[go: up one dir, main page]

JPH05284114A - Optical repeater monitoring device - Google Patents

Optical repeater monitoring device

Info

Publication number
JPH05284114A
JPH05284114A JP4076770A JP7677092A JPH05284114A JP H05284114 A JPH05284114 A JP H05284114A JP 4076770 A JP4076770 A JP 4076770A JP 7677092 A JP7677092 A JP 7677092A JP H05284114 A JPH05284114 A JP H05284114A
Authority
JP
Japan
Prior art keywords
wavelength
optical
light
coupler
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076770A
Other languages
Japanese (ja)
Inventor
Shigeru Oshima
茂 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4076770A priority Critical patent/JPH05284114A/en
Publication of JPH05284114A publication Critical patent/JPH05284114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To perform optical branching accurately by a multi-wavelength coupler, and to add a monitoring function without degrading ability as an optical repeater by setting the wavelength of optical signals transmitted at the time of fault occurrence to the intermediate wavelength between the wavelengths of signal light and excitation light. CONSTITUTION:The wavelengths of excitation light sources 1 and 2 are defined as 1.48mum, the wavelength of the signal light is defined as 1.55mum, a semiconductor 21 is used for information transmitting at the time of failure occurrence, and its wavelength is defined as 1.53mum. At multi-wavelength couplers 3 and 4, approximately 20% of the output light of a semiconductor laser 21 is combined with an output fiber 23. Also at an erbium dope optical fiber amplifier 5, a gain peak is provided at the wavelengths of 1.530-1.536mum and 1.55-1.56mum, so that high gains can be expected for the light of the wavelength of 1.53mum at an optical amplifier, and when the information of fault is transmitted downstream with this wavelength, it can be transmitted while being amplified at respective optical repeaters.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光増幅器を用いた光中継
器であって、障害が発生した場合にその旨の情報を下流
へ送信する光中継器監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical repeater using an optical amplifier, and relates to an optical repeater monitoring apparatus for transmitting information to the downstream when a failure occurs.

【0002】[0002]

【従来の技術】エルビウムなどの希土類を含んだ光ファ
イバによる光増幅器はゲインが高く、飽和出力も大きい
ことから光中継器に用いることができる。このような光
増幅器を光中継器として用いた場合、光中継器の監視を
いかに行なうかが重要な技術課題となる。ここで光中継
器を複数台、光ファイバ上に接続したシステムを考え
る。
2. Description of the Related Art An optical amplifier using an optical fiber containing a rare earth element such as erbium has a high gain and a large saturation output, and thus can be used for an optical repeater. When such an optical amplifier is used as an optical repeater, an important technical issue is how to monitor the optical repeater. Here, consider a system in which a plurality of optical repeaters are connected on an optical fiber.

【0003】最低限必要な監視機能として光中継器の障
害発生時に下流の装置に障害が発生したことを伝える機
能が必要である。このような機能を実現するには図3に
示すような構成が考えられる。この図で、1,2は励起
光源であり、励起光は波長多重カプラ3,4により、エ
ルビウムドープ光ファイバ5に入力される。6,7は光
アイソレータであり、発振抑圧のために挿入されてい
る。以上の構成で光増幅器の機能が実現されているが、
障害発生時の情報連絡のために送信用LD8と光カプラ
9が必要であり、上流の障害を受信するために光カプラ
10と光検出器11が必要となる。つまり自局の光中継
器に障害が発生した場合、その旨の光信号をLD8より
出力し、光カプラ9を介して下流に接続された他局の光
中継器へ伝送する。又、上流に接続された他局の光中継
器より障害発生の光信号が送信された場合、これを光カ
プラ10を介して光検出器11で受信する。
As a minimum required monitoring function, it is necessary to have a function of notifying a downstream device that a failure has occurred when a failure occurs in the optical repeater. To realize such a function, a configuration as shown in FIG. 3 can be considered. In this figure, reference numerals 1 and 2 denote pumping light sources, and pumping light is input to an erbium-doped optical fiber 5 by wavelength multiplexing couplers 3 and 4. Reference numerals 6 and 7 denote optical isolators, which are inserted to suppress oscillation. The function of the optical amplifier is realized by the above configuration,
The LD 8 for transmission and the optical coupler 9 are required for communication of information when a failure occurs, and the optical coupler 10 and the photodetector 11 are required for receiving an upstream failure. That is, when a failure occurs in the optical repeater of the own station, the LD 8 outputs an optical signal to that effect to the optical repeater of another station connected downstream via the optical coupler 9. Further, when an optical signal indicating the occurrence of a failure is transmitted from the optical repeater of another station connected upstream, the optical signal is received by the photodetector 11 via the optical coupler 10.

【0004】ところで、このような構成では通常時でも
光中継器の光出力は光カプラ9により減少し、また入力
側でも光カプラ10により信号光が減少する。したがっ
て、光増幅器のゲイン及び飽和出力特性は見かけ上劣化
することとなる。このような問題点を解決するために光
カプラ9のかわりに光スイッチを用いることも考えられ
る。図4はこの光スイッチ12を設けた光中継器の構成
を示す図である。ここでは通常時は光スイッチ12を光
アイソレータ7に接続し、信号光をそのまま下流へ送信
する。又、障害発生時は光スイッチ12をLD8へ接続
し、その旨の光信号を下流へ送信する。しかしながら光
スイッチは光カプラよりも高価であり、且つ切り換えに
伴なう信号の挿入損失も大きいため、有効な問題解決に
はならない。
By the way, in such a configuration, the optical output of the optical repeater is reduced by the optical coupler 9 even under normal conditions, and the signal light is reduced by the optical coupler 10 on the input side. Therefore, the gain and saturation output characteristics of the optical amplifier are apparently deteriorated. In order to solve such a problem, an optical switch may be used instead of the optical coupler 9. FIG. 4 is a diagram showing a configuration of an optical repeater provided with the optical switch 12. Here, normally, the optical switch 12 is connected to the optical isolator 7 and the signal light is directly transmitted downstream. When a failure occurs, the optical switch 12 is connected to the LD 8 and an optical signal to that effect is transmitted downstream. However, the optical switch is more expensive than the optical coupler, and the insertion loss of the signal accompanying the switching is large, so that it is not an effective solution.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、光
増幅器に監視機能を付加することを考えると、ゲイン及
び飽和出力特性が劣化し、光中継器としての能力低下を
引き起こすことになる。本発明は光中継器としての能力
を低下させることなく監視機能を付加することを目的と
する。
As described above, considering the addition of the monitoring function to the optical amplifier, the gain and saturation output characteristics are deteriorated and the performance of the optical repeater is deteriorated. An object of the present invention is to add a monitoring function without deteriorating the ability as an optical repeater.

【0006】[0006]

【課題を解決するための手段】本発明は、励起光を注入
することにより上流からの信号光を増幅して下流へ出力
する希土類元素添加ファイバと、この希土類元素ファイ
バの下流に1入力端及び1出力端が接続された2入力2
出力の第1の波長多重カプラと、前記希土類元素ファイ
バの上流に1入力端及び1出力端が接続された2入力2
出力の第2の波長多重カプラと、前記第1の波長多重カ
プラの他の入力端及び前記第2の波長多重カプラの他の
入力端に夫々接続され前記励起光を出力する励起光源
と、前記第1の波長多重カプラの他の出力端に接続され
前記励起光波長と前記信号光波長の間の波長光を出力す
る光送信器と、前記第2の波長多重カプラの他の出力端
に接続され上流からの前記波長光を受信する光受信器と
を備えた光中継器であって、前記光送信器は当該光中継
器に障害が生じたとき前記波長光を前記波長多重カプラ
を介して下流へ送信することを特徴とする光中継器監視
装置に関するものである。
According to the present invention, a rare earth element-doped fiber for amplifying signal light from the upstream side by injecting pumping light and outputting the amplified signal light to the downstream side, and one input end downstream of the rare earth element fiber, and 2 inputs 2 with 1 output connected
Output first wavelength multiplexing coupler and two inputs 2 having one input end and one output end connected upstream of the rare earth element fiber
An output second wavelength multiplexing coupler; a pumping light source connected to the other input end of the first wavelength multiplexing coupler and the other input end of the second wavelength multiplexing coupler to output the pumping light; An optical transmitter connected to the other output end of the first wavelength multiplexing coupler and outputting a wavelength light between the pumping light wavelength and the signal light wavelength, and connected to the other output end of the second wavelength multiplexing coupler An optical repeater having an optical receiver for receiving the wavelength light from the upstream side, wherein the optical transmitter transmits the wavelength light through the wavelength multiplex coupler when a failure occurs in the optical repeater. The present invention relates to an optical repeater monitoring device characterized by transmitting to a downstream side.

【0007】[0007]

【作用】本発明では障害が生じた際に送出する光信号の
波長を信号光と励起光の波長の間に設定するため、波長
多重カプラで光分岐を正確に行なうことができる。すな
わち、波長多重カプラは信号光と励起光の波長を合・分
岐するものであるから、これら2つの波長の中間領域で
は0でも1でもない途中の光結合状態がある。したがっ
て、下流(後方)に設置した波長多重カプラにこの中間
の波長で信号を送出する光送信器を接続すればこの光信
号の送出が可能であり、また、上流(前方)に設置した
波長多重カプラに光受信器を接続すれば、上流より送信
されたこの波長の光信号が受信できる。
In the present invention, the wavelength of the optical signal to be transmitted when a failure occurs is set between the wavelength of the signal light and the wavelength of the pump light, so that the wavelength division multiplexer can accurately perform optical branching. That is, since the wavelength division multiplexer couples / branches the wavelengths of the signal light and the pumping light, there is an optical coupling state which is neither 0 nor 1 in the intermediate region between these two wavelengths. Therefore, it is possible to send this optical signal by connecting an optical transmitter that sends a signal at this intermediate wavelength to a wavelength multiplexing coupler installed downstream (rear), and wavelength multiplexing installed upstream (forward). If an optical receiver is connected to the coupler, the optical signal of this wavelength transmitted from the upstream can be received.

【0008】希土類元素としてエルビウムを添加した光
ファイバを用いた増幅器では励起光の波長として1.4
8μmを用い、信号光としては1.55μmの波長を用
いることができる。この場合、1.53μmの波長を障
害時の情報伝送に用いれば波長多重カプラの光結合が2
0%程度期待でき、しかも、波長1.53μmの光は光
増幅器のもう1つのゲインピークであるため好都合であ
る。
In an amplifier using an optical fiber doped with erbium as a rare earth element, the wavelength of pumping light is 1.4.
It is possible to use 8 μm and use a wavelength of 1.55 μm as the signal light. In this case, if the wavelength of 1.53 μm is used for the information transmission at the time of failure, the optical coupling of the wavelength multiplexing coupler will be 2
About 0% can be expected, and light with a wavelength of 1.53 μm is another gain peak of the optical amplifier, which is convenient.

【0009】[0009]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0010】図1は本発明による光中継器監視装置の一
実施例である。図3と同一部分には同一符号を付してあ
る。1,2は励起光源であり、3,4の波長多重カプラ
によりエルビウムドープ光ファイバ5に導びかれる。ま
た、6,7は発振抑圧のための光アイソレータである。
以上1〜7が光増幅器を構成している。
FIG. 1 shows an embodiment of an optical repeater monitoring device according to the present invention. The same parts as those in FIG. 3 are designated by the same reference numerals. Reference numerals 1 and 2 denote excitation light sources, which are guided to the erbium-doped optical fiber 5 by the wavelength multiplexing couplers 3 and 4. Further, 6 and 7 are optical isolators for suppressing oscillation.
The above 1 to 7 constitute the optical amplifier.

【0011】ここで、1,2の光源の波長を1.48μ
m,信号光の波長を1.55μmとし、障害発生時の情
報伝送用として半導体レーザ21を用い、その波長を
1.53μmとする。波長多重カプラ3,4は光ファイ
バ融着形にすれば、半導体レーザ21の出力光のうち2
0%程度が出力ファイバ23に結合できる。また、エル
ビウムドープ光ファイバ増幅器では波長1.530〜
1.536μmに1つのゲインピークを有し、波長1.
55〜1.56μmにもう1つのゲインピークを有す
る。したがって、1.53μmの波長の光は光増幅器で
高いゲインが期待でき、この波長で障害の情報を下流に
伝送すれば各光中継器で増幅されながら伝送できる。
Here, the wavelengths of the light sources 1 and 2 are 1.48 μm.
m, the wavelength of the signal light is 1.55 μm, the semiconductor laser 21 is used for transmitting information when a failure occurs, and its wavelength is 1.53 μm. If the WDM couplers 3 and 4 are fused optical fibers, two of the output lights of the semiconductor laser 21 will be used.
About 0% can be coupled to the output fiber 23. Further, in the erbium-doped optical fiber amplifier, the wavelength is 1.530-
It has one gain peak at 1.536 μm and wavelength 1.
It has another gain peak at 55 to 1.56 μm. Therefore, light having a wavelength of 1.53 μm can be expected to have a high gain in the optical amplifier, and if the information of the fault is transmitted downstream at this wavelength, it can be transmitted while being amplified by each optical repeater.

【0012】上流からの障害の情報は光検出器22で受
信できる。障害の情報の波長は1.53μmであるか
ら、波長多重カプラ3では80%の光電力がアイソレー
タ6を介して光ファイバ増幅器で増幅され、出力ファイ
バ23へ導びかれる。また20%の光電力が光検出器2
2へ導びかれ、上流の障害を検出できる。
The fault information from the upstream can be received by the photodetector 22. Since the wavelength of the fault information is 1.53 μm, 80% of the optical power in the wavelength multiplexing coupler 3 is amplified by the optical fiber amplifier via the isolator 6 and guided to the output fiber 23. In addition, 20% of the optical power is detected by the photodetector 2.
2 leads to the detection of upstream failures.

【0013】図には示されていないが、マイクロコンピ
ュータなどによる監視回路を設置し、励起光源1,2の
温度,出力パワー,また、光検出器22の情報などを取
り込む。さらに、半導体レーザ21を駆動して下流に障
害の情報を流すなどの動作も監視回路が行なってもよ
い。
Although not shown in the figure, a monitoring circuit such as a microcomputer is installed to capture the temperature of the excitation light sources 1 and 2, the output power, and the information of the photodetector 22. Further, the monitoring circuit may also perform an operation such as driving the semiconductor laser 21 to flow failure information downstream.

【0014】図2は本発明による他の実施例である。図
中の番号は図1と同じものに関しては同符号を付けてあ
る。この実施例は入力信号断,出力信号断も検出できる
ようにしたものである。信号光は波長1.55μmの光
で周波数f,変調度数%の強度変調をかけておく。この
信号は送信の半導体レーザの直接変調によって得ること
ができ、fとして数KHz以上の周波数にすることによ
り伝送路ファイバの誘導ブリュアン散乱を抑圧すること
も可能である。図2の実施例では波長多重カプラ3の出
力の一端に光ファイバ25を挿入しておき、ここで1.
48μmの励起光を遮断する。そして、波長多重カプラ
3で漏れてきた1.55μmの波長を光検出器22で電
気信号に変換し、バンドパスフィルタ26で周波数fの
信号27を抽出する。このような構成では非常に高感度
の光検出が可能であり、波長多重カプラ3の1〜2%の
漏話光で1.55μmの光検出ができる。また、波長
1.53μmの障害の情報は28から取り出すことがで
きる。出力断の検出は光検出器29で光アイソレータ7
などの漏れ光を検出し、バンドパスフィルタ30により
周波数fの信号を抽出する。あるいは出力光ファイバ2
3に光カプラを接続して、出力光の一部を取り出して光
検出器29に入力してもよい。
FIG. 2 shows another embodiment according to the present invention. The numbers in the figure are the same as those in FIG. In this embodiment, the disconnection of the input signal and the disconnection of the output signal can be detected. The signal light is light having a wavelength of 1.55 μm and intensity-modulated with a frequency f and a modulation factor of several percent. This signal can be obtained by direct modulation of the transmitting semiconductor laser, and it is also possible to suppress the stimulated Brillouin scattering of the transmission line fiber by setting f to a frequency of several KHz or higher. In the embodiment shown in FIG. 2, the optical fiber 25 is inserted into one end of the output of the wavelength division multiplexer 3, and the optical fiber 25
The excitation light of 48 μm is blocked. Then, the wavelength of 1.55 μm leaked by the wavelength multiplexing coupler 3 is converted into an electric signal by the photodetector 22, and the signal 27 of the frequency f is extracted by the bandpass filter 26. With such a configuration, it is possible to detect light with extremely high sensitivity, and it is possible to detect light of 1.55 μm with the crosstalk light of 1 to 2% of the wavelength multiplexing coupler 3. Further, the information on the obstacle having the wavelength of 1.53 μm can be taken out from 28. The output disconnection is detected by the photodetector 29 using the optical isolator 7.
The leak light such as is detected, and the signal of frequency f is extracted by the bandpass filter 30. Or output optical fiber 2
An optical coupler may be connected to 3 and a part of the output light may be extracted and input to the photodetector 29.

【0015】この例のように入力断を検出し、障害が生
じたことを半導体レーザ21で下流に情報を流すように
するシステムでは、一ケ所で光ファイバが断線したにも
かかわらず光ファイバ断線部分より下流に設置された光
中継器すべてが障害発生の情報を発することになる。し
かし、半導体レーザ21が動作している時でも光検出器
22により上流の信号を受信できるので、上流から障害
発生の信号を受信したら直ちに自局の障害発生信号を止
めるように監視回路が動作すればよい。
In a system in which an input break is detected and information about the occurrence of a failure is passed downstream by the semiconductor laser 21 as in this example, the optical fiber breaks even if the optical fiber breaks at one location. All optical repeaters installed downstream of the part will issue information on the occurrence of a failure. However, since the upstream signal can be received by the photodetector 22 even when the semiconductor laser 21 is operating, the monitoring circuit operates so as to immediately stop the failure occurrence signal of the own station when the failure occurrence signal is received from the upstream. Good.

【0016】[0016]

【発明の効果】以上説明したように本発明による光中継
器監視装置は光カプラを用いないで障害の信号を送受で
きるので、中継器としてのゲインや出力を低下させない
効果を有する。また、部品点数も少ないことから小形
化,高信頼化にも適しているという効果も有している。
As described above, the optical repeater monitoring device according to the present invention can send and receive a fault signal without using an optical coupler, and therefore has the effect of not lowering the gain or output of the repeater. Moreover, since the number of parts is small, it is also suitable for downsizing and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による光中継器監視装置の一実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of an optical repeater monitoring device according to the present invention.

【図2】 本発明による光中継器監視装置の他の実施例
を示す図である。
FIG. 2 is a diagram showing another embodiment of the optical repeater monitoring device according to the present invention.

【図3】 従来技術から容易に類推できる光中継器監視
装置を示す図である。
FIG. 3 is a diagram showing an optical repeater monitoring device that can be easily inferred from the prior art.

【図4】 従来技術から容易に類推できるスイッチ機能
付き光中継器装置を示す図である。
FIG. 4 is a diagram showing an optical repeater device with a switch function that can be easily inferred from the prior art.

【符号の説明】 1,2…励起光源 3,4…波長多重カプラ 5…エルビウムドープ光ファイバ 6,7…光アイソレータ 21…半導体レーザ 22…光検出器 23…下流の光ファイバ 24…上流の光ファイバ[Explanation of reference numerals] 1, ... Excitation light source 3,4 ... Wavelength multiplexing coupler 5 ... Erbium-doped optical fiber 6, 7 ... Optical isolator 21 ... Semiconductor laser 22 ... Photodetector 23 ... Downstream optical fiber 24 ... Upstream light fiber

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】励起光を注入することにより上流からの信
号光を増幅して下流へ出力する希土類元素添加ファイバ
と、この希土類元素添加ファイバの下流に1入力端及び
1出力端が接続された2入力2出力の波長多重カプラ
と、この波長多重カプラの他の入力端に接続され前記励
起光を出力する励起光源と、前記波長多重カプラの他の
出力端に接続され前記励起光波長と前記信号光波長の間
の波長光を出力する光送信器とを備えた光中継器であっ
て、 前記光送信器は当該光中継器に障害が生じたとき前記波
長光を前記波長多重カプラを介して下流へ送信すること
を特徴とする光中継器監視装置。
1. A rare earth element-doped fiber for amplifying signal light from the upstream side by injecting pumping light and outputting the amplified signal light to the downstream side, and one input end and one output end connected to the downstream side of the rare earth element-doped fiber. A 2-input / 2-output wavelength multiplexing coupler, a pumping light source connected to another input end of the wavelength multiplexing coupler to output the pumping light, and a pumping light wavelength connected to another output end of the wavelength multiplexing coupler An optical repeater comprising an optical transmitter that outputs a wavelength light between signal light wavelengths, wherein the optical transmitter transmits the wavelength light through the wavelength multiplexing coupler when a failure occurs in the optical repeater. The optical repeater monitoring device is characterized in that it is transmitted downstream.
【請求項2】励起光を注入することにより上流からの信
号光を増幅して下流へ出力する希土類元素添加ファイバ
と、この希土類元素添加ファイバの下流に1入力端及び
1出力端が接続された2入力2出力の第1の波長多重カ
プラと、前記希土類元素添加ファイバの上流に1入力端
及び1出力端が接続された2入力2出力の第2の波長多
重カプラと、前記第1の波長多重カプラの他の入力端及
び前記第2の波長多重カプラの他の入力端に夫々接続さ
れ前記励起光を出力する励起光源と、前記第1の波長多
重カプラの他の出力端に接続され前記励起光波長と前記
信号光波長の間の波長光を出力する光送信器と、前記第
2の波長多重カプラの他の出力端に接続され上流からの
前記波長光を受信する光受信器とを備えた光中継器であ
って、 前記光送信器は当該光中継器に障害が生じたとき前記波
長光を前記波長多重カプラを介して下流へ送信すること
を特徴とする光中継器監視装置。
2. A rare earth element-doped fiber for amplifying signal light from the upstream side by injecting pumping light and outputting the amplified signal light to the downstream side, and one input end and one output end connected to the downstream side of the rare earth element-doped fiber. A two-input two-output first wavelength multiplex coupler, a two-input two-output second wavelength multiplex coupler having one input end and one output end connected upstream of the rare earth element-doped fiber, and the first wavelength A pumping light source connected to the other input end of the multiplex coupler and the other input end of the second wavelength multiplex coupler to output the pumping light, and to another output end of the first wavelength multiplex coupler, An optical transmitter that outputs wavelength light between the pumping light wavelength and the signal light wavelength, and an optical receiver that is connected to the other output end of the second wavelength multiplexing coupler and receives the wavelength light from the upstream side. An optical repeater provided with the optical transmission The optical repeater monitoring device is characterized in that the optical transmitter transmits the wavelength light to the downstream via the wavelength multiplex coupler when a failure occurs in the optical repeater.
【請求項3】前記信号光は低周波信号が重畳されたもの
であり、前記光受信器は前記低周波信号を抽出すること
により当該信号光を検出するものである請求項2記載の
光中継器監視装置。
3. The optical repeater according to claim 2, wherein the signal light has a low frequency signal superimposed thereon, and the optical receiver detects the signal light by extracting the low frequency signal. Monitoring equipment.
【請求項4】前記第1の波長多重カプラより下流に光検
出器を備え、この光検出器は前記低周波信号を抽出する
ことにより当該信号光を検出するものである請求項4記
載の光中継器監視装置。
4. The light according to claim 4, wherein a photodetector is provided downstream of the first wavelength multiplexing coupler, and the photodetector detects the signal light by extracting the low frequency signal. Repeater monitoring device.
【請求項5】前記光受信器は前記励起光波長を遮断する
光フィルタを有するものである請求項2記載の光中継器
監視装置。
5. The optical repeater monitoring device according to claim 2, wherein said optical receiver has an optical filter for blocking said pumping light wavelength.
JP4076770A 1992-03-31 1992-03-31 Optical repeater monitoring device Pending JPH05284114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076770A JPH05284114A (en) 1992-03-31 1992-03-31 Optical repeater monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076770A JPH05284114A (en) 1992-03-31 1992-03-31 Optical repeater monitoring device

Publications (1)

Publication Number Publication Date
JPH05284114A true JPH05284114A (en) 1993-10-29

Family

ID=13614829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076770A Pending JPH05284114A (en) 1992-03-31 1992-03-31 Optical repeater monitoring device

Country Status (1)

Country Link
JP (1) JPH05284114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292289B1 (en) 1999-03-18 2001-09-18 Fujitsu Limited Method, device, and system for transmitting a supervisory optical signal
US7092149B1 (en) 1995-03-17 2006-08-15 Fujitsu Limited Input monitoring system for optical amplifying repeater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092149B1 (en) 1995-03-17 2006-08-15 Fujitsu Limited Input monitoring system for optical amplifying repeater
US6292289B1 (en) 1999-03-18 2001-09-18 Fujitsu Limited Method, device, and system for transmitting a supervisory optical signal

Similar Documents

Publication Publication Date Title
JP3729951B2 (en) Optical network system
US6108123A (en) Optical communication system and optical amplifier
US6681079B1 (en) Optical fibre monitoring system
US6452721B2 (en) Method, device, and system for evaluating characteristics of optical fiber transmission line
US5214728A (en) Light communication system
US6064514A (en) Optical surge preventing method and system for use with or in a rare earth doped fiber circuit
US5315674A (en) Repeater optical transmission system having full-optical loopback facilities
JP3100386B2 (en) Optical communication system
JP3232625B2 (en) Optical repeater and monitoring information transfer method
US5963362A (en) Monitoring apparatus for optical fiber amplifier
US7864389B2 (en) Method of controlling optical amplifier located along an optical link
JPH05284114A (en) Optical repeater monitoring device
JPH09321373A (en) Optical signal monitor circuit and optical amplifier
JP3050299B2 (en) WDM transmission equipment
JP2714611B2 (en) Optical repeater and optical transmission network using the same
JP2536400B2 (en) Optical amplification repeater
JP3010897B2 (en) Optical repeater
JPH09252281A (en) Optical signal switching device and optical transmission system
JP2597748B2 (en) Optical amplifier
Haugen et al. Full-duplex bidirectional transmission at 622 Mbit/s with two erbium-doped fiber amplifiers
JP3260839B2 (en) Optical amplifier
JP3503615B2 (en) Optical repeater and monitoring information processor
KR100252176B1 (en) Efficiency observation device for optical fiber amplifier
JP3503617B2 (en) Optical transmitting apparatus and monitoring information transfer method
JPH05243640A (en) Optical fiber amplifier