[go: up one dir, main page]

JPH05283093A - Solid highpolymer electrolyte fuel cell - Google Patents

Solid highpolymer electrolyte fuel cell

Info

Publication number
JPH05283093A
JPH05283093A JP4080594A JP8059492A JPH05283093A JP H05283093 A JPH05283093 A JP H05283093A JP 4080594 A JP4080594 A JP 4080594A JP 8059492 A JP8059492 A JP 8059492A JP H05283093 A JPH05283093 A JP H05283093A
Authority
JP
Japan
Prior art keywords
gas
polymer electrolyte
gas diffusion
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4080594A
Other languages
Japanese (ja)
Inventor
Tatsuo Kahata
達雄 加幡
Toshihiro Tani
俊宏 谷
Osao Kudome
長生 久留
Yoshiharu Watanabe
義治 渡辺
Naotake Mori
尚武 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4080594A priority Critical patent/JPH05283093A/en
Publication of JPH05283093A publication Critical patent/JPH05283093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide the solid highpolymer electrolyte fuel cell, in which the gas sealing property at the periphery of a gas diffusion electrode is secured and which has a high degree of freedom in the selection of the operating condition. CONSTITUTION:A highpolymer electrolyte film 11, frame-like fine rubber sheets 102, 103 provided in the periphery of the film surface of the highpolymer electrolyte film, gas diffusion electrodes 12, which respectively contacts inside of notch parts 102a, 103a of the frame-like fine rubber sheets 102, 103 at the central part of the film surface are bonded by the thermocompression bonding to form a power generating element 101 to be pinched by separators with groove. The obtained power generating element 101 and the separators with groove are laminated to obtain a power generating stack having the excellent gas sealing property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質膜の
イオン導電性を利用した固体高分子電解質燃料電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell utilizing the ionic conductivity of a solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術】従来の固体高分子電解質燃料電池の一例
を図5に示す。同図に示すように、固体高分子電解質燃
料電池は、水素イオン導電性の固体高分子電解質膜11
と、この電解質膜11の両面に設けられた白金触媒を担
持させた揆水性の多孔質カーボン電極(以下、「ガス拡
散電極」という。)12、13とからなる発電素子14
及びこの発電素子14の両側を挟むようにして設けられ
且つ上記ガス拡散電極の一方へ燃料ガス(例えばH2
を他方へ酸化ガス(例えばO2 又は空気)を各々供給す
る溝付セパレータ15、16を具備するもので、上記溝
付セパレータ15、16に各々ガスを供給し、電力を発
生させて、溝付セパレータ15、16から電流を取出す
ものである。
2. Description of the Related Art An example of a conventional solid polymer electrolyte fuel cell is shown in FIG. As shown in the figure, the solid polymer electrolyte fuel cell has a solid polymer electrolyte membrane 11 having hydrogen ion conductivity.
And a water repellent porous carbon electrode (hereinafter, referred to as “gas diffusion electrode”) 12 and 13 supporting platinum catalysts provided on both surfaces of the electrolyte membrane 11.
And a fuel gas (for example, H 2 ) which is provided so as to sandwich both sides of the power generation element 14 and is connected to one of the gas diffusion electrodes.
Is provided with grooved separators 15 and 16 for respectively supplying an oxidizing gas (for example, O 2 or air) to the other, and gas is supplied to each of the grooved separators 15 and 16 to generate electric power to generate a groove. The current is taken out from the separators 15 and 16.

【0003】この溝付セパレータ15、16には、両面
にガス通路15a,16aが形成されており、一方のガ
ス通路15aには燃料ガスとして水素が、他方のガス通
路16aには酸化ガスとして酸素又は空気が各々供給さ
れている。
The grooved separators 15 and 16 are provided with gas passages 15a and 16a on both sides. One gas passage 15a contains hydrogen as a fuel gas and the other gas passage 16a contains oxygen as an oxidizing gas. Or, each air is supplied.

【0004】ところで、燃料ガスと酸化ガスとが混り合
わないようにするために、両ガスが会うところにガスシ
ール部を設ける必要がある。このガスシール部を必要と
する箇所は、溝付セパレータ内部、燃料ガス、酸化ガス
各々の入口、出口のマニホールドが隣接する部分及びガ
ス拡散電極側面である。
By the way, in order to prevent the fuel gas and the oxidizing gas from being mixed with each other, it is necessary to provide a gas seal portion where the two gases meet. The places where the gas seal portion is required are the inside of the grooved separator, the inlet and outlet of fuel gas and oxidizing gas, which are adjacent to the manifold, and the side surface of the gas diffusion electrode.

【0005】このガスシール部のうち、溝付セパレータ
内部に関しては、溝付セパレータに金属、緻密質カーボ
ンなどのガス不透過性を有する材質を使用することで、
ガスシールが可能であり、従来より、このシール方法が
採用されている。また、マニホールド隣接部に関して
は、各々のマニホールドを密閉容器で覆閉する等の従来
からの方法によってガスシールを行っている。
Regarding the inside of the grooved separator in the gas seal portion, by using a gas impermeable material such as metal or dense carbon for the grooved separator,
Gas sealing is possible, and this sealing method has been conventionally used. Further, regarding the adjacent portion of the manifold, gas sealing is performed by a conventional method such as covering each manifold with a closed container.

【0006】一方、ガス拡散電極側面に関しては、例え
ば図6に示すように、コーキング剤17を用い、該コー
キング剤17をガス拡散電極12,13周縁に薄く塗布
し、圧着により該ガス拡散電極12,13を押しつぶし
てガスシールを行っている。
On the other hand, with respect to the side surface of the gas diffusion electrode 12, as shown in FIG. 6, for example, a caulking agent 17 is used, the caulking agent 17 is thinly applied to the peripheral edges of the gas diffusion electrodes 12 and 13, and the gas diffusion electrode 12 is pressure-bonded. , 13 are crushed and the gas is sealed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来技
術の燃料電池におけるガス拡散電極12,13側面のガ
スシールに関しては、該ガスシールに用いるコーキング
剤17の厚み選定が難しいという問題がある。
However, regarding the gas seals on the side surfaces of the gas diffusion electrodes 12 and 13 in the fuel cell of the prior art, it is difficult to select the thickness of the caulking agent 17 used for the gas seals.

【0008】すなわち、図7に示すようにコーキング剤
17の厚みが厚すぎると、圧着してもガス拡散電極1
2,13と溝付セパレータ15,16との接触が失われ
て、隙間18が生じ、その結果、電気的接合を要する箇
所19から電流を取り出す機能が損われてしまうという
問題がある。
That is, as shown in FIG. 7, if the thickness of the caulking agent 17 is too thick, the gas diffusion electrode 1 can be pressed even if it is pressure-bonded.
There is a problem that the contact between the grooved separators 2 and 13 and the grooved separators 15 and 16 is lost, and a gap 18 is generated, and as a result, the function of extracting the electric current from the portion 19 that requires electrical connection is impaired.

【0009】また、逆にコーキング剤17の厚みが薄す
ぎると、図8に示すように、ガス拡散電極12,13側
面が十分につぶれず、ガスシールすることができないと
いう問題がある。
On the contrary, if the thickness of the caulking agent 17 is too thin, as shown in FIG. 8, the side surfaces of the gas diffusion electrodes 12 and 13 are not sufficiently crushed and there is a problem that gas sealing cannot be performed.

【0010】さらに、従来技術に係るガスシール方法
は、シール部両側に圧力差がある場合には、有効にガス
シールをすることができず、ガス漏れ20が発生し運転
条件の制約を受けるという問題がある(尚、現状シール
方法での許容圧力差は0.1〜0.2MPa程度であ
る。)。
Further, in the gas sealing method according to the prior art, when there is a pressure difference between both sides of the sealing portion, the gas sealing cannot be effectively performed, and the gas leakage 20 occurs and the operating condition is restricted. There is a problem (the allowable pressure difference in the current sealing method is about 0.1 to 0.2 MPa).

【0011】一方、ガス拡散電極周縁のガスシールを確
実に行うため、また、運転条件、特に運転圧力の選定の
自由度を増すために、より簡便で確実なガスシール方法
が望まれている。
On the other hand, there is a demand for a simpler and more reliable gas sealing method in order to surely seal the gas around the gas diffusion electrode and to increase the degree of freedom in selecting operating conditions, particularly operating pressure.

【0012】本発明は、以上述べた事情に鑑み、ガス拡
散電極周縁のガスシール性が確実にでき、且つ運転条件
選定の自由度の高い固体高分子電解質燃料電池を提供す
ることを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a solid polymer electrolyte fuel cell which can surely seal the gas around the gas diffusion electrode and has a high degree of freedom in selecting operating conditions. ..

【0013】[0013]

【課題を解決するための手段】上記目的を達成する本発
明に係る固体高分子電解質燃料電池の構成は、ガス拡散
電極間に狭持された高分子電解質膜からなる発電素子
と、上記ガス拡散電極の一方へ燃料ガスを他方へ酸化ガ
スを各々供給する溝付セパレータとを互いに積層してな
る固体高分子電解質燃料電池において、上記発電素子が
高分子電解質膜と、この高分子電解質膜の膜面の周縁部
に設けられた緻密質ゴムシートと、上記膜面の中央部に
設けられたガス拡散電極とを具備することを特徴とす
る。
Means for Solving the Problems A solid polymer electrolyte fuel cell according to the present invention which achieves the above object comprises a power generation element comprising a polymer electrolyte membrane sandwiched between gas diffusion electrodes, and the above gas diffusion. In a solid polymer electrolyte fuel cell in which a grooved separator that supplies a fuel gas to one of the electrodes and a oxidant gas that supplies to the other are laminated on each other, the power generating element comprises a polymer electrolyte membrane and a membrane of the polymer electrolyte membrane It is characterized by comprising a dense rubber sheet provided at the peripheral portion of the surface and a gas diffusion electrode provided at the central portion of the film surface.

【0014】[0014]

【作用】緻密質ゴムシートを電解質膜の周縁に設けると
共に膜面の中央部にガス拡散電極を設けて圧着して発電
素子を形成してなるので、従来のようにコーキング剤を
塗布することなく発電素子と溝付セパレータとを重ねて
いくことにより、固体高分子電解質燃料電池の発電スタ
ックが形成できる。また、ガス拡散電極と溝付セパレー
タとの電気的接触と、ガス拡散電極側面のガスシールと
を同時に満たすこととなる。
[Function] Since the dense rubber sheet is provided on the periphery of the electrolyte membrane and the gas diffusion electrode is provided at the center of the membrane surface to perform pressure bonding to form the power generating element, there is no need to apply a caulking agent as in the conventional case. By stacking the power generation element and the grooved separator, a power generation stack of a solid polymer electrolyte fuel cell can be formed. Further, the electrical contact between the gas diffusion electrode and the grooved separator and the gas seal on the side surface of the gas diffusion electrode are simultaneously satisfied.

【0015】[0015]

【実施例】以下、本発明に係る固体高分子電解質燃料電
池の好適な一実施例を図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the solid polymer electrolyte fuel cell according to the present invention will be described in detail below with reference to the drawings.

【0016】図1は固体高分子電解質燃料電池の発電素
子の概略図である。図2はその製造工程の概略図を示
す。これらの図面に示すように、本実施例に係る固体高
分子電解質燃料電池は溝付セパレータに狭持される発電
素子101が、高分子電解質膜11と、この高分子電解
質膜の膜面11aの周縁部に設けられた枠状の緻密質ゴ
ムシート102,103と、この膜面11aの中央部で
枠状緻密質ゴムシート102,103の切欠き部102
a,103a内に内接するガス拡散電極12,13とで
構成されてなるものである。
FIG. 1 is a schematic diagram of a power generating element of a solid polymer electrolyte fuel cell. FIG. 2 shows a schematic view of the manufacturing process. As shown in these drawings, in the solid polymer electrolyte fuel cell according to the present embodiment, the power generation element 101 sandwiched between the grooved separators includes the polymer electrolyte membrane 11 and the membrane surface 11a of the polymer electrolyte membrane. The frame-shaped dense rubber sheets 102 and 103 provided on the peripheral portion, and the cutout portion 102 of the frame-shaped dense rubber sheets 102 and 103 at the center of the film surface 11a.
a, 103a and the gas diffusion electrodes 12 and 13 inscribed inside.

【0017】すなわち、図2(A)〜(C)に示すよう
に、ガス拡散電極12,13の従来のコーキング剤を塗
布していた部分を切欠き、当該部分にガス拡散電極1
2,13と略同じ厚みで枠状の緻密質ゴムシート10
2,103を配設し、高分子電解質膜11と、ガス拡散
電極12,13とを例えばホットプレス法等による熱圧
着工程(図2(B)参照)において、高分子電解質膜1
1の膜面11aの中央部にガス拡散電極を設けると共
に、その周縁部に緻密質ゴムシート102,103を配
設して圧着発電素子101を形成してなるものである
(図2(C)参照)。
That is, as shown in FIGS. 2A to 2C, the portions of the gas diffusion electrodes 12, 13 to which the conventional caulking agent is applied are cut out, and the gas diffusion electrodes 1 are formed in the portions.
Frame-shaped dense rubber sheet 10 having substantially the same thickness as 2 and 13
2, 103 are provided, and the polymer electrolyte membrane 11 and the gas diffusion electrodes 12 and 13 are subjected to a thermocompression bonding step (see FIG. 2B) by, for example, a hot pressing method or the like.
The gas diffusion electrode is provided at the center of the film surface 11a of No. 1 and the dense rubber sheets 102 and 103 are provided at the peripheral edge thereof to form the pressure-bonding power generation element 101 (FIG. 2 (C)). reference).

【0018】この枠状緻密質ゴムシート102,103
とガス拡散電極12,13との厚さはほぼ同一か又は周
縁部に配される枠状緻密質ゴムシートの方がわずかに厚
い方が密着性の点から好ましい。尚、図2(B)中、1
04はホットプレス工程で用いるプレス板を図示する。
The frame-shaped dense rubber sheets 102, 103
It is preferable that the thickness of the gas diffusion electrodes 12 and 13 is substantially the same, or that the frame-shaped dense rubber sheet arranged in the peripheral portion is slightly thicker in terms of adhesion. In addition, in FIG.
Reference numeral 04 denotes a press plate used in the hot pressing process.

【0019】次に図3、図4を用いて燃料電池の発電ス
タックの具体的製造の概略を説明する。高分子電解質膜
11としては、厚みが0.1〜0.2mmで大きさが2
30mm×230mmの正方形のものを用いた。ガス拡
散電極12,13としては、厚みが0.5〜1.0mm
で大きさが200m×200mmの正方形のものを用い
た。緻密質ゴムシート102,103は厚みがガス拡散
電極12,13より0.2〜0.3mm程度厚いものと
し、大きさが230mm×230mmで200m×20
0mmのガス拡散電極12,13が内接する切欠き部1
02a,103aを有するもので、縦弾性係数がガス拡
散電極より若干小さい例えばフッ素ゴムを用いた。
Next, the outline of specific manufacturing of the power generation stack of the fuel cell will be described with reference to FIGS. 3 and 4. The polymer electrolyte membrane 11 has a thickness of 0.1 to 0.2 mm and a size of 2
A 30 mm × 230 mm square one was used. The gas diffusion electrodes 12 and 13 have a thickness of 0.5 to 1.0 mm.
A square one having a size of 200 m × 200 mm was used. The dense rubber sheets 102 and 103 are thicker than the gas diffusion electrodes 12 and 13 by about 0.2 to 0.3 mm, and are 230 mm × 230 mm and 200 m × 20.
Notch 1 where 0 mm gas diffusion electrodes 12 and 13 are inscribed
02a, 103a, and a longitudinal elastic modulus slightly smaller than that of the gas diffusion electrode, for example, fluororubber was used.

【0020】これらを重ね合せて、温度350〜380
℃圧下時間1秒〜5秒程度の条件下でホットプレス法を
施行した。この結果、ガス拡散電極12,13と緻密質
ゴムシート102,103とが各々高分子電解質膜に熱
圧着され、周縁部に幅15mmのガスシール用ゴムシー
ト部を有する電極面積400cm2 (200mm×20
0mm)の固体高分子電解質燃料電池の発電素子101
を形成した。
These are piled up, and the temperature is 350 to 380.
The hot pressing method was carried out under conditions of a pressure reduction time of 1 second to 5 seconds. As a result, the gas diffusion electrodes 12 and 13 and the dense rubber sheets 102 and 103 are respectively thermocompression-bonded to the polymer electrolyte membrane, and the electrode area 400 cm 2 (200 mm × 20
0 mm) solid polymer electrolyte fuel cell power generation element 101
Formed.

【0021】その後、図3,図4に示すように溝付セパ
レータ15,16と上記得られたガスシール用ゴムシー
ト部を有する発電素子101とを互いに積層させて一定
圧力で圧着させて発電スタック105を形成した。尚、
発電素子単体の状態では、ゴムシート102,103が
ガス拡散電極12,13に比べて0.1〜0.3mm程
度厚くなっているが、発電素子101と溝付セパレータ
15,16を重ね合わせて発電スタック105を構成す
る際に、一定圧力にて重ね合わせるため、ゴムシート1
02,103とガス拡散電極12,13とが同じ厚みに
なりゴムシートが圧縮変形して隣接するガス拡散電極と
密着してガスシールの機能を持つようになる。
Thereafter, as shown in FIGS. 3 and 4, the grooved separators 15 and 16 and the power generating element 101 having the above-mentioned rubber sheet portion for gas sealing are laminated on each other and pressure-bonded at a constant pressure to generate a power generating stack. 105 was formed. still,
In the state of the power generating element alone, the rubber sheets 102 and 103 are thicker by about 0.1 to 0.3 mm than the gas diffusion electrodes 12 and 13, but the power generating element 101 and the grooved separators 15 and 16 are overlapped. When the power generation stack 105 is constructed, the rubber sheet 1 is used for stacking at a constant pressure.
02 and 103 and the gas diffusion electrodes 12 and 13 have the same thickness, and the rubber sheet is compressed and deformed to come into close contact with the adjacent gas diffusion electrodes to have a gas sealing function.

【0022】このように、緻密質ゴムシートを配したガ
スシール部を高分子電解質膜の膜面の周縁に設けてその
内部に拡散電極を配して、熱圧着することで、ガスシー
ル用ゴムシート部を有する発電素子の形成が容易とな
り、得られた発電素子101と溝付セパレータ15,1
6とを重ね合わせて発電スタック105を形成する工程
が従来に比べて簡便となる(従来は、厳密に厚みを管理
しながらコーキング剤を塗布して素子とセパレータを重
ね合わせていた)。
As described above, the gas seal portion provided with the dense rubber sheet is provided at the periphery of the membrane surface of the polymer electrolyte membrane, the diffusion electrode is provided therein, and thermocompression bonding is performed, whereby the gas seal rubber is provided. It becomes easy to form a power generation element having a sheet portion, and the power generation element 101 and the grooved separators 15 and 1 obtained are obtained.
The step of forming the power generation stack 105 by superposing 6 and 6 is simpler than in the conventional case (in the past, the caulking agent was applied while strictly controlling the thickness to superimpose the element and the separator).

【0023】よって、発電素子と溝付セパレータとの電
気的接合、すなわち、電流を外部へ取り出す機能を維持
したままで良好なガスシールを行うことが可能となっ
た。また、水素と外気とをシールする部分では、水素側
を加圧して対外気差圧0.3039MPaの設定とした
時にも、外気側に水素は検出されず、従来よりもガスシ
ール性が向上していることが確認された。
Therefore, it is possible to perform good gas sealing while maintaining the electrical connection between the power generating element and the grooved separator, that is, the function of taking out the current to the outside. Further, in the portion that seals the hydrogen and the outside air, hydrogen is not detected on the outside air side even when the hydrogen side is pressurized to set the differential pressure against the outside air to 0.3039 MPa, and the gas sealability is improved as compared with the conventional case. Was confirmed.

【0024】[0024]

【発明の効果】以上実施例と共に述べたように、本発明
に係る固体高分子電解質燃料電池は、発電素子が高分子
電解質膜の膜面の周縁部にガスシール用の緻密質ゴムシ
ートを配して圧着してなるので、得られた圧電素子と溝
付セパレータとを重ね合わせて発電スタックを構成する
工程が簡便となり、両者の電気的接合を維持したままで
良好なガスシールを行うことができる。
As described in connection with the above embodiments, in the solid polymer electrolyte fuel cell according to the present invention, the power generating element has a dense rubber sheet for gas sealing arranged at the peripheral edge of the membrane surface of the polymer electrolyte membrane. Then, the step of forming the power generation stack by superposing the obtained piezoelectric element and the grooved separator on each other becomes simple, and good gas sealing can be performed while maintaining electrical connection between the two. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体高分子電解質燃料電池の発電素子の概略図
である。
FIG. 1 is a schematic view of a power generation element of a solid polymer electrolyte fuel cell.

【図2】発電素子の製造工程概略図である。FIG. 2 is a schematic view of a manufacturing process of a power generation element.

【図3】発電スタックの分解斜視図である。FIG. 3 is an exploded perspective view of a power generation stack.

【図4】発電スタックの製造概略図である。FIG. 4 is a schematic view of manufacturing a power generation stack.

【図5】従来技術に係る燃料電池の概説図である。FIG. 5 is a schematic diagram of a fuel cell according to a conventional technique.

【図6】従来技術に発電スタックの製造概略図である。FIG. 6 is a schematic view of manufacturing a power generation stack according to the related art.

【図7】従来技術に発電スタックの製造概略図である。FIG. 7 is a schematic view of manufacturing a power generation stack according to the related art.

【図8】従来技術に発電スタックの製造概略図である。FIG. 8 is a schematic view of manufacturing a power generation stack according to the related art.

【符号の説明】[Explanation of symbols]

11 高分子電解質膜 12,13 ガス拡散電極 14 発電素子 15,16 溝付セパレータ 17 コーキング剤 101 発電素子 102,103 緻密質ゴムシート 105 発電スタック 11 Polymer Electrolyte Membrane 12, 13 Gas Diffusion Electrode 14 Power Generation Element 15, 16 Grooved Separator 17 Caulking Agent 101 Power Generation Element 102, 103 Dense Rubber Sheet 105 Power Generation Stack

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 義治 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 森 尚武 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiharu Watanabe 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Naotake Mori 1-1, Atsunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industry Co., Ltd.Nagasaki Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス拡散電極間に狭持された高分子電解
質膜からなる発電素子と、上記ガス拡散電極の一方へ燃
料ガスを他方へ酸化ガスを各々供給する溝付セパレータ
とを互いに積層してなる固体高分子電解質燃料電池にお
いて、 上記発電素子が高分子電解質膜と、この高分子電解質膜
の膜面の周縁部に設けられた緻密質ゴムシートと、上記
膜面の中央部に設けられたガス拡散電極とを具備するこ
とを特徴とする固体高分子電解質燃料電池。
1. A power generating element composed of a polymer electrolyte membrane sandwiched between gas diffusion electrodes, and a grooved separator for supplying fuel gas to one of the gas diffusion electrodes and oxidizing gas to the other, respectively, are laminated on each other. In the solid polymer electrolyte fuel cell as described above, the power generation element is provided with a polymer electrolyte membrane, a dense rubber sheet provided on a peripheral portion of a membrane surface of the polymer electrolyte membrane, and a central portion of the membrane surface. And a gas diffusion electrode, the solid polymer electrolyte fuel cell.
JP4080594A 1992-04-02 1992-04-02 Solid highpolymer electrolyte fuel cell Pending JPH05283093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080594A JPH05283093A (en) 1992-04-02 1992-04-02 Solid highpolymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080594A JPH05283093A (en) 1992-04-02 1992-04-02 Solid highpolymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH05283093A true JPH05283093A (en) 1993-10-29

Family

ID=13722667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080594A Pending JPH05283093A (en) 1992-04-02 1992-04-02 Solid highpolymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH05283093A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063610A1 (en) * 1998-06-02 1999-12-09 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacture thereof
JP2002124276A (en) * 2000-10-18 2002-04-26 Honda Motor Co Ltd Fuel cell seal mounting method and fuel cell
JP2002533869A (en) * 1998-08-10 2002-10-08 セラニーズ・ヴェンチャーズ・ゲーエムベーハー PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
JP2003017092A (en) * 2001-06-29 2003-01-17 Honda Motor Co Ltd Electrolyte membrane-electrode structure, and fuel cell
WO2005081343A1 (en) * 2004-02-24 2005-09-01 Nissan Motor Co., Ltd. Solid polymer electrolyte membrane and separator both for fuel cell
JP2006216424A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP2006339022A (en) * 2005-06-02 2006-12-14 Dainippon Printing Co Ltd Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2011210735A (en) * 2011-06-24 2011-10-20 Dainippon Printing Co Ltd Manufacturing method of electrolyte membrane-electrode conjugant with gasket for solid polymer fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063610A1 (en) * 1998-06-02 1999-12-09 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacture thereof
KR100372926B1 (en) * 1998-06-02 2003-02-25 마쯔시다덴기산교 가부시키가이샤 Polymer electrolyte fuel cell and method of manufacture thereof
US6531236B1 (en) 1998-06-02 2003-03-11 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
US6869719B2 (en) 1998-06-02 2005-03-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
JP2002533869A (en) * 1998-08-10 2002-10-08 セラニーズ・ヴェンチャーズ・ゲーエムベーハー PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
US7005208B2 (en) 2000-10-18 2006-02-28 Honda Giken Kogyo Kabushiki Kaisha Method for mounting seals for fuel cell and fuel cell
JP2002124276A (en) * 2000-10-18 2002-04-26 Honda Motor Co Ltd Fuel cell seal mounting method and fuel cell
DE10151380B4 (en) * 2000-10-18 2009-04-09 Honda Giken Kogyo K.K. Method for attaching gaskets for a fuel cell
JP2003017092A (en) * 2001-06-29 2003-01-17 Honda Motor Co Ltd Electrolyte membrane-electrode structure, and fuel cell
WO2005081343A1 (en) * 2004-02-24 2005-09-01 Nissan Motor Co., Ltd. Solid polymer electrolyte membrane and separator both for fuel cell
JP2006216424A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP2006339022A (en) * 2005-06-02 2006-12-14 Dainippon Printing Co Ltd Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2011210735A (en) * 2011-06-24 2011-10-20 Dainippon Printing Co Ltd Manufacturing method of electrolyte membrane-electrode conjugant with gasket for solid polymer fuel cell

Similar Documents

Publication Publication Date Title
EP1152477B1 (en) Polymeric membrane fuel cell
US7195838B2 (en) Membrane electrode assembly and fuel cell
JP4936095B2 (en) Fuel cell stack
JP4634933B2 (en) Fuel cell
WO2002093669A3 (en) Membrane-electrode assembly for polymeric membrane fuel cells
JP2002042838A (en) Fuel cell and manufacturing method for porous conductor, seal structural body, and electrode film structural body
JPH0850903A (en) Solid polymer type fuel cell
JP2000100457A (en) Fuel cell
JPH1055813A (en) Assembling structure of fuel cell
JPH1145729A (en) Solid polymer electrolyte fuel cell
JPH05283093A (en) Solid highpolymer electrolyte fuel cell
JP2001351651A (en) Joined body of electrolyte and electrode and fuel cell
JP3068365B2 (en) Gas seal structure of fuel cell
EP2999040B1 (en) Apparatus and method for producing fuel cell separator assembly
JP2007524195A (en) Fuel cell manifold seal with rigid inner layer
US6203676B1 (en) Ionic conduction device
JP2001319666A (en) Fuel cell and its manufacturing method
JP4028352B2 (en) Electrolyte membrane / electrode structure
JP4083304B2 (en) Polymer electrolyte fuel cell
JP2003132905A (en) Electrolytic film/electrode structure and fuel cell
CN113363529B (en) Dummy electrode assembly, method for manufacturing the same, and fuel cell stack
JP3105660B2 (en) Solid polymer electrolyte fuel cell stack
JP2007048568A (en) Membrane/electrode assembly of fuel cell, fuel cell, and manufacturing method of membrane/electrode assembly
JP2000067887A (en) Solid polymer fuel cell
JP2004281113A (en) Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000321