphous alloy conventionally used. It can be seen that this can improve the perpendicular magnetic anisotropy.

【0026】従来の希土類元素−遷移金属元素非晶質合
金では、希土類元素が酸化しやすく、成膜中に軽元素を
混入させるとそれだけで面内異方性の膜となることが多
いが、Co−Fe−Pt−Pd系では、耐酸化性に優れ
るためか、むしろ垂直方向の異方性が向上することが分
かった。また混入させるガスの割合が1〜10体積%程
度のときに、とりわけ良好な成績を示した。スパッタ時
の圧力あるいは真空排気能力などにより、人工格子膜中
にとり込まれるこれら軽元素の割合は変わり得るが、飽
和磁化を減少させて垂直磁気異方性の向上に有効なの
は、軽元素の比率として1〜30原子%程度であり、こ
れより少ない場合は添加の効果がなく、これより多い場
合には、キュリー温度が室温以下となって強磁性を示さ
なくなることが多い。なおこの場合、O,N,S,C,H,
Fなどの元素は、CoやFeに対して親和性が大きいの
で、同時スパッタリングの手法により人工格子膜を形成
する場合であっても、CoやFeからなる層に混入し、
PtやPdからなる層にはほとんど混入されないものと
考えられる。
In the conventional rare earth element-transition metal element amorphous alloy, the rare earth element is easily oxidized, and if a light element is mixed during film formation, it often becomes an in-plane anisotropic film. It has been found that the Co-Fe-Pt-Pd system is superior in oxidation resistance, or rather, the anisotropy in the vertical direction is improved. Particularly, when the ratio of the mixed gas was about 1 to 10% by volume, particularly good results were shown. The ratio of these light elements taken into the artificial lattice film may change depending on the pressure during sputtering or the evacuation capacity, but it is effective to reduce the saturation magnetization to improve the perpendicular magnetic anisotropy. It is about 1 to 30 atomic%, and if it is less than this, the effect of addition is not obtained, and if it is more than this, the Curie temperature is lower than room temperature and the ferromagnetism is often not exhibited. In this case, O, N, S, C, H,
Since elements such as F have a high affinity for Co and Fe, even when the artificial lattice film is formed by the co-sputtering method, they are mixed in the layer made of Co and Fe,
It is considered that the layer made of Pt or Pd is hardly mixed.

【0027】本発明の各実施例の試料について、0.1
mol/lの食塩水に3時間浸漬するテストおよび70
℃90%相対湿度の環境下に1週間放置するテストを行
った結果、これらのテスト後においても保磁力、飽和磁
化、カー回転角などにほとんど変化がみられず、本発明
にかかる光磁気記録媒体において良好な耐食性、保存性
が期待できることがわかった。なお、これらのテスト
は、保護層などを設けずに、基板の上に人工格子膜がむ
き出しのままとなっているものについて実行した。
With respect to the samples of the respective examples of the present invention, 0.1
a test of soaking in mol / l saline for 3 hours and 70
As a result of a test in which the test was left for 1 week in an environment of 90 ° C. and 90% relative humidity, there was almost no change in coercive force, saturation magnetization, Kerr rotation angle, etc. even after these tests, and the magneto-optical recording according to the present invention. It was found that good corrosion resistance and storage stability can be expected in the medium. Note that these tests were performed on a substrate in which the artificial lattice film was left exposed without providing a protective layer or the like.

【0028】[0028]

【発明の効果】以上の説明したように本発明は、Co,
FeおよびCo−Fe合金の中から選ばれた金属からな
る第1の層と、Pt,PdおよびPt−Pd合金の合金
の中から選ばれた金属からなる第2の層とがくり返し積
層された人工格子膜を記録層とする光磁気記録媒体にお
いて、前記第1の層の飽和磁化を減少させることのでき
る元素を含有するガス雰囲気下で、人工格子膜の層の成
膜を行なうようにすることにより、保磁力と垂直磁気異
方性が向上し、安定した特性を有する光磁気記録媒体が
得られるようになるという効果がある。
As described above, according to the present invention, Co,
A first layer made of a metal selected from Fe and Co-Fe alloys and a second layer made of a metal selected from alloys of Pt, Pd and Pt-Pd alloys were repeatedly laminated. In a magneto-optical recording medium having an artificial lattice film as a recording layer, the artificial lattice film layer is formed in a gas atmosphere containing an element capable of reducing the saturation magnetization of the first layer. As a result, the coercive force and the perpendicular magnetic anisotropy are improved, and the magneto-optical recording medium having stable characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく光磁気磁気媒体の一例の構成を
示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of an example of a magneto-optical medium according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 第1の層 3 第2の層 4 繰り返し単位 1 substrate 2 First layer 3 Second layer 4 repeating units

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Co,FeおよびCo−Fe合金の中か
ら選ばれた金属からなる第1の層と、Pt,Pdおよび
Pt−Pd合金の合金の中から選ばれた金属からなる第
2の層とがくり返し積層された人工格子膜を記録層とす
る光磁気記録媒体の製造方法において、 前記第1の層の飽和磁化を減少させることのできる元素
を含有するガス雰囲気下で、前記人工格子膜の成膜を行
なうことを特徴とする光磁気記録媒体の製造方法。
1. A first layer made of a metal selected from Co, Fe and Co-Fe alloys, and a second layer made of a metal selected from Pt, Pd and Pt-Pd alloy alloys. In a method of manufacturing a magneto-optical recording medium having an artificial lattice film in which layers are repeatedly laminated as a recording layer, the artificial lattice is formed under a gas atmosphere containing an element capable of reducing the saturation magnetization of the first layer. A method for manufacturing a magneto-optical recording medium, which comprises forming a film.
【請求項2】 前記第1の層の飽和磁化を減少させるこ
とのできる元素が、O,N,H,C,S,Fの中から選ばれ
た1種類以上の元素である請求項1に記載の光磁気記録
媒体の製造方法。
2. The element capable of reducing the saturation magnetization of the first layer is one or more kinds of elements selected from O, N, H, C, S and F. A method for manufacturing the magneto-optical recording medium described.
【請求項3】 Co,FeおよびCo−Fe合金の中か
ら選ばれた金属からなる第1の層と、Pt,Pdおよび
Pt−Pd合金の合金の中から選ばれた金属からなる第
2の層とがくり返し積層された人工格子膜を記録層とす
る光磁気記録媒体であって、請求項1または2に記載の
光磁気記録媒体の製造方法で製造され、前記第1の層の
飽和磁化を減少させることのできる少なくとも1種以上
の元素が、前記第1の層に原子数比で1〜30%含まれ
ている光磁気記録媒体。
3. A first layer made of a metal selected from Co, Fe and Co-Fe alloys, and a second layer made of a metal selected from Pt, Pd and Pt-Pd alloy alloys. A magneto-optical recording medium having an artificial lattice film in which layers are repeatedly laminated as a recording layer, which is manufactured by the method for manufacturing a magneto-optical recording medium according to claim 1 or 2, and has a saturation magnetization of the first layer. A magneto-optical recording medium in which the first layer contains at least one element capable of reducing the amount of 1 to 30% in atomic ratio.
JP18104791A 1991-07-22 1991-07-22 Magneto-optical recording medium and production thereof Pending JPH0528553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18104791A JPH0528553A (en) 1991-07-22 1991-07-22 Magneto-optical recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18104791A JPH0528553A (en) 1991-07-22 1991-07-22 Magneto-optical recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPH0528553A true JPH0528553A (en) 1993-02-05

Family

ID=16093846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18104791A Pending JPH0528553A (en) 1991-07-22 1991-07-22 Magneto-optical recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPH0528553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428334C (en) * 2004-07-27 2008-10-22 松下电器产业株式会社 Magnetic recording medium and method for manufacturing same, and method for recording and reproducing with magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428334C (en) * 2004-07-27 2008-10-22 松下电器产业株式会社 Magnetic recording medium and method for manufacturing same, and method for recording and reproducing with magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2738312B2 (en) Magnetoresistive film and method of manufacturing the same
JPH04167406A (en) Photomagnetic recording medium
JP3207477B2 (en) Magnetoresistance effect element
KR970002825B1 (en) Soft magnetic thin film
JPH08204253A (en) Magnetoresistive effect film
KR930004442B1 (en) Vertical magnetic recording media
EP0304927A2 (en) Perpendicular magnetic recording medium
JP3029485B2 (en) Magneto-optical recording medium
JPH0528553A (en) Magneto-optical recording medium and production thereof
JP2701337B2 (en) Magneto-optical recording medium
US5626973A (en) Magneto-optical layer and magneto-optical recording medium
JPH0256752A (en) Magneto-optical recording medium
JP2526615B2 (en) Magneto-optical recording medium
JP3183965B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JPH0757312A (en) Magneto-optical thin film and magneto-optical recording medium
JP2596073B2 (en) Magneto-optical recording medium
KR100194132B1 (en) Magneto-optical Layers and Magneto-optical Recording Media
JP3113069B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JP3427403B2 (en) Perpendicular magnetization film and perpendicular magnetic recording medium
JPH0380445A (en) Magneto-optical recording medium
EP0169928A1 (en) Magnetic recording medium
JPH0757310A (en) Magneto-optical thin film and magneto-optical recording medium
JPH0432209A (en) Magnetic film
JPH0757311A (en) Magneto-optical thin film and magneto-optical recording medium
JPH0757309A (en) Magneto-optical thin film and magneto-optical recording medium