[go: up one dir, main page]

JPH05285341A - Treatment of carbon dioxide - Google Patents

Treatment of carbon dioxide

Info

Publication number
JPH05285341A
JPH05285341A JP4082576A JP8257692A JPH05285341A JP H05285341 A JPH05285341 A JP H05285341A JP 4082576 A JP4082576 A JP 4082576A JP 8257692 A JP8257692 A JP 8257692A JP H05285341 A JPH05285341 A JP H05285341A
Authority
JP
Japan
Prior art keywords
carbon dioxide
treatment
compound
gas
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4082576A
Other languages
Japanese (ja)
Inventor
Shoji Doi
祥司 土肥
Koji Moriya
浩二 守家
Katsutoshi Nakayama
勝利 中山
Shigeru Morikawa
茂 森川
Takashi Kobayashi
小林  孝
Tadao Onaka
忠生 大中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4082576A priority Critical patent/JPH05285341A/en
Publication of JPH05285341A publication Critical patent/JPH05285341A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a method for treating carbon dioxide where LaxSr1-xCoOdelta base perovskite-type compounds are used with their carbon dioxide adsorptive power being as high as possible. CONSTITUTION:In a method for treating carbon dioxide where carbon dioxide is brought into contact with LaxS1-xCoOdelta base (where x=0-0.8, delta=1-3) perovskite-type compounds and given adsorption by the compounds to treat it, after the compounds are given reducing treatment where they are brought into contact with reducing gas, such as gaseous hydrogen or gaseous methane in the temp. range of >=700 deg.C, they are brought into contact with carbon dioxide to treat it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【従来の技術】従来、二酸化炭素の除去・回収にあたっ
ては、アルカノールアミン法、熱炭酸カリ法、カタカー
ブ法等の液吸収法、膜分離法、吸着法など様々な方法が
採用されてきている。しかしながら、これらの方法には
夫々欠点があり、比較的簡単な方法・装置構成で二酸化
炭素の収着・除去・回収をおこなうことが可能な、方法
の出現が待望されていた。ここで、上述のLaxSr1-x
CoOδ系(式中x=0〜0.8、δ=1〜3)ペロブ
スカイト型化合物は、このような要請に合致したもので
あり、この化合物を二酸化炭素が流れてくる流路に配設
しておくと、これを収着し、除去することが可能である
とともに、さらに収着状態の化合物に不活性ガスを接触
させてやると、これを放出するため、二酸化炭素を回収
することも可能である。
2. Description of the Related Art Conventionally, various methods such as a liquid absorption method such as an alkanolamine method, a hot potassium carbonate method, and a catacarb method, a membrane separation method, and an adsorption method have been adopted for removing and recovering carbon dioxide. However, each of these methods has drawbacks, and the advent of a method capable of sorption / removal / recovery of carbon dioxide with a relatively simple method / device configuration has been desired. Here, the above-mentioned La x Sr 1-x
The CoOδ system (where x = 0 to 0.8, δ = 1 to 3) perovskite type compound meets such requirements, and this compound is disposed in a channel through which carbon dioxide flows. If it is kept, it can be sorbed and removed, and if an inert gas is further brought into contact with the sorbed compound, it will be released, so carbon dioxide can also be collected. Is.

【0002】[0002]

【発明が解決しようとする課題】しかしながら、この化
合物の二酸化炭素収着能には限界があり、特に処理を行
わないで使用すると、二酸化炭素収着能が限られるとい
う欠点がある。
However, the carbon dioxide sorption capacity of this compound is limited, and there is a drawback that the carbon dioxide sorption capacity is limited if it is used without any treatment.

【0003】従って本発明の目的は、LaxSr1-xCo
Oδ系(式中x=0〜0.8、δ=1〜3)ペロブスカ
イト型化合物の二酸化炭素収着能ができるだけ高い状態
で、この化合物を使用することができる二酸化炭素の処
理方法を得ることである。
Therefore, it is an object of the present invention to provide La x Sr 1-x Co.
To obtain a carbon dioxide treatment method in which this compound can be used in a state where the carbon dioxide sorption capacity of an Oδ system (where x = 0 to 0.8, δ = 1 to 3) perovskite type compound is as high as possible. Is.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による二酸化炭素の処理方法の特徴手段は、こ
の化合物を700℃以上の温度域で還元ガスに接触させ
る還元処理をおこなった後、二酸化炭素に接触させて、
二酸化炭素を処理するものとすることにある。それらの
作用・効果は次の通りである。
[Means for Solving the Problems] The characteristic means of the method for treating carbon dioxide according to the present invention for achieving this object is to perform a reduction treatment in which this compound is brought into contact with a reducing gas in a temperature range of 700 ° C. or higher. , Contact with carbon dioxide,
It is supposed to process carbon dioxide. Their actions and effects are as follows.

【0005】[0005]

【作用】本方法においては、二酸化炭素と接触させる前
に、還元処理がおこなわれる。この還元処理がおこなわ
れると、ペロブスカイト型化合物であるこの化合物の構
造中に含まれる酸素が脱離して形成した酸素欠陥が、通
常のものより増加し、この酸素欠陥部が二酸化炭素に対
する収着能を発揮するものと考えられる。即ち、還元処
理をおこなうことにより、二酸化炭素に対する処理能力
を増加させることが可能となる。
In this method, reduction treatment is performed before contact with carbon dioxide. When this reduction treatment is performed, the oxygen defects formed by the elimination of oxygen contained in the structure of this compound, which is a perovskite type compound, increase from the normal one, and this oxygen defect part absorbs carbon dioxide. It is thought that it exerts. That is, by performing the reduction treatment, the treatment capacity for carbon dioxide can be increased.

【0006】[0006]

【発明の効果】従って、LaxSr1-xCoOδ系(式中
x=0〜0.8、δ=1〜3)ペロブスカイト型化合物
の二酸化炭素収着能ができるだけ高い状態で、この化合
物を使用することができる二酸化炭素の処理方法を得る
ことができた。
Effect of the Invention] Therefore, La x Sr 1-x CoOδ system (wherein x = 0~0.8, δ = 1~3) as high as possible state carbon dioxide sorption capacity of a perovskite-type compound, the compound It was possible to obtain a carbon dioxide treatment method that could be used.

【0007】[0007]

【実施例】本発明の二酸化炭素の処理方法について、以
下に説明する。この処理方法は、化合物(La0.2Sr
0.8CoOδ(δ=1〜3)以後δの表記を省略する)
を還元処理する第一処理と、処理済の化合物を使用し
て、これに二酸化炭素を接触させて収着処理する第二処
理から構成されている。即ち、二酸化炭素を含有する二
酸化炭素含有ガスが流れてくる流路に、水素ガスもしく
はメタンガス等の還元ガスに接触させた還元処理済のL
0.2Sr0.8CoOδを配設し、この配設部を900℃
程度に維持する。すると、下流側には二酸化炭素を処理
されたガスが、流れ出てくる。ここで、二酸化炭素の減
少量は、還元処理をしたものとしないものとで、大きく
異なる。
The method for treating carbon dioxide of the present invention will be described below. This treatment method is based on the compound (La 0.2 Sr
0.8 CoO δ (δ = 1 to 3) and subsequent δ is omitted)
And a second treatment in which a treated compound is used and carbon dioxide is brought into contact with it to perform a sorption treatment. That is, the reduction-processed L obtained by bringing a carbon dioxide-containing gas containing carbon dioxide into contact with a reducing gas such as hydrogen gas or methane gas in the flow path.
a 0.2 Sr 0.8 CoOδ is installed, and this installation part is 900 ° C.
Maintain to a degree. Then, the gas treated with carbon dioxide flows out to the downstream side. Here, the amount of reduction of carbon dioxide differs greatly between those subjected to reduction treatment and those not subjected to reduction treatment.

【0008】以下に各処理の状況を箇条書きする。 (1)化合物の還元処理 還元ガス H2ガス100%あるいはCH4ガス(25%)−N
2(バランス) 処理時間 30min 処理温度 900℃ SV値 1000h-1 (2)二酸化炭素の処理 被処理ガス CO2(12%)−N2(88%) 反応温度 900℃ SV 1000h-1 結果 表1に示すようにCO2吸着処理量は大幅に増加した。
ここで、比較のために還元処理をおこなわない場合で、
単に化合物を900℃に保ち窒素ガスを供給した場合の
CO2吸着量は、40cc/1gである。
The status of each processing is listed below. (1) Compound reduction treatment Reduction gas H 2 gas 100% or CH 4 gas (25%)-N
2 (balance) Treatment time 30 min Treatment temperature 900 ° C. SV value 1000 h −1 (2) Treatment of carbon dioxide Gas to be treated CO 2 (12%)-N 2 (88%) Reaction temperature 900 ° C. SV 1000 h −1 Results Table 1 As shown in, the CO 2 adsorption treatment amount increased significantly.
Here, in the case where no reduction process is performed for comparison,
The amount of CO 2 adsorbed when the compound was simply kept at 900 ° C. and nitrogen gas was supplied was 40 cc / 1 g.

【0009】[0009]

【表1】 [Table 1]

【0010】従って、還元処理をすることにより、二酸
化炭素の収着処理量が倍増する場合もあることがわか
る。
Therefore, it is understood that the reduction treatment may double the sorption treatment amount of carbon dioxide.

【0011】〔実験例〕二酸化炭素処理に関連して発明
者らがおこなった実験結果について以下に説明する。 (1) LaxSr1-xCoOδ(x=0〜1、δ=1〜
3)のCO2処理特性 この化合物のCO2処理特性についてSrに対するLa
の配合率を変化させた場合の処理結果を図1に示す。 実験条件 各化合物の成形状態 1〜2mmの顆粒状 反応温度 900℃ CO2 濃度 12%−N2バランス SV 1000h-1 結果、この化合物は、xが0〜0.2の範囲において4
0cc/g程度のCO 2処理特性を示し、更なるLa量
の増加に伴ってCO2処理性能を失う。従って、この化
合物を使用してCO2を処理することができる。x=
0.0〜0.8の範囲がこの化合物が有効に働く範囲で
ある。
[Experimental Example] Invention related to carbon dioxide treatment
The results of the experiments conducted by the researchers will be described below. (1) LaxSr1-xCoOδ (x = 0 to 1, δ = 1 to 1
3) CO2Treatment characteristics CO of this compound2Processing characteristics La to Sr
FIG. 1 shows the processing result when the compounding ratio of No. 1 was changed. Experimental conditions Molded state of each compound Granule of 1-2 mm Reaction temperature 900 ° C CO2Concentration 12% -N2Balance SV 1000h-1 As a result, this compound was 4 in the range of x of 0 to 0.2.
CO of about 0cc / g 2Shows processing characteristics and further La amount
CO increases with2Loss processing performance. Therefore, this
CO using compound2Can be processed. x =
The range of 0.0-0.8 is the range where this compound works effectively.
is there.

【0012】(2) CO2処理特性と反応温度の関係 La0.2Sr0.8CoOδ及びSrCoOδ組成のペロブ
スカイト化合物のCO2処理特性と反応温度との関係
を、BaTiO3の結果と共に図2に示した。実験条件
は、図1のものと同様である。結果、 反応温度100
〜900℃と変化させたところ、La0.2Sr0.8CoO
δ及びSrCoOδ組成のペロブスカイト化合物では、
反応温度の上昇とともに二酸化炭素の処理の増加が確認
され、反応温度900℃で約40cc/ペロブスカイト
化合物1g当りのCO2の吸着・処理が確認できた。一
方、同様におこなったBaTiO3については、CO2
吸着・処理は確認できなかった。その後、反応温度を9
00℃に保持し、N2−CO2ガスからN2ガスに切替え
たところ、吸着量と同量のCO2離脱が確認できた。こ
のことから反応温度900℃において、ガスの切替操作
によりCO2ガスの吸着・脱離を行うことができること
が判る。
[0012] (2) the relationship between the CO 2 processing characteristics for CO 2 processing characteristics and relationships La 0.2 Sr 0.8 CoOδ reaction temperature and SrCoOδ perovskite compound composition and the reaction temperature are shown in FIG. 2 together with the results of BaTiO 3. The experimental conditions are the same as those in FIG. As a result, reaction temperature 100
When changed to ~ 900 ° C, La 0.2 Sr 0.8 CoO
In the perovskite compound of δ and SrCoOδ composition,
It was confirmed that the treatment of carbon dioxide increased with the increase of the reaction temperature, and the adsorption / treatment of CO 2 per reaction amount of about 40 cc / g of perovskite compound was confirmed at the reaction temperature of 900 ° C. On the other hand, with respect to BaTiO 3 carried out in the same manner, CO 2 adsorption / treatment could not be confirmed. Then, set the reaction temperature to 9
When the temperature was maintained at 00 ° C. and the N 2 —CO 2 gas was switched to the N 2 gas, the same amount of CO 2 released as the adsorbed amount could be confirmed. From this, it is understood that at the reaction temperature of 900 ° C., CO 2 gas can be adsorbed / desorbed by switching the gas.

【0013】(3)各種還元処理に於けるLa0.2Sr
0.8CoOδのCO2収着能の変化 図3に、各種還元処理(熱処理、CH4処理、H2処理)
をおこなった場合の、La0.2Sr0.8CoOδの収着能
の時間的変化を示した。即ち、前記化合物が配設される
反応器出口側に於けるCO2濃度と除去開始時間(除去
開始時を0時とする)からの経過時間の関係が示されて
いる。夫々の還元処理条件は以下のとおりである。 熱処理(破線で示す) 処理ガス;窒素ガス、処理温度;900℃、処理時間;
30min CH4処理(一点鎖線で示す) 処理ガス;CH4ガス(25%ーN2ガス)、処理温度;
900℃、処理時間;30min H2処理(実線で示す) 処理ガス;水素ガス(100%)、処理温度;900
℃、処理時間;30min 二酸化炭素の除去条件 反応温度:900℃、SV:1000h-1、反応ガス:
CO212%−N2バランス 結果、この化合物においては、単なる熱処理では20m
in程度の100%除去能を示すのみであったが、CH
4処理、H2処理となるに従ってその除去能が向上し、H
2処理の場合は、約1時間100%の処理能を維持する
こととなった。
(3) La 0.2 Sr in various reduction treatments
Changes in CO 2 sorption capacity of 0.8 CoOδ Various reduction treatments (heat treatment, CH 4 treatment, H 2 treatment) are shown in FIG.
The time-dependent change in the sorption capacity of La 0.2 Sr 0.8 CoO δ in the case of performing the above is shown. That is, the relationship between the CO 2 concentration at the outlet side of the reactor in which the compound is disposed and the time elapsed from the removal start time (when the removal start time is 0:00) is shown. The respective reducing treatment conditions are as follows. Heat treatment (shown by a broken line) Processing gas; Nitrogen gas, processing temperature; 900 ° C., processing time;
30 min CH 4 treatment (shown by alternate long and short dash line) treatment gas; CH 4 gas (25% -N 2 gas), treatment temperature;
900 ° C., processing time; 30 min H 2 processing (shown by solid line) processing gas; hydrogen gas (100%), processing temperature; 900
C, treatment time; 30 min Carbon dioxide removal conditions Reaction temperature: 900 ° C., SV: 1000 h −1 , reaction gas:
CO 2 12% -N 2 balance As a result, in this compound, 20 m was obtained by simple heat treatment.
It showed only about 100% removal capacity of in, but CH
4 treatment, H 2 treatment improves its removal ability,
In the case of 2 treatments, the treatment capacity of 100% was maintained for about 1 hour.

【0014】(4)各種還元処理に於けるSrCoOδ
のCO2収着能の変化 SrCoOδについて同様な実験をおこなった場合の結
果を図4に示した。実験条件、各種処理は図3のものと
同様である。結果 この化合物においては、図3と同様
に単なる熱処理では20min程度の100%処理能を
示すのみであったが、H2処理、CH4処理となるに従っ
てその処理能が向上し、CH4処理の場合は、約50m
in100%の処理能を維持することとなった。ここ
で、図3と図4に於いて処理性能に逆転が起こっている
理由は、各化合物における酸素欠陥構造と各還元ガスの
構造の起因するものとも考えられる。 〔別実施例〕 (イ)上記の実施例においては、還元処理に使用される
ガスとして、メタン、水素の例を示したが、これは一酸
化炭素ガス等であってもよく、これらを総称して還元ガ
スと称する。 (ロ)各化合物は、使用状態で前述の条件を満たしてい
ればよく、その合成過程における、出発原料物質は特に
限定されるものではなく、合成方法についても固相反応
法、液相反応法等あるがとくに限定するものではない。 (ハ)さらに化合物を粒子状のまま二酸化炭素を含むガ
ス中に配設しても、ハニカム状等いかなる形状に成形し
て配設して、使用してもよい。
(4) SrCoOδ in various reduction treatments
Change in CO 2 sorption ability of SrCoOδ The results of the same experiment were shown in FIG. The experimental conditions and various processes are the same as those in FIG. Results In this compound, but only showed a 100% throughput of about 20min just heat treatment in the same manner as FIG. 3, H 2 treatment, improves the processing capacity according to a CH 4 process, the CH 4 treatment In case of about 50m
The processing ability of 100% was maintained. Here, it is considered that the reason why the treatment performance is reversed in FIGS. 3 and 4 is due to the oxygen defect structure in each compound and the structure of each reducing gas. [Other Embodiments] (a) In the above embodiments, examples of methane and hydrogen have been shown as the gas used for the reduction treatment, but this may be carbon monoxide gas, etc. And is referred to as reducing gas. (B) Each compound has only to satisfy the above-mentioned conditions in use, and the starting material in the synthesis process is not particularly limited, and the synthesis method is also a solid phase reaction method or a liquid phase reaction method. There is no particular limitation. (C) Further, the compound may be placed in a gas containing carbon dioxide in the form of particles, or may be formed into any shape such as a honeycomb shape and used.

【0015】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】コバルト酸系化合物のCO2処理性能を示す図FIG. 1 is a diagram showing the CO 2 treatment performance of a cobalt acid compound.

【図2】CO2除去率と反応温度の関係を示す図FIG. 2 is a graph showing the relationship between CO 2 removal rate and reaction temperature.

【図3】各種還元処理に於けるLa0.2Sr0.8CoOδ
のCO2収着能を示す図
FIG. 3 shows La 0.2 Sr 0.8 CoOδ in various reduction treatments.
Figure showing CO 2 sorption capacity

【図4】各種還元処理に於けるSrCoOδのCO2
着能の変化を示す図
FIG. 4 is a diagram showing changes in CO 2 sorption capacity of SrCoOδ during various reduction treatments.

フロントページの続き (72)発明者 森川 茂 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 (72)発明者 小林 孝 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 (72)発明者 大中 忠生 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内Front page continuation (72) Shigeru Morikawa, Inventor Shigeru Morikawa, Nakagyo-dera, Shimogyo-ku, Kyoto Prefecture, Kyoto, Ltd.Kansai Research Institute of Technology (72) Inventor, Takashi Kobayashi 17, Nakado-dera, Minami-cho, Kyoto, Kyoto Inside the New Technology Research Institute (72) Inventor Tadao Ohnaka 17 Nakadoji Minami-cho, Shimogyo-ku, Kyoto City Kyoto Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素をLaxSr1-xCoOδ系
(式中x=0〜0.8、δ=1〜3)ペロブスカイト型
化合物に接触させ、前記二酸化炭素を前記化合物に収着
させて前記二酸化炭素を処理する二酸化炭素の処理方法
において、 前記化合物を700℃以上の温度域で還元ガスに接触さ
せる還元処理をおこなった後、前記二酸化炭素に接触さ
せて、前記二酸化炭素を処理する二酸化炭素の処理方
法。
1. Carbon dioxide is brought into contact with a La x Sr 1-x CoO δ system (where x = 0 to 0.8, δ = 1 to 3) perovskite type compound, and the carbon dioxide is sorbed to the compound. In the method for treating carbon dioxide, the carbon dioxide is treated by subjecting the compound to a reducing gas in a temperature range of 700 ° C. or higher, and then contacting the carbon dioxide to treat the carbon dioxide. How to treat carbon dioxide.
【請求項2】 前記還元ガスが水素ガスもしくはメタン
ガスである請求項1記載の二酸化炭素の処理方法。 【産業上の利用分野】二酸化炭素をLaxSr1-xCoO
δ系(式中x=0〜0.8、δ=1〜3)ペロブスカイ
ト型化合物に接触させ、二酸化炭素を前記化合物に収着
させて前記二酸化炭素を処理する二酸化炭素の処理方法
に関する。
2. The method for treating carbon dioxide according to claim 1, wherein the reducing gas is hydrogen gas or methane gas. [Industrial application] Carbon dioxide is converted into La x Sr 1-x CoO
The present invention relates to a method for treating carbon dioxide, which comprises contacting a δ-based (where x = 0 to 0.8, δ = 1 to 3) perovskite type compound to sorb carbon dioxide to the compound to treat the carbon dioxide.
JP4082576A 1992-04-06 1992-04-06 Treatment of carbon dioxide Pending JPH05285341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082576A JPH05285341A (en) 1992-04-06 1992-04-06 Treatment of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082576A JPH05285341A (en) 1992-04-06 1992-04-06 Treatment of carbon dioxide

Publications (1)

Publication Number Publication Date
JPH05285341A true JPH05285341A (en) 1993-11-02

Family

ID=13778318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082576A Pending JPH05285341A (en) 1992-04-06 1992-04-06 Treatment of carbon dioxide

Country Status (1)

Country Link
JP (1) JPH05285341A (en)

Similar Documents

Publication Publication Date Title
JP4315666B2 (en) Syngas purification method
US4587114A (en) Method for separating carbon dioxide from mixed gas
JP2002520136A (en) Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds
JPH0248406A (en) Inert-gas purifying method to large quantity of nitrogen using no hydrogen or other reducing gases
US20050241478A1 (en) Adsorption mass and method for removing carbon monoxide from flows of material
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
JP2003500323A (en) Nitrous oxide purification method
CN1297473C (en) Gas refining method and device
JPH10509215A (en) Method for separating substances from gaseous media by dry adsorption
US5190908A (en) Racked bed for removal of residual mercury from gaseous hydrocarbons
US6660240B1 (en) Gas processing agent and manufacturing method therefor, gas purification method, gas purifier and gas purification apparatus
JP2007500123A (en) Phosgene production method and apparatus
JPH08173748A (en) Method and apparatus for purifying inactive gas
JPH119933A (en) Method for removing nitrogen oxide from gas
JPH05285341A (en) Treatment of carbon dioxide
JP2008136935A (en) Selective treatment method of trifluoromethane, treatment unit and sample treatment system using it
CN115193408A (en) A kind of Ag-SAPO-34@Cu-BTC composite material and its preparation and application method
SU1582975A3 (en) Method of purifying gases from mercaptanes
JPH0422415A (en) Method for adsorbing and removing carbon dioxide
JP3650588B2 (en) Perfluoro compound recycling method
JP2002284510A (en) Method for recovering sulfuric acid of waste gas treatment system and device for recovering sulfuric acid
RU2624297C1 (en) Method for producing carbon dioxide from flue gases
JPS62117612A (en) Regenerating method for adsorption tower
JPH05277361A (en) Removing agent for carbon dioxide and method for removing carbon dioxide