JPH05283075A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH05283075A JPH05283075A JP4077086A JP7708692A JPH05283075A JP H05283075 A JPH05283075 A JP H05283075A JP 4077086 A JP4077086 A JP 4077086A JP 7708692 A JP7708692 A JP 7708692A JP H05283075 A JPH05283075 A JP H05283075A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- battery
- powder
- positive electrode
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 11
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 17
- 150000003624 transition metals Chemical class 0.000 claims abstract description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000001768 cations Chemical class 0.000 claims abstract description 6
- 229910000733 Li alloy Inorganic materials 0.000 claims abstract description 5
- 239000001989 lithium alloy Substances 0.000 claims abstract description 5
- 239000011149 active material Substances 0.000 claims abstract description 4
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- -1 oxygen ion Chemical class 0.000 abstract description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 11
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 11
- 239000013078 crystal Substances 0.000 abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 abstract description 9
- 239000001301 oxygen Substances 0.000 abstract description 8
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 238000003780 insertion Methods 0.000 abstract description 5
- 230000037431 insertion Effects 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 38
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 25
- 239000007774 positive electrode material Substances 0.000 description 13
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 12
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 9
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- 229910052790 beryllium Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910015118 LiMO Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウムと遷移金属と
の複合酸化物を活物質とする正極と、リチウム金属、リ
チウム合金、或るいはリチウムを吸蔵放出可能な炭素材
料からなる負極と、非水電解液とを備えた電池に係り、
特に、正極の改良に関するものである。TECHNICAL FIELD The present invention relates to a positive electrode using a composite oxide of lithium and a transition metal as an active material, and a negative electrode made of a lithium metal, a lithium alloy, or a carbon material capable of inserting and extracting lithium. Relating to a battery with a non-aqueous electrolyte,
In particular, it relates to improvement of the positive electrode.
【0002】[0002]
【従来の技術】負極として、リチウム金属、或るいはリ
チウム合金を用い、正極として二酸化マンガンを用い、
電解液に非水電解液を用いたリチウム電池は、使用電圧
が高い上に自己放電が少なく、保存性に優れた電池であ
り、特に5〜10年の長期間にわたる使用に信頼できる
電池として、各種の小型電子機器のメモリーバックアッ
プ用電源に広く実用化されている。これらリチウム電池
は、主に一次電池として使用されており、一回の使用で
その寿命が終わってしまうものであった。2. Description of the Related Art Lithium metal or a lithium alloy is used as a negative electrode, and manganese dioxide is used as a positive electrode.
A lithium battery using a non-aqueous electrolyte as an electrolyte is a battery that has a high operating voltage, has little self-discharge, and is excellent in storage stability, and particularly as a battery that can be reliably used for a long period of 5 to 10 years. It has been widely put to practical use as a memory backup power source for various small electronic devices. These lithium batteries are mainly used as primary batteries, and their life ends when they are used once.
【0003】これに対して、近年再充電可能なリチウム
二次電池の要望が増え、研究が活発になっている。かか
る要求を満足するリチウム二次電池として、負極にリチ
ウム金属、リチウム合金、或るいはリチウムイオンを吸
蔵放出可能な層間化合物等を用い、正極に層状構造を有
するLiCoO2のようなリチウムと遷移金属との複合
酸化物を用い、電解液に非水電解液を用いた非水電解液
二次電池が提案されている。On the other hand, in recent years, the demand for rechargeable lithium secondary batteries has increased, and research has become active. As a lithium secondary battery satisfying such requirements, lithium metal, lithium alloy, or an intercalation compound capable of absorbing and releasing lithium ions is used for the negative electrode, and lithium and transition metal such as LiCoO 2 having a layered structure for the positive electrode. A non-aqueous electrolyte secondary battery has been proposed in which a non-aqueous electrolyte solution is used as an electrolyte solution using a composite oxide of
【0004】ところが、正極活物質であるLiCoO2
等の結晶構造は、充放電により層状格子へのリチウムの
挿入脱離を繰り返すうちに段々と歪められ、最終的には
破壊されてしまい、電極としての能力をなくす結果とな
る。However, LiCoO 2 which is a positive electrode active material
The crystal structure such as is gradually distorted as lithium is repeatedly inserted into and desorbed from the layered lattice by charge and discharge, and is eventually destroyed, resulting in loss of the ability as an electrode.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記問題点
に着目してなされたものであり、充放電に伴う結晶構造
の歪みを抑制した正極活物質を用いることにより、サイ
クル特性に優れた非水電解液二次電池を提供することを
目的とする。The present invention has been made in view of the above problems, and by using a positive electrode active material in which distortion of the crystal structure due to charge and discharge is suppressed, excellent cycle characteristics are obtained. It is an object to provide a non-aqueous electrolyte secondary battery.
【0006】[0006]
【課題を解決するための手段】正極活物質として、一般
式LiXM1-YAYO2(ここで、Mは遷移金属、Aは遷移
金属Mよりも小さいイオン半径を有し、且つそのカチオ
ンが6配位する金属、X≦1.0、0.1≦Y≦0.4)
で表される複合酸化物、即ち、遷移金属Mの一部を、遷
移金属Mよりも小さいイオン半径を有し、且つそのカチ
オンが6配位する金属で置換したものを用いる。As a positive electrode active material, a compound represented by the general formula: Li X M 1-Y A Y O 2 (where M is a transition metal, A has an ionic radius smaller than that of the transition metal M, and Metals whose cations are 6-coordinated, X ≦ 1.0, 0.1 ≦ Y ≦ 0.4)
The composite oxide represented by, that is, one in which a part of the transition metal M is substituted with a metal having an ionic radius smaller than that of the transition metal M and whose cation is 6-coordinated is used.
【0007】[0007]
【作用】一般式LiMO2(但し、Mは遷移金属)で表
される複合酸化物の一例としてのLiCoO2の結晶
は、図3に示されるように、中心にコバルトイオン7、
八面体頂部に酸素イオン8がある八面体が連なった構造
を有しており、連なった八面体の層と層との間にリチウ
ムイオン9が入って層間化合物を形成している。この層
の間に入ったリチウムイオン9は充電により脱離し、放
電により再び層の中に挿入され、サイクルが繰り返され
る。The crystal of LiCoO 2 as an example of the complex oxide represented by the general formula LiMO 2 (where M is a transition metal) has a cobalt ion 7 at the center, as shown in FIG.
It has a structure in which octahedra having oxygen ions 8 at the top of the octahedron are connected, and lithium ions 9 enter between the layers of the connected octahedron to form an intercalation compound. The lithium ions 9 that have entered between the layers are desorbed by charging and reinserted into the layers by discharging, and the cycle is repeated.
【0008】この時、層間は広い方がリチウムイオンの
挿入脱離が容易に行えるが、層間の広さには、八面体を
形成している酸素イオンが大きく影響してくる。また、
酸素イオンは、八面体中心部にある遷移金属カチオンの
イオン半径に依存しているところが大きく、遷移金属カ
チオンの半径が小さいほど酸素原子の自由度が大きくな
り、リチウムイオンの挿入脱離が容易になる。At this time, the wider the space between layers is, the easier the insertion and desorption of lithium ions can be. However, the space between layers is greatly affected by the oxygen ions forming the octahedron. Also,
Oxygen ions largely depend on the ionic radius of the transition metal cation in the center of the octahedron, and the smaller the radius of the transition metal cation, the greater the degree of freedom of the oxygen atom, which facilitates insertion and desorption of lithium ions. Become.
【0009】そこで、複合酸化物LiMO2(但し、M
は遷移金属)の遷移Mの一部を、Mよりも小さいイオン
半径を有し、且つそのカチオンが6配位する金属で置換
すると、図2に示すように置換金属10に対応する八面体
頂部にある酸素イオンの自由度が大きくなり、八面体内
方へ吸収され易くなることにより、層間が広くなり、リ
チウムイオンの挿入脱離、層中での移動がスムースに進
み、充放電の繰り返しに伴う結晶構造の歪みや破壊が抑
制できる。Therefore, the composite oxide LiMO 2 (however, M
Is a transition metal), a part of the transition M is replaced with a metal having an ionic radius smaller than M and the cation of which is 6-coordinated, and as shown in FIG. The degree of freedom of oxygen ions in the area is increased, and the oxygen ions are easily absorbed into the octahedron, so that the interlayer is widened, insertion / desorption of lithium ions, movement in the layer progress smoothly, and repeated charging and discharging can be performed. It is possible to suppress distortion and breakage of the accompanying crystal structure.
【0010】特に、複合酸化物LiXM1-XAYO2におい
て、MをCo、Ni、Fe及びそれらの混合系として用
いることが有望である。そして、MがCoの場合には、
置換できる金属Aとして、Fe、Cr、Be、V、R
e、Si、Ge、MがNiの場合には、置換できる金属
Aとして、Co、Fe、Cr、Be、V、Re、Si、
Ge、MがMnの場合には、置換できる金属Aとして、
Co、Ni、Fe、Cr、Be、V、Re、Si、G
e、MがFeの場合には、置換できる金属AとしてC
o、Cr、Be、V、Re、Si、Geなどが夫々挙げ
られる。尚、金属Mの置換量10〜40モル%の範囲が
好ましい。In particular, in the composite oxide Li X M 1-X A Y O 2 , it is promising to use M as Co, Ni, Fe and a mixed system thereof. Then, when M is Co,
As the replaceable metal A, Fe, Cr, Be, V, R
When e, Si, Ge, and M are Ni, the replaceable metal A is Co, Fe, Cr, Be, V, Re, Si,
When Ge and M are Mn, as the replaceable metal A,
Co, Ni, Fe, Cr, Be, V, Re, Si, G
When e and M are Fe, C is used as the replaceable metal A.
O, Cr, Be, V, Re, Si, Ge and the like can be mentioned respectively. In addition, the substitution amount of the metal M is preferably in the range of 10 to 40 mol%.
【0011】[0011]
[実施例1]市販の炭酸コバルト(CoCO3)粉末と
三酸化鉄(Fe2O3)粉末と炭酸リチウム(Li2C
O3)粉末を、Co:Fe:Li=0.9:0.1:1.0
となるように混合し、空気雰囲気中で900℃で10時
間焼成した。得られた焼成物を300メッシュ以下にな
るまで粉砕し、この粉末とグラファイト粉末、フッ素樹
脂粉末を重量比で85:10:5の割合で混合し、正極
合剤とした。これを3トン/cm2、直径15mm、厚
み0.8mmとなるように加圧成形し、250℃で2時
間真空乾燥して正極ペレットとした。負極としては厚さ
0.3mmのリチウムホイルを直径16mmに打ち抜い
たものを用いた。Example 1 Commercially available cobalt carbonate (CoCO 3 ) powder, iron trioxide (Fe 2 O 3 ) powder, and lithium carbonate (Li 2 C)
O 3 ) powder to Co: Fe: Li = 0.9: 0.1: 1.0
And mixed in such a manner that it was heated to 900 ° C. for 10 hours in an air atmosphere. The obtained fired product was pulverized to 300 mesh or less, and this powder, graphite powder, and fluororesin powder were mixed at a weight ratio of 85: 10: 5 to obtain a positive electrode mixture. This was pressure-molded to have a pressure of 3 ton / cm 2 , a diameter of 15 mm and a thickness of 0.8 mm, and vacuum dried at 250 ° C. for 2 hours to obtain a positive electrode pellet. As the negative electrode, a lithium foil having a thickness of 0.3 mm punched out to a diameter of 16 mm was used.
【0012】次に、上記正極、負極を用いて図1に示す
ような扁平形電池を作製した。1は負極であり、負極缶
2の内底面に圧着されている。3は正極であり、正極缶
4の内底面に固着されている。5はポリプロピレンから
なるセパレータであり、6はパッキングである。電解液
はプロピレンカーボネートに溶質としてLiPF6を1.
0モル/リットル溶解したものを用いた。電池寸法は直
径20mm、高さ1.6mmである。この電池をAとす
る。Next, a flat battery as shown in FIG. 1 was produced using the above positive electrode and negative electrode. Reference numeral 1 denotes a negative electrode, which is pressure-bonded to the inner bottom surface of the negative electrode can 2. Reference numeral 3 denotes a positive electrode, which is fixed to the inner bottom surface of the positive electrode can 4. 5 is a separator made of polypropylene, and 6 is a packing. The electrolyte used was 1. LiPF 6 as a solute in propylene carbonate.
A solution of 0 mol / liter was used. The battery has a diameter of 20 mm and a height of 1.6 mm. This battery is designated as A.
【0013】[実施例2]正極活物質として炭酸コバル
ト(CoCO3)粉末と三酸化鉄(Fe2O3)粉末と炭
酸リチウム(Li2CO3)粉末を、Co:Fe:Li=
0.7:0.3:1.0となるように混合する以外は、実
施例1と同様にして電池を作製した。この電池をBとす
る。Example 2 Cobalt carbonate (CoCO 3 ) powder, iron trioxide (Fe 2 O 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder were used as positive electrode active materials, and Co: Fe: Li =
A battery was produced in the same manner as in Example 1 except that the mixture was mixed so that the ratio was 0.7: 0.3: 1.0. This battery is designated as B.
【0014】[実施例3]正極活物質として炭酸コバル
ト(CoCO3)粉末と三酸化鉄(Fe2O3)粉末と炭
酸リチウム(Li2CO3)粉末を、Co:Fe:Li=
0.6:0.4:1.0となるように混合する以外は、実
施例1と同様にして電池を作製した。この電池をCとす
る。[Example 3] Cobalt carbonate (CoCO 3 ) powder, iron trioxide (Fe 2 O 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder were used as positive electrode active materials, and Co: Fe: Li =
A battery was produced in the same manner as in Example 1 except that the mixture was mixed such that the ratio was 0.6: 0.4: 1.0. This battery is designated as C.
【0015】[実施例4]正極活物質として炭酸コバル
ト(CoCO3)粉末と五酸化バナジウム(V2O 5)粉
末と炭酸リチウム(Li2CO3)粉末を、Co:V:L
i=0.7:0.3:1.0となるように混合する以外
は、実施例1と同様にして電池を作製した。この電池を
Dとする。Example 4 Cobalt carbonate as a positive electrode active material
(COCO3) Powder and vanadium pentoxide (V2O Five)powder
Powder and lithium carbonate (Li2CO3) Powder to Co: V: L
Other than mixing so that i = 0.7: 0.3: 1.0
A battery was manufactured in the same manner as in Example 1. This battery
Let be D.
【0016】[比較例1]正極活物質として炭酸コバル
ト(CoCO3)粉末と水酸化マグネシウム(Mg(O
H)2)粉末と炭酸リチウム(Li2CO3)粉末を、C
o:Mg:Li=0.9:0.1:1.0となるように混
合する以外は、実施例1と同様にして電池を作製した。
この電池をEとする。Comparative Example 1 Cobalt carbonate (CoCO 3 ) powder and magnesium hydroxide (Mg (O
H) 2 ) powder and lithium carbonate (Li 2 CO 3 ) powder to C
A battery was produced in the same manner as in Example 1 except that the mixture was made such that o: Mg: Li = 0.9: 0.1: 1.0.
This battery is designated as E.
【0017】[比較例2]正極活物質として炭酸コバル
ト(CoCO3)粉末と炭酸リチウム(Li2CO 3)粉
末を、Co:Li=1.0:1.0となるように混合する
以外は、実施例1と同様にして電池を作製した。この電
池をFとする。[Comparative Example 2] Carbon dioxide as a positive electrode active material
(COCO3) Powder and lithium carbonate (Li2CO 3)powder
The powder is mixed so that Co: Li = 1.0: 1.0.
A battery was produced in the same manner as in Example 1 except for the above. This phone
Let the pond be F.
【0018】以上6種類の電池を用いて充電電流2m
A、充電終止電圧4.2V、放電電流2mA、放電終止
電圧2.0Vの条件でサイクル試験を行った。この結果
を図4に示す。図4より、LiCoO2のCoの一部を
Coのイオン半径よりも小さいイオンの半径を有する金
属で置換した電池A、B、C、及びDは、Coのイオン
半径よりも大きいイオン半径を有する金属で置換した電
池E、或るいは置換していない電池Fに比べてサイクル
特性が優れていることがわかる。反対にCoのイオン半
径よりも大きいイオン半径を有するMgで置換した電池
Eは、何も置換していない電池Fに比べてサイクル特性
が劣化している。Charging current of 2 m using the above 6 types of batteries
A cycle test was conducted under the conditions of A, end-of-charge voltage 4.2V, discharge current 2mA, and end-of-discharge voltage 2.0V. The result is shown in FIG. From FIG. 4, batteries A, B, C, and D in which a part of Co in LiCoO 2 is replaced with a metal having an ion radius smaller than that of Co have an ion radius larger than that of Co. It can be seen that the cycle characteristics are superior to the battery E substituted with metal or the battery F not substituted with metal. On the contrary, in the battery E substituted with Mg having an ionic radius larger than that of Co, the cycle characteristics are deteriorated as compared with the battery F in which nothing is substituted.
【0019】また、金属の置換量は10〜30モル%の
範囲にある場合が効果的であり、これ以上増やすと、電
池A、B及びCと比べて分かるように、サイクル特性は
劣化していく。Further, it is effective that the substitution amount of metal is in the range of 10 to 30 mol%, and if it is increased more than this, the cycle characteristics are deteriorated as can be seen in comparison with the batteries A, B and C. Go
【0020】[実施例5]正極活物質として三酸化鉄
(Fe2O3)粉末と炭酸コバルト(CoCO3)粉末と
炭酸リチウム(Li2CO3)粉末を、Fe:Co:Li
=0.9:0.1:1.0となるように混合する以外は、
実施例1と同様にして電池を作製した。この電池をGと
する。Example 5 Iron trioxide (Fe 2 O 3 ) powder, cobalt carbonate (CoCO 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder were used as the positive electrode active material, and Fe: Co: Li was used.
= 0.9: 0.1: 1.0 except for mixing
A battery was produced in the same manner as in Example 1. This battery is designated as G.
【0021】[実施例6]正極活物質として三酸化鉄
(Fe2O3)粉末と炭酸コバルト(CoCO3)粉末と
炭酸リチウム(Li2CO3)粉末を、Fe:Co:Li
=0.7:0.3:1.0となるように混合する以外は、
実施例1と同様にして電池を作製した。この電池をHと
する。Example 6 Iron trioxide (Fe 2 O 3 ) powder, cobalt carbonate (CoCO 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder were used as the positive electrode active material, and Fe: Co: Li was used.
= 0.7: 0.3: 1.0 except for mixing
A battery was produced in the same manner as in Example 1. Let this battery be H.
【0022】[実施例7]正極活物質として三酸化鉄
(Fe2O3)粉末と炭酸コバルト(CoCO3)粉末と
炭酸リチウム(Li2CO3)粉末を、Fe:Co:Li
=0.6:0.4:1.0となるように混合する以外は、
実施例1と同様にして電池を作製した。この電池をIと
する。[Example 7] Iron trioxide (Fe 2 O 3 ) powder, cobalt carbonate (CoCO 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder were used as the positive electrode active material, and Fe: Co: Li was used.
= 0.6: 0.4: 1.0 except for mixing
A battery was produced in the same manner as in Example 1. This battery is designated as I.
【0023】[実施例8]正極活物質として三酸化鉄
(Fe2O3)粉末と五酸化バナジウム(V2O5)粉末と
炭酸リチウム(Li2CO3)粉末を、Fe:V:Li=
0.9:0.1:1.0となるように混合する以外は、実
施例1と同様にして電池を作製した。この電池をJとす
る。Example 8 Iron trioxide (Fe 2 O 3 ) powder, vanadium pentoxide (V 2 O 5 ) powder and lithium carbonate (Li 2 CO 3 ) powder were used as positive electrode active materials, and Fe: V: Li was used. =
A battery was produced in the same manner as in Example 1 except that the mixture was mixed so that the ratio was 0.9: 0.1: 1.0. This battery is J.
【0024】[比較例3]正極活物質として三酸化鉄
(Fe2O3)粉末と水酸化マグネシウム(Mg(O
H)2)粉末と炭酸リチウム(Li2CO3)粉末を、F
e:Mg:Li=0.9:0.1:1.0となるように混
合する以外は、実施例1と同様にして電池を作製した。
この電池をKとする。[Comparative Example 3] Iron trioxide (Fe 2 O 3 ) powder and magnesium hydroxide (Mg (O
H) 2 ) powder and lithium carbonate (Li 2 CO 3 ) powder,
A battery was produced in the same manner as in Example 1 except that the mixing was performed such that e: Mg: Li = 0.9: 0.1: 1.0.
This battery is designated as K.
【0025】[比較例4]正極活物質として三酸化鉄
(Fe2O3)粉末と炭酸リチウム(Li2CO3)粉末
を、Fe:Li=1.0:1.0となるように混合する以
外は、実施例1と同様にして電池を作製した。この電池
をLとする。[Comparative Example 4] Iron trioxide (Fe 2 O 3 ) powder and lithium carbonate (Li 2 CO 3 ) powder were mixed as a positive electrode active material so that Fe: Li = 1.0: 1.0. A battery was produced in the same manner as in Example 1 except that the above was carried out. Let this battery be L.
【0026】実施例5〜8及び比較例9、10で作製した
電池G〜Lを用いて充電電流2mA、充電終止電圧4.
2V、放電電流2mA、放電終止電圧2.0Vの条件で
サイクル試験を行った。この結果を図5に示す。図5よ
り、LiFeO2のFeの一部をFeのイオン半径より
も小さいイオン半径を有する金属で置換した電池G、
H、I、及びJは、Feのイオン半径よりも大きいイオ
ン半径を有する金属で置換した電池K、或るいは置換し
ていない電池Lに比べてサイクル特性が優れていること
がわかる。Using the batteries G to L prepared in Examples 5 to 8 and Comparative Examples 9 and 10, the charging current was 2 mA and the final charging voltage was 4.
A cycle test was performed under the conditions of 2 V, discharge current 2 mA, and discharge end voltage 2.0 V. The result is shown in FIG. From FIG. 5, a battery G in which a part of Fe in LiFeO 2 is replaced with a metal having an ionic radius smaller than that of Fe,
It can be seen that H, I, and J are superior in cycle characteristics to the battery K in which a metal having an ionic radius larger than that of Fe is substituted, or the battery L in which the ionic radius is not substituted, or the battery L in which no ionic radius is substituted.
【0027】[0027]
【発明の効果】上述したように、正極活物質として一般
式LiXM1-YAYO2(ここで、Mは遷移金属、Aは遷移
金属Mよりも小さいイオン半径を有し、且つそのカチオ
ンが6配位する金属、X≦1.0、0.1≦Y≦0.4)
で表される複合酸化物を用いることにより、結晶構造に
おいて酸素イオンが八面体内方に吸収されやすくなり、
層間が広くなるため、リチウムイオンの挿入脱離が容易
に進み、層間での移動もスムースに行えるので、充放電
の繰り返しに伴う結晶構造の歪みや破壊が抑制でき、サ
イクル特性の向上に優れた非水電解液二次電池を提供す
ることができ、その工業的価値は極めて大である。As described above, as the positive electrode active material, the general formula Li X M 1 -Y A Y O 2 (where M is a transition metal, A has an ionic radius smaller than that of the transition metal M, and Metals whose cations are 6-coordinated, X ≦ 1.0, 0.1 ≦ Y ≦ 0.4)
By using the complex oxide represented by, oxygen ions in the crystal structure is easily absorbed in the octahedral direction,
Since the interlayer is widened, insertion and desorption of lithium ions can be facilitated, and movement between layers can be performed smoothly, so distortion and destruction of the crystal structure due to repeated charge and discharge can be suppressed, and excellent cycle characteristics have been improved. A non-aqueous electrolyte secondary battery can be provided, and its industrial value is extremely large.
【図1】本発明による扁平形電池の縦断面図である。FIG. 1 is a vertical cross-sectional view of a flat battery according to the present invention.
【図2】LixM1-YAY結晶中のリチウムイオンの拡散
概念図である。FIG. 2 is a conceptual diagram of diffusion of lithium ions in a Li x M 1-Y A Y crystal.
【図3】LiXMO2結晶中のリチウムイオンの拡散概念
図である。FIG. 3 is a conceptual diagram of diffusion of lithium ions in a Li X MO 2 crystal.
【図4】本発明電池と比較電池によるサイクル特性比較
図である。FIG. 4 is a cycle characteristic comparison diagram of the battery of the present invention and a comparative battery.
【図5】本発明電池と比較電池によるサイクル特性比較
図である。FIG. 5 is a cycle characteristic comparison diagram of the battery of the present invention and a comparative battery.
1 負極 2 負極缶 3 正極 4 正極缶 5 セパレータ 6 絶縁パッキング 7 遷移金属イオン 8 酸素イオン 9 リチウムイオン 10 遷移金属よりもイオン半径の小さな金属イオン 1 Negative electrode 2 Negative electrode can 3 Positive electrode 4 Positive electrode can 5 Separator 6 Insulating packing 7 Transition metal ion 8 Oxygen ion 9 Lithium ion 10 Metal ion with smaller ionic radius than transition metal
Claims (2)
遷移金属、Aは遷移金属Mよりも小さいイオン半径を有
し、且つそのカチオンが6配位する金属、X≦1.0、
0.1≦Y≦0.4)で表される複合酸化物を活物質とす
る正極と、リチウム金属、リチウム合金、或るいはリチ
ウムを吸蔵放出可能な炭素材料からなる負極と、非水電
解液とを備えることを特徴とする非水電解液二次電池。1. The general formula Li X M 1-Y A Y O 2 (where M is a transition metal, A is a metal having an ionic radius smaller than that of the transition metal M, and its cation is hexacoordinated, X ≦ 1.0,
0.1 ≦ Y ≦ 0.4) a positive electrode using a composite oxide as an active material, a lithium metal, a lithium alloy, or a negative electrode made of a carbon material capable of inserting and extracting lithium, and non-aqueous electrolysis And a non-aqueous electrolyte secondary battery.
及びFeからなる群から選択される少なくとも一種であ
る請求項1記載の非水電解液二次電池。2. The transition metal M is Co, Ni, Mn,
The non-aqueous electrolyte secondary battery according to claim 1, which is at least one selected from the group consisting of Fe and Fe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4077086A JPH05283075A (en) | 1992-03-31 | 1992-03-31 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4077086A JPH05283075A (en) | 1992-03-31 | 1992-03-31 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05283075A true JPH05283075A (en) | 1993-10-29 |
Family
ID=13623975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4077086A Pending JPH05283075A (en) | 1992-03-31 | 1992-03-31 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05283075A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7939201B2 (en) | 2005-08-08 | 2011-05-10 | A123 Systems, Inc. | Nanoscale ion storage materials including co-existing phases or solid solutions |
US8158090B2 (en) | 2005-08-08 | 2012-04-17 | A123 Systems, Inc. | Amorphous and partially amorphous nanoscale ion storage materials |
US8323832B2 (en) | 2005-08-08 | 2012-12-04 | A123 Systems, Inc. | Nanoscale ion storage materials |
-
1992
- 1992-03-31 JP JP4077086A patent/JPH05283075A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7939201B2 (en) | 2005-08-08 | 2011-05-10 | A123 Systems, Inc. | Nanoscale ion storage materials including co-existing phases or solid solutions |
US8057936B2 (en) | 2005-08-08 | 2011-11-15 | A123 Systems, Inc. | Nanoscale ion storage materials including co-existing phases or solid solutions |
US8158090B2 (en) | 2005-08-08 | 2012-04-17 | A123 Systems, Inc. | Amorphous and partially amorphous nanoscale ion storage materials |
US8323832B2 (en) | 2005-08-08 | 2012-12-04 | A123 Systems, Inc. | Nanoscale ion storage materials |
US8617430B2 (en) | 2005-08-08 | 2013-12-31 | A123 Systems Llc | Amorphous and partially amorphous nanoscale ion storage materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7165271B2 (en) | Cathode active materials, cathode sheets, electrochemical energy storage devices and devices | |
KR100814814B1 (en) | Negative active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same | |
JPWO2002054511A1 (en) | Positive active material for non-aqueous electrolyte secondary battery and battery using the same | |
JP2014035808A (en) | Active material, nonaqueous electrolyte battery, and battery pack | |
JPH0737576A (en) | Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof | |
JP2001167767A (en) | Non-aqueous electrolyte secondary battery | |
JPH04249073A (en) | Non-aqueous electrolyte secondary battery | |
JPH09147863A (en) | Nonaqueous electrolyte battery | |
JP2751624B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005158737A (en) | Positive electrode for lithium secondary battery and lithium secondary battery | |
JP3418023B2 (en) | Non-aqueous electrolyte lithium secondary battery | |
US6613478B2 (en) | Positive electrode material and cell for nonaqueous electrolyte secondary battery | |
JP2015111585A (en) | Active material, nonaqueous electrolyte battery, and battery pack | |
JP2003077544A (en) | Rechargeable battery | |
JP4544404B2 (en) | Lithium manganese composite oxide, method for producing the same, and use thereof | |
JPH05283075A (en) | Nonaqueous electrolyte secondary battery | |
CN116553620A (en) | A kind of high entropy spinel oxide material and its preparation method and application | |
JPH05174872A (en) | Nonaqueous electrolyte secondary battery | |
JPH06267539A (en) | Lithium secondary battery | |
WO2013125465A1 (en) | Positive electrode active material | |
JPH05242889A (en) | Manufacture of positive electrode active material for non-aqueous electrolyte secondary battery | |
JP3104321B2 (en) | Non-aqueous electrolyte lithium secondary battery and method for producing the same | |
WO2017046891A1 (en) | Charging system, and method for charging nonaqueous electrolyte cell | |
CN101226996B (en) | Negative electrode and rechargeable lithium battery including the same | |
JP3577799B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |