[go: up one dir, main page]

JPH05279416A - Hydrophilic biodegradable polymer - Google Patents

Hydrophilic biodegradable polymer

Info

Publication number
JPH05279416A
JPH05279416A JP4077518A JP7751892A JPH05279416A JP H05279416 A JPH05279416 A JP H05279416A JP 4077518 A JP4077518 A JP 4077518A JP 7751892 A JP7751892 A JP 7751892A JP H05279416 A JPH05279416 A JP H05279416A
Authority
JP
Japan
Prior art keywords
polymer
hydrophilic
membrane
amino acid
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4077518A
Other languages
Japanese (ja)
Inventor
Makoto Iwatsuki
誠 岩月
Toshiro Hayashi
壽郎 林
Masanao Oya
正尚 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP4077518A priority Critical patent/JPH05279416A/en
Publication of JPH05279416A publication Critical patent/JPH05279416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a hydrophilic biodegradable polymer comprising a specific polymer by subjecting a carboxyl group of side chain of polymer to amide bond with a specific crosslinking agent, having safety in organism, providing an excellent biodegradable hydrogel membrane. CONSTITUTION:A hydrophilic biodegradable polymer which is an acidic amino acid (preferably L-amino acid) polymer or (meth) acrylic acid polymer wherein a carboxyl group of side chain of polymer is subjected to amide bond with diketopiperazine (crosslinking agent) of L-lysine and optionally subjected to amide bond or ester bond with a hydrophilic group donor (e.g. hydroxyalkylamine). The hydrophilic biodegradable polymer is useful as a membraneous organism material or a biodegradable hydrogel membrane. For example, an ester of an acidic amino acid polymer or an acrylic acid polymer is formed into a membrane, the membrane is reacted with diketopiperazine of L-lysine in a proper reaction solvent and optionally a hydrophilic donor, then the swollen membrane is dried to give a membranaceous organism material. In use, the membranaceous organism material is immersed in water, etc., to give a hydrogel membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、親水性生分解性高分子
及びこれを材料とする膜性生体材料、更に詳しくは、酸
性アミノ酸のポリマー、アクリル酸のポリマー又はメタ
クリル酸のポリマーであって、ポリマー側鎖のカルボキ
シル基がL−リジンのジケトピペラジン(架橋剤)とア
ミド結合し、及び、所望により、親水性基供与体とアミ
ド結合又はエステル結合をしている親水性生分解性高分
子、並びにこのような親水性生分解性高分子よりなる膜
性生体材料に関する。
FIELD OF THE INVENTION The present invention relates to a hydrophilic biodegradable polymer and a membranous biomaterial made of the same, and more specifically to a polymer of acidic amino acid, a polymer of acrylic acid or a polymer of methacrylic acid. A hydrophilic biodegradable polymer having a carboxyl group of a polymer side chain and an diketopiperazine (crosslinking agent) of L-lysine and an amide bond and, if desired, an amide bond or an ester bond with a hydrophilic group donor. The present invention relates to molecules and membranous biomaterials composed of such hydrophilic biodegradable polymers.

【0002】[0002]

【従来の技術】合成ポリアミノ酸は、その骨格鎖が天然
タンパク質やコラーゲンと同じようにペプチド結合から
構成されているため、適当な親水性を付与すれば、生体
内で酵素作用により消化吸収されるという特異性をもっ
ている。また、これまでに、多くの合成ポリアミノ酸は
生体内で抗原性を示さず、分解生成物も毒性のないこと
が明らかにされ、いわゆる生体内分解吸収性医用高分子
材料としての有用性が期待されている。たとえば、抜糸
を必要としない縫合糸、やけどや傷に対する人工皮膚真
皮成分素材、外科手術後の癒着防止用隔膜材料、歯科に
おける止血用抜糸穴充填材料、徐放性医薬用高分子担体
材料、治療用酵素の化学修飾用高分子、あるいは代用血
液としての用途が考えられている。
2. Description of the Related Art Synthetic polyamino acids, whose skeletal chains are composed of peptide bonds like natural proteins and collagen, are digested and absorbed in vivo by enzymatic action if they are given appropriate hydrophilicity. It has a peculiarity. In addition, it has been clarified so far that many synthetic polyamino acids do not show antigenicity in vivo and their decomposition products are not toxic, and their usefulness as so-called biodegradable and absorbable medical polymer materials is expected. Has been done. For example, sutures that do not require thread removal, artificial skin dermis component materials for burns and wounds, diaphragm material for adhesion prevention after surgery, thread removal hole filling material for haemostasis in dentistry, sustained release pharmaceutical polymer carrier material, treatment It is considered to be used as a polymer for chemically modifying an enzyme for use or as a blood substitute.

【0003】これらの用途のうち、人工皮膚用素材や外
科手術後の癒着防止用隔膜材料などの膜性生体材料の用
途については、合成ポリアミノ酸は適度な親水性を付与
された上に適当な架橋剤により架橋されていることが好
ましい。このような架橋剤としては、エチレンジアミ
ン、オクタメチレンジアミンなどの種々の有機ジアミン
架橋剤が用いられるが、多くの場合、毒性などの生体内
で好ましくない影響を与える懸念がある。
Of these applications, synthetic polyamino acids are suitable for use as membrane biomaterials such as artificial skin materials and diaphragm materials for preventing adhesions after surgery, while having appropriate hydrophilicity. It is preferably crosslinked with a crosslinking agent. As such a cross-linking agent, various organic diamine cross-linking agents such as ethylenediamine and octamethylenediamine are used, but in many cases, there is a concern that adverse effects such as toxicity may occur in vivo.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述の懸念
のない、優れた膜性生体材料とすることのできる新規な
親水性生分解性高分子を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel hydrophilic biodegradable polymer which can be an excellent membranous biomaterial without the above-mentioned concerns.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究の結果、ジアミン架橋剤としてL−
リジンの二量体からなるジケト化合物(L−リジンのジ
ケトピペラジン(DKP))を採用することにより、得
られる高分子は生体内で安全であり、しかも架橋剤自身
が酵素分解を受けること、従って、例えば、このような
高分子より調製されるハイドロゲル膜は適当な時間の経
過後に水溶性化することができる生分解性ハイドロゲル
膜であること、などの知見を得、このような知見に基い
て本発明を完成するに至った。
As a result of earnest research to solve the above-mentioned problems, the present inventor has found that as a diamine cross-linking agent, L-
By adopting a diketo compound composed of a dimer of lysine (L-lysine diketopiperazine (DKP)), the obtained polymer is safe in vivo, and the crosslinking agent itself undergoes enzymatic decomposition, Therefore, for example, it was found that a hydrogel membrane prepared from such a polymer is a biodegradable hydrogel membrane that can be water-solubilized after a suitable time has passed. Based on this, the present invention has been completed.

【0006】すなわち、本発明は、酸性アミノ酸のポリ
マー、アクリル酸のポリマー又はメタクリル酸のポリマ
ーであって、ポリマー側鎖のカルボキシル基がL−リジ
ンのジケトピペラジン(架橋剤)とアミド結合し、及
び、所望により、親水性基供与体とアミド結合又はエス
テル結合をしている親水性生分解性高分子、並びにこの
ような親水性生分解性高分子よりなる膜性生体材料に関
する。
That is, the present invention is a polymer of acidic amino acid, a polymer of acrylic acid or a polymer of methacrylic acid, wherein the carboxyl group of the polymer side chain is amide-bonded with diketopiperazine (crosslinking agent) of L-lysine, It also relates to a hydrophilic biodegradable polymer having an amide bond or an ester bond with a hydrophilic group donor, and a membranous biomaterial comprising such a hydrophilic biodegradable polymer.

【0007】以下、本発明を詳述する。The present invention will be described in detail below.

【0008】本発明の親水性生分解性高分子は、新規物
質である。
The hydrophilic biodegradable polymer of the present invention is a novel substance.

【0009】酸性アミノ酸としては、グルタミン酸、ア
スパラギン酸などを挙げることができる。このような酸
性アミノ酸のポリマーは、酸性アミン酸のホモポリマー
のみならず、このような酸性アミノ酸とアラニンなどの
他のアミノ酸とのコポリマーであってもよい。これらの
ポリマーの重量平均分子量は、ハイドロゲル膜の成形性
の観点から 1,000〜500,000 の範囲内にあるのが好まし
い。アクリル酸及びメタクリル酸のポリマーは、これら
のホモポリマーのみならず、アクリルアミドのような他
のビニル系モノマーとのコポリマーであってもよい。こ
れらのポリマーの重量平均分子量は、同様の観点から
3,000〜500,000 の範囲内にあるのが好ましい。コポリ
マーの場合、前記他のアミノ酸及び前記他のビニルモノ
マーの割合は、同様の観点から、99.9モル%以下、好ま
しくは50モル%以下である。
Examples of acidic amino acids include glutamic acid and aspartic acid. Such acidic amino acid polymers may be not only homopolymers of acidic amine acids, but also copolymers of such acidic amino acids with other amino acids such as alanine. The weight average molecular weight of these polymers is preferably in the range of 1,000 to 500,000 from the viewpoint of moldability of the hydrogel film. The polymers of acrylic acid and methacrylic acid may be not only homopolymers thereof, but also copolymers with other vinyl monomers such as acrylamide. The weight average molecular weights of these polymers are from the same viewpoint.
It is preferably in the range of 3,000 to 500,000. In the case of a copolymer, the ratio of the other amino acid and the other vinyl monomer is 99.9 mol% or less, preferably 50 mol% or less from the same viewpoint.

【0010】本発明の親水性生分解性高分子に含有され
る架橋剤たるL−リジンのDKPの量はポリマー側鎖の
カルボキシル基の 0.1〜10モル%が好ましい。
The amount of DKP of L-lysine as a cross-linking agent contained in the hydrophilic biodegradable polymer of the present invention is preferably 0.1 to 10 mol% of the carboxyl group of the polymer side chain.

【0011】親水性基供与体を用いてポリマーに親水性
を付与する場合の親水性基供与体は、ポリマー側鎖のカ
ルボキシル基とアミド結合又はエステル結合をすること
ができるアミノ基又はヒドロキシル基を有し、更に親水
性を付与すべきアミノ基、カルボキシル基、メルカプト
基などの親水性基を有する飽和脂肪族物質である。いう
までもなく、これらの物質は、ポリマーに導入したとき
に得られる親水性高分子を膜性生体材料としてこれをヒ
ト及びそれ以外の動物に使用するときに安全なものでな
なければならない。
When a hydrophilic group donor is used to impart hydrophilicity to a polymer, the hydrophilic group donor has an amino group or a hydroxyl group capable of forming an amide bond or an ester bond with a carboxyl group of a polymer side chain. It is a saturated aliphatic substance having a hydrophilic group such as an amino group, a carboxyl group, and a mercapto group, which should have hydrophilicity. Needless to say, these substances must be safe when the hydrophilic polymer obtained when introduced into a polymer is used as a membranous biomaterial in humans and other animals.

【0012】架橋剤たるL−リジンのDKPや親水性基
供与体を導入するには、例えば母試料ポリマーとして酸
性アミノ酸ポリマー、アクリル酸ポリマー及びメタクリ
ル酸ポリマーの各エステルを用い、通常の交換反応に付
することにより容易に行ない得る。
In order to introduce DKP of L-lysine as a cross-linking agent and a hydrophilic group donor, for example, each ester of an acidic amino acid polymer, an acrylic acid polymer and a methacrylic acid polymer is used as a mother sample polymer, and a usual exchange reaction is carried out. It can be easily done by attaching.

【0013】このような親水性基供与体としては、2−
アミノ−1−エタノールなどのヒドロキシアルキルアミ
ンを挙げることができる。次に、これを例にとって本発
明を説明する。
As such a hydrophilic group donor, 2-
Mention may be made of hydroxyalkylamines such as amino-1-ethanol. Next, the present invention will be described by taking this as an example.

【0014】L−リジンのDKP(架橋剤)及びヒドロ
キシアルキルアミン(親水性基供与体)は、ポリマー側
鎖のカルボキシル基とアミド結合しているが、両者の割
合は、ハイドロゲル膜成形性の観点から 0.1:99.9〜1
0:90(モル比)の範囲内とするのが好ましい。この割
合のコントロールは、後述するように、本発明の生分解
性高分子が、例えば、ポリ(L−グルタミン酸−γ−ベ
ンジルエステル)に2−アミノ−1−エタノール及びL
−リジンのDKPの両者を共存反応させて合成されるの
で、このような合成の際における両者の割合をコントロ
ールすることによって行なうことができる。
The DKP (crosslinking agent) and the hydroxyalkylamine (hydrophilic group donor) of L-lysine are amide-bonded to the carboxyl group of the polymer side chain. From a perspective 0.1: 99.9-1
It is preferably in the range of 0:90 (molar ratio). As will be described later, the ratio of the biodegradable polymer of the present invention can be controlled, for example, by adding poly (L-glutamic acid-γ-benzyl ester) to 2-amino-1-ethanol and L.
Since both lysine DKP and DKP are co-reacted, it can be performed by controlling the ratio of both during such synthesis.

【0015】本発明の親水性生分解性高分子は、生体内
酵素により架橋剤であるL−リジンのDKPの部分でジ
ケトピペラジン環の開裂により分解する。加えて、ポリ
マーがアミノ酸のポリマーである場合は、このアミノ酸
がL−アミノ酸であると、そのペプチド結合も生体内酵
素により加水分解されるので生分解性が増大する。
The hydrophilic biodegradable polymer of the present invention is decomposed by an in vivo enzyme by cleavage of the diketopiperazine ring at the DKP portion of L-lysine which is a cross-linking agent. In addition, when the polymer is a polymer of amino acids, if this amino acid is an L-amino acid, its peptide bond is also hydrolyzed by an in vivo enzyme, so that biodegradability is increased.

【0016】本発明の親水性生分解性高分子を材料とす
る膜性生体材料は、人工皮膚や外科手術後の癒着防止用
隔膜として使用した場合にはやがて生体内で分解し、吸
収されるので、極めて優れた生体材料であることが理解
されよう。
The membranous biomaterial made of the hydrophilic biodegradable polymer of the present invention is decomposed and absorbed in vivo when it is used as an artificial skin or a diaphragm for preventing adhesion after surgery. Therefore, it will be understood that it is an extremely excellent biomaterial.

【0017】本発明の親水性生分解性高分子、これより
なる膜性生体材料、及びこれを材料とする生分解性ハロ
イドゲル膜は、例えば、大略次のようにして合成及び調
製することができる。すなわち、交換反応による場合
は、母試料ポリマーとしてエステルを用い、その膜を、
適当な反応溶媒中で、L−リジンのDKPと又はL−リ
ジンのDKP及び親水性基供与体と反応させる。つい
で、膨潤膜を乾燥して膜性生体材料とする。これを生体
材料として使用するに際しては、予め水又は適当な水性
溶液に浸漬してハイドロゲル膜としておく。
The hydrophilic biodegradable polymer of the present invention, the membranous biomaterial made of the same, and the biodegradable haloid gel membrane made of the same can be synthesized and prepared, for example, as follows. .. That is, in the case of an exchange reaction, an ester is used as the mother sample polymer, and its membrane is
In a suitable reaction solvent, DKP of L-lysine or DKP of L-lysine and a hydrophilic group donor are reacted. Then, the swollen membrane is dried to obtain a membranous biomaterial. When this is used as a biomaterial, it is immersed in water or an appropriate aqueous solution in advance to form a hydrogel film.

【0018】[0018]

【実施例】以下、実施例により本発明を更に説明する。EXAMPLES The present invention will be further described below with reference to examples.

【0019】実施例1(アミノ酸ポリマー) ポリ(L−グルタミン酸−γ−ベンジルエステル)(分
子量 220,000)の3重量%メチレンクロライド溶液から
キャスト法で調製した乾燥フィルム300mg (50×50×0.
1mm)を2−アミノ−1−エタノール12.22 g(200mM)
とL−リジンのDKP0.512 g(4mM)との混合50%
エタノール溶液中に浸漬し、60℃で16時間ゆるやかな攪
拌下で反応させた。
Example 1 (Amino acid polymer) 300 mg of a dry film prepared by a casting method from a 3% by weight methylene chloride solution of poly (L-glutamic acid-γ-benzyl ester) (molecular weight 220,000) (50 × 50 × 0.
1-mm) 2-amino-1-ethanol 12.22 g (200 mM)
50% of L-lysine and DKP 0.512 g (4 mM)
It was immersed in an ethanol solution and reacted at 60 ° C. for 16 hours under gentle stirring.

【0020】膨潤膜をエタノール中に浸漬後、洗浄した
あと、室温にて減圧乾燥して親水性生分解性高分子膜を
得た。側鎖の完全置換反応の検定は、FT−IRスペク
トルを測定し、エステル結合(1730cm-1)によるピーク
の完全消失から行なった。
The swollen membrane was immersed in ethanol, washed, and then dried under reduced pressure at room temperature to obtain a hydrophilic biodegradable polymer membrane. The side-chain complete substitution reaction was assayed by measuring the FT-IR spectrum and completely eliminating the peak due to the ester bond (1730 cm -1 ).

【0021】乾燥膜を模擬体液(pH7.4)中に浸漬してハ
イドロゲル膜とし、そのまま4℃で保存した。膜の平衡
膨潤度qは11.0であった。なお、模擬体液及び平衡膨潤
度については、実施例2を参照のこと。
The dried film was immersed in a simulated body fluid (pH 7.4) to form a hydrogel film, which was stored as it was at 4 ° C. The equilibrium swelling degree q of the film was 11.0. For the simulated body fluid and the equilibrium swelling degree, see Example 2.

【0022】実施例2(アミノ酸ポリマー) 実施例1の方法に準じて、母試料ポリマーとしてポリ
(L−グルタミン酸−γ−ベンジルエステル)(PBL
G)又はポリ(D−グルタミン酸−γ−ベンジルエステ
ル)(PBDG)を採用し、この乾燥フィルム(50×50
×0.1mm)に2−アミノ−1−エタノール(E)及び架橋
剤としてL−リジンDKP(本発明)又は比較のための
オクタメチレンジアミン(OMDA)を第1表に示す割
合で反応させて9種類の親水性生分解性高分子膜を作成
した。2−アミノ−1−エタノールと架橋剤の使用量は
母試料ポリマーに対して大過剰を用い、50%エタノール
溶液として用いた。なお、2−アミノ−1−エタノール
及びL−リジンのDKPによる側鎖の完全置換反応は、
反応生成物について赤外線吸収スペクトルを測定し、エ
ステル結合のピーク(1730cm-1)の完全消失により確認
したことは実施例1におけると同様である。
Example 2 (Amino Acid Polymer) According to the method of Example 1, poly (L-glutamic acid-γ-benzyl ester) (PBL was used as a mother sample polymer.
G) or poly (D-glutamic acid-γ-benzyl ester) (PBDG) is used, and this dry film (50 × 50
X 0.1 mm) was reacted with 2-amino-1-ethanol (E) and L-lysine DKP (invention) as a cross-linking agent or octamethylene diamine (OMDA) for comparison at a ratio shown in Table 1 to give 9 Two kinds of hydrophilic biodegradable polymer membranes were prepared. The amounts of 2-amino-1-ethanol and the cross-linking agent used were a large excess with respect to the mother sample polymer, and they were used as a 50% ethanol solution. The complete substitution reaction of the side chain of 2-amino-1-ethanol and L-lysine with DKP is
The infrared absorption spectrum of the reaction product was measured and confirmed by the complete disappearance of the peak (1730 cm −1 ) of the ester bond, as in Example 1.

【0023】[0023]

【表1】 [Table 1]

【0024】第1表には、各親水性生分解性高分子膜の
膨潤度qを併記した。
Table 1 also shows the swelling degree q of each hydrophilic biodegradable polymer film.

【0025】ここに膨潤度は、生体内条件を考慮して、
0.03M NaHCO3 、 0.002MK2 HPO4 、0.12M
NaCl及び 0.003M KClの水溶液の組成の模擬
体液(PECF)を使用して測定、算出した。すなわ
ち、37℃の条件下での高分子膜の吸水時及び乾燥時にお
ける重量(Ww 及びWd )を測定し、次式からPECF
平衡膨潤度qを算出した。
Here, the degree of swelling is determined in consideration of in vivo conditions.
0.03M NaHCO 3 , 0.002MK 2 HPO 4 , 0.12M
It was measured and calculated using a simulated body fluid (PECF) having a composition of an aqueous solution of NaCl and 0.003 M KCl. That is, the weight (Ww and Wd) of the polymer membrane at the time of absorbing water and drying at 37 ° C. was measured, and PECF was calculated from the following equation.
The equilibrium swelling degree q was calculated.

【0026】[0026]

【数1】 [Equation 1]

【0027】実施例3(アミノ酸ポリマー) 実施例2で得られた親水性生分解性高分子膜(B)、
(C)、(G)及び(H)について、in vitroでの酵素
分解性を検査した。
Example 3 (amino acid polymer) The hydrophilic biodegradable polymer membrane (B) obtained in Example 2,
(C), (G) and (H) were examined for in vitro enzymatic degradability.

【0028】すなわち、0.01M L−システィン及び0.
02M EDTAを含むPECFに、生体条件下(37℃、
pH7.4 、パパイン0.5mg/ml)で各試験片を浸漬し、パパ
インによる酵素分解状況をハイドロゲル膜の重量減少及
び膨潤度の時間変化により測定した。
That is, 0.01 M L-cystine and 0.
PECF containing 02M EDTA, under biological conditions (37 ℃,
Each test piece was immersed in pH 7.4 and papain 0.5 mg / ml), and the enzymatic degradation state by papain was measured by the weight decrease of the hydrogel film and the time change of the swelling degree.

【0029】これを詳述すると、D. F. Williamsは、創
傷部位において産生される種々のプロテアーゼについて
研究を行い、炎症部位で産生されるもののうち、ポリア
ミノ酸をも強力に分解するプロテアーゼとしては、エン
ドペプチダーゼとしてのカテプシンBやエキソペプチダ
ーゼとしてのカルボキシペプチダーゼ、ロイシンアミノ
ペプチダーゼなどが存在することを指摘しているので
(J. Bioeng., 1, 279(1977) 、本検査では、カテプシン
Bと類似のポリアミノ酸加水分解挙動を示す酵素とし
て、植物由来のチオール型エンドペプチダーゼであるパ
パインを選んだ。本検査のin vitro酵素分解実験は、あ
らかじめq値が求められた試料膜(試験片)の乾燥時重
量を秤量し(初期乾燥重量Wo )、生体内条件下で0.5m
g/ml濃度のパパインを含有するPECF中に浸漬し、一
定速度でゆるやかに撹拌しながら各所定時間後に試料膜
を取出し、洗浄乾燥後の膜を秤量し(残固形分乾燥重量
Wr )、残存膜重量比sを次式から算出した。
More specifically, DF Williams conducted research on various proteases produced at the wound site, and among the proteases produced at the inflammatory site, as a protease that strongly decomposes polyamino acids, endopeptidase It is pointed out that there are cathepsin B as an example, carboxypeptidase as an exopeptidase, and leucine aminopeptidase.
(J. Bioeng., 1, 279 (1977), in this test, papain, which is a plant-derived thiol-type endopeptidase, was selected as an enzyme exhibiting a polyamino acid hydrolysis behavior similar to cathepsin B. In the in vitro enzymatic degradation experiment, the dry weight of the sample membrane (test piece) for which the q value was determined in advance was weighed (initial dry weight Wo), and 0.5 m under in vivo conditions.
Immersing in PECF containing papain at a concentration of g / ml, taking out the sample membrane after each predetermined time while gently stirring at a constant speed, weighing the membrane after washing and drying (remaining solid content dry weight Wr), and remaining The film weight ratio s was calculated from the following equation.

【0030】[0030]

【数2】 [Equation 2]

【0031】なお、別途並行実験により各所定時間後の
q値(膨潤度)も測定した。
The q value (swelling degree) after each predetermined time was also measured by a separate parallel experiment.

【0032】第2表に、種々の膜試料について、所定時
間経過後の膨潤度および残存試料膜重量の測定値をまと
めて示す。
Table 2 shows the measured values of the degree of swelling and the weight of the remaining sample film after the elapse of a predetermined time for various film samples.

【0033】[0033]

【表2】 [Table 2]

【0034】第2表から、パパイン分解過程における膜
の膨潤度(q)と残存膜重量比(s)の分解時間依存性
が判る。これを詳述すると、試験片(B)及び(C)に
関するデータから判るように、ポリ−L−アミノ酸ハイ
ドロゲルでは、ポリマー主鎖もパパインによって加水分
解を受けるため、OMDA架橋膜においても分解が進行
しているが、分解に伴う膜の膨潤度の増加はL−リジン
DKP架橋膜に比較して緩やかである。それに対して
(G)及び(H)に関するデータから判るように、ポリ
−D−アミノ酸ハイドロゲルでは、予想される通り、ポ
リマー主鎖がパパインによって加水分解されないため、
OMDA架橋膜は全く変化を示さないが、L−リジンD
KP架橋膜では、時間経過に伴って、まず膜の膨潤度が
増大してゆき、ある程度分解が進行するとポリマー鎖の
脱離および水溶性化が起こって膜重量の減少が示され
る。このことは、DKPの部分がパパインの作用を受け
て加水分解するためであると考えられる。
From Table 2, the dependency of the swelling degree (q) of the membrane and the residual film weight ratio (s) on the decomposition time in the papain decomposition process can be seen. When this is described in detail, as can be seen from the data on the test pieces (B) and (C), in the poly-L-amino acid hydrogel, the polymer main chain is also hydrolyzed by papain, so that the decomposition also occurs in the OMDA crosslinked film. Although progressing, the increase in the swelling degree of the membrane due to the decomposition is slower than that of the L-lysine DKP crosslinked membrane. In contrast, as can be seen from the data for (G) and (H), poly-D-amino acid hydrogels, as expected, because the polymer backbone is not hydrolyzed by papain,
The OMDA cross-linked membrane showed no change, but L-lysine D
In the KP cross-linked membrane, the degree of swelling of the membrane first increases with the passage of time, and when the decomposition progresses to some extent, the polymer chains are detached and water-solubilization occurs, and the weight of the membrane decreases. It is considered that this is because the portion of DKP is hydrolyzed by the action of papain.

【0035】実施例4(アクリル酸ポリマー) ポリアクリル酸メチル(分子量100,000)のアセトン溶液
からキャスト製膜した粘着性膜(50×50×0.2mm)(580m
g) を2−アミノ−1−エタノール24.5g(400mM)と
DKP 0.512g(4mM)との混合溶液中に浸漬し、60
℃で24時間反応させた。
Example 4 (Acrylic acid polymer) Adhesive film (50 × 50 × 0.2 mm) (580 m) cast from an acetone solution of polymethyl acrylate (molecular weight 100,000)
g) is immersed in a mixed solution of 2-amino-1-ethanol 24.5 g (400 mM) and DKP 0.512 g (4 mM), and 60
The reaction was carried out at ℃ for 24 hours.

【0036】得られた膨潤膜をエタノール洗浄し、乾燥
後、試料を模擬体液(PECF)中に入れ、パペイン
0.5重量%にて処理した。24時間後にハイドロゲル膜は
完全に水溶性化した。
The swollen film thus obtained was washed with ethanol and dried, and then the sample was put into a simulated body fluid (PECF) to prepare a papain.
Treated at 0.5% by weight. After 24 hours, the hydrogel film became completely water-soluble.

【0037】以上のように、生体内分解吸収性ハイドロ
ゲル膜を分子設計する場合、架橋度を選択することによ
り、必要とする膨潤度が得られ、酵素分解速度を制御で
きることが明らかとなった。
As described above, when the biodegradable and absorbable hydrogel membrane was molecularly designed, it was clarified that the required degree of swelling was obtained and the rate of enzymatic degradation could be controlled by selecting the degree of crosslinking. ..

【0038】[0038]

【発明の効果】本発明により、生体内で安全であり、し
かも架橋剤自身が酵素分解を受けて適当な時間経過後に
水溶性化するハイドロゲル膜の材料とすることのできる
新規な優れた生分解性高分子物質が提供されるところと
なった。
EFFECTS OF THE INVENTION According to the present invention, a novel excellent raw material which is safe in vivo and can be used as a material for a hydrogel film which is hydrolyzed after a suitable time has elapsed due to enzymatic decomposition of the crosslinking agent itself. A degradable polymeric material has been provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08F 8/30 MHP 7167−4J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C08F 8/30 MHP 7167-4J

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸性アミノ酸のポリマー、アクリル酸の
ポリマー又はメタクリル酸のポリマーであって、ポリマ
ー側鎖のカルボキシル基がL−リジンのジケトピペラジ
ン(架橋剤)とアミド結合をしている親水性生分解性高
分子。
1. A hydrophilic amino acid polymer, acrylic acid polymer or methacrylic acid polymer, wherein the carboxyl group of the polymer side chain forms an amide bond with diketopiperazine (crosslinking agent) of L-lysine. Biodegradable polymer.
【請求項2】 該ポリマー側鎖のカルボキシル基の一部
が親水性基供与体とアミド又はエステル結合している請
求項1記載の親水性生分解性高分子。
2. The hydrophilic biodegradable polymer according to claim 1, wherein a part of the carboxyl group of the side chain of the polymer is amide- or ester-bonded with the hydrophilic group donor.
【請求項3】 アミノ酸がL−アミノ酸である請求項1
又は2記載の親水性生分解性高分子。
3. The amino acid is an L-amino acid.
Or the hydrophilic biodegradable polymer described in 2.
【請求項4】 請求項1〜3のいずれかに記載の親水性
生分解性高分子よりなる膜性生体材料。
4. A membranous biomaterial comprising the hydrophilic biodegradable polymer according to claim 1.
【請求項5】 請求項4の膜性生体材料を材料とする生
分解性ハイドロゲル膜。
5. A biodegradable hydrogel film made of the membranous biomaterial according to claim 4.
JP4077518A 1992-03-31 1992-03-31 Hydrophilic biodegradable polymer Pending JPH05279416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077518A JPH05279416A (en) 1992-03-31 1992-03-31 Hydrophilic biodegradable polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077518A JPH05279416A (en) 1992-03-31 1992-03-31 Hydrophilic biodegradable polymer

Publications (1)

Publication Number Publication Date
JPH05279416A true JPH05279416A (en) 1993-10-26

Family

ID=13636192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077518A Pending JPH05279416A (en) 1992-03-31 1992-03-31 Hydrophilic biodegradable polymer

Country Status (1)

Country Link
JP (1) JPH05279416A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
US6360129B1 (en) 1999-12-13 2002-03-19 Cardiac Pacemakers, Inc. Mannitol/hydrogel cap for tissue-insertable connections
JP2016531955A (en) * 2013-09-19 2016-10-13 マイクロベンション インコーポレイテッド Polymer film
WO2017170705A1 (en) * 2016-03-31 2017-10-05 日油株式会社 Biodegradable hydrogel having cyclic benzylidene acetal structure
US10201632B2 (en) 2016-09-28 2019-02-12 Terumo Corporation Polymer particles
US10519264B2 (en) 2013-11-08 2019-12-31 Terumo Corporation Polymer particles
US10543295B2 (en) 2015-03-26 2020-01-28 Microvention, Inc. Particles
WO2020142450A1 (en) * 2018-12-31 2020-07-09 Zymergen Inc. Polymer compositions comprising compounds derived from biology
US11135167B2 (en) 2013-09-19 2021-10-05 Terumo Corporation Polymer particles
US12364786B2 (en) 2023-08-04 2025-07-22 Terumo Corporation Polymer particles

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
US6360129B1 (en) 1999-12-13 2002-03-19 Cardiac Pacemakers, Inc. Mannitol/hydrogel cap for tissue-insertable connections
US11786630B2 (en) 2013-09-19 2023-10-17 Terumo Corporation Polymer particles
JP2016531955A (en) * 2013-09-19 2016-10-13 マイクロベンション インコーポレイテッド Polymer film
US11104772B2 (en) 2013-09-19 2021-08-31 Microvention, Inc. Polymer films
US10227463B2 (en) 2013-09-19 2019-03-12 Microvention, Inc. Polymer films
US11135167B2 (en) 2013-09-19 2021-10-05 Terumo Corporation Polymer particles
US12077622B2 (en) 2013-11-08 2024-09-03 Terumo Corporation Polymer particles
US10519264B2 (en) 2013-11-08 2019-12-31 Terumo Corporation Polymer particles
US11261274B2 (en) 2013-11-08 2022-03-01 Terumo Corporation Polymer particles
US11857694B2 (en) 2015-03-26 2024-01-02 Microvention, Inc. Particles
US10543295B2 (en) 2015-03-26 2020-01-28 Microvention, Inc. Particles
US10792390B2 (en) 2015-03-26 2020-10-06 Microvention, Inc. Particles
US11041052B2 (en) 2016-03-31 2021-06-22 Nof Corporation Biodegradable hydrogel having cyclic benzylidene acetal structure
WO2017170705A1 (en) * 2016-03-31 2017-10-05 日油株式会社 Biodegradable hydrogel having cyclic benzylidene acetal structure
US10328175B2 (en) 2016-09-28 2019-06-25 Terumo Corporation Polymer particles
US11110198B2 (en) 2016-09-28 2021-09-07 Terumo Corporation Polymer particles
US10729805B2 (en) 2016-09-28 2020-08-04 Terumo Corporation Drug delivery polymer particles with hydrolytically degradable linkages
US11617814B2 (en) 2016-09-28 2023-04-04 Terumo Corporation Methods of treatment comprising administering polymer particles configured for intravascular delivery of pharmaceutical agents
US11759545B2 (en) 2016-09-28 2023-09-19 Terumo Corporation Polymer particles
US10632226B2 (en) 2016-09-28 2020-04-28 Terumo Corporation Polymer particles
US10201632B2 (en) 2016-09-28 2019-02-12 Terumo Corporation Polymer particles
WO2020142450A1 (en) * 2018-12-31 2020-07-09 Zymergen Inc. Polymer compositions comprising compounds derived from biology
US12364786B2 (en) 2023-08-04 2025-07-22 Terumo Corporation Polymer particles

Similar Documents

Publication Publication Date Title
Iwata et al. A novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly (L-glutamic acid):: Part 1. Synthesis of activated poly (L-glutamic acid) and its gelation with gelatin
US5015677A (en) Adhesives derived from bioadhesive polyphenolic proteins
EP0927196B1 (en) Polymers containing polysaccharides such as alginates or modified alginates
EP0575273B1 (en) Crosslinkable derivatives of collagen, process for obtaining the same and their use in the preparation of biomaterials
EP0537292B1 (en) Water insoluble derivatives of hyaluronic acid
US5496872A (en) Adhesive compositions for surgical use
US20030083389A1 (en) Bifunctional-modified hydrogels
Saito et al. pH-responsive swelling behavior of collagen gels prepared by novel crosslinkers based on naturally derived di-or tricarboxylic acids
US20090035356A1 (en) Modified biodegradable polymers, preparation and use thereof for making biomaterials and dressings
AU2007343561B2 (en) Multiple modified derivatives of gelatin and crosslinked material thereof
ES2233337T3 (en) COLLAGEN PEPTIDES AMENDED BY THE IMPROVEMENT OF MERCAPTO FUNCTIONS, ONE OF ITS PROCESSING PROCEDURES AND ITS APPLICATIONS AS BIOMATERIALS.
US5646239A (en) Organic products containing reactive thiol functions, one method for preparing same, and biomaterials containing said products
JPH05279416A (en) Hydrophilic biodegradable polymer
Sedlačík et al. Enzymatic degradation of the hydrogels based on synthetic poly (α-amino acid) s
EP0244688A2 (en) Adhesives derived from bioadhesive polyphenolic proteins
JP3850905B2 (en) Medical materials and manufacturing method thereof
Liu et al. Biomimetic adhesives and coatings based on mussel adhesive proteins
EP1806367A2 (en) Polymers containing polysaccharides such as alginates or modified alginates
KR20070073008A (en) Hyaluronic Acid-Based Injectable Hydrogel for Tissue Regeneration
JP2004307523A (en) Temperature responsive biodegradable gel
KR100823627B1 (en) Multilayered Film Including Hyaluronic Acid Derivative
Miyachi et al. Preparation and properties of biodegradable copoly (N-hydroxyalkyl-d, l-glutamine) membranes
AU605930B2 (en) Adhesives derived from bioadhesive polyphenolic proteins
CA2620633A1 (en) Modified biodegradable polymers, preparation and use thereof for making biomaterials and dressings
Kuroyanagi et al. Preparation of graft polypeptide binding bleomycin derivative