[go: up one dir, main page]

JPH05278441A - Transportation means - Google Patents

Transportation means

Info

Publication number
JPH05278441A
JPH05278441A JP4076678A JP7667892A JPH05278441A JP H05278441 A JPH05278441 A JP H05278441A JP 4076678 A JP4076678 A JP 4076678A JP 7667892 A JP7667892 A JP 7667892A JP H05278441 A JPH05278441 A JP H05278441A
Authority
JP
Japan
Prior art keywords
temperature distribution
ambiance
sensor
infrared
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076678A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshiike
信幸 吉池
Koji Arita
浩二 有田
Susumu Kobayashi
晋 小林
Katsuya Morinaka
克也 森仲
Atsushi Nishino
西野  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4076678A priority Critical patent/JPH05278441A/en
Publication of JPH05278441A publication Critical patent/JPH05278441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To detect the seating condition in a transportation means delicately so as to carry out the ambiance control by measuring the temperature distribution in the space with an infrared-ray sensor, deciding the positions and the numbers of persons inside the space, and controlling the temperature ambiance, the air quality ambiance, the sound ambiance, or the luminous ambiance, in the whole space or the local space in the transportation means. CONSTITUTION:The long axis direction of an infrared-ray array sensor 1 is set in the longitudinal direction, a chopper 3 is driven at 10Hz, for example, and the distribution of the longitudinal radiant heat, that is the temperature distribution, in the directions the infrared-ray array sensor 1 and the lenses face, is measured at every 1/10 second. The signals from the infrared-ray array sensor 1 are processed in a noise filter 6, and after amplifying in an amplifier 7, they are selected by a multiplexer 8, the signal of the selected element is processed in an A/D converter 9, and it is input to a CPU 10. The CPU decides the positions and the numbers of persons inside the space depending on the measured temperature distribution, and the temperature ambiance, the air quality ambiance, the sound ambiance, or the luminous ambiance inside the whole space or the local space is controlled according to the decided condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輸送体の内部の人が存
在している位置の情報に基づいて,車内の温熱環境,空
質環境等を制御する輸送手段に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transportation means for controlling a thermal environment, an air quality environment, etc. in a vehicle on the basis of information on the position of a person inside a transportation body.

【0002】[0002]

【従来の技術】近年、列車や飛行機等の輸送手段におい
て、車内にいる人間にあわせてさまざまな制御をきめこ
まかくするような、より快適な環境作りへの要求が高ま
りつつ有る。
2. Description of the Related Art In recent years, in transportation means such as trains and airplanes, there has been an increasing demand for creating a more comfortable environment in which various controls are carefully controlled according to the person in the vehicle.

【0003】従来、各種の輸送手段において内部の冷暖
房や空気換気等は一律に全体を制御するか、車掌が手動
で部分的に制御していた。
Conventionally, in various transportation means, the internal heating and cooling, the air ventilation, etc. are uniformly controlled entirely or the conductor manually controls them partially.

【0004】[0004]

【発明が解決しようとする課題】このような従来の輸送
手段における温熱環境などの制御手段では、乗客の人数
による負荷予測がなされないまま乗客の人数に拘らず車
内全体を必要以上に空調制御もしくは換気制御などをす
るために、暑すぎる、寒すぎるなどといった不快状態に
なりやすかった。また,場合によっては前記課題を解消
するために車掌が手動により補正制御をする必要があっ
たが、きめ細かく制御できるものではなっかた。
In such a conventional means for controlling the thermal environment in transportation means, air conditioning is controlled more than necessary in the entire vehicle regardless of the number of passengers without predicting the load depending on the number of passengers. It was easy to get into an uncomfortable state such as too hot or too cold to control ventilation. In some cases, the conductor needs to manually perform the correction control in order to solve the above problem, but it cannot be finely controlled.

【0005】また、乗客率などの情報を的確に把握でき
ないため、うまく輸送手段を利用できないことがあっ
た。
Further, since information such as the passenger rate cannot be accurately grasped, there are cases where the transportation means cannot be used successfully.

【0006】本発明は上記課題を解決するものであり、
乗客がより快適にうまく利用できる輸送手段を提供する
ことを目的としている。
The present invention is intended to solve the above problems,
The aim is to provide a means of transportation that is more comfortable and convenient for passengers to use.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、赤外線センサにより空間内の温度分布を測
定する手段と、測定した温度分布に基づいて内部の人の
位置や数を判定する手段と,判定した状況に応じて内部
の全体もしくは局所の温熱環境,空質環境,音環境もし
くは照明環境を制御する手段とを備えた構成である。
In order to achieve the above-mentioned object, the present invention is to measure the temperature distribution in space with an infrared sensor and to determine the position and number of persons inside based on the measured temperature distribution. And a means for controlling the entire internal or local thermal environment, air quality environment, sound environment, or lighting environment according to the determined situation.

【0008】また、前記人が存在している位置を判定す
る手段からの信号に基づいて乗客に関する情報を計算す
る手段を備えた構成である。
Further, there is provided a structure including means for calculating information regarding passengers based on a signal from the means for judging the position where the person is present.

【0009】[0009]

【作用】本発明は上記した構成により、輸送手段におい
て内部状況に合わせた、きめ細かな環境等の制御が可能
となり快適性を実現するものである。また、状況にあっ
た制御ができるので省エネルギ−を達成するものでもあ
る。
With the above-described structure, the present invention makes it possible to control the environment in the transportation means in accordance with the internal conditions and realize comfort. In addition, energy saving can be achieved because control can be performed according to the situation.

【0010】また、乗客率などの情報を的確に把握でき
るため、うまく輸送手段を利用できるものである。
Further, since the information such as the passenger rate can be accurately grasped, the transportation means can be used effectively.

【0011】[0011]

【実施例】以下、本発明の実施例について図を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)図1に本実施例のセンサ部の
斜視断面図を示す。回転部4には受光部を複数個ライン
状に設けた焦電型の赤外線アレイセンサ1と、赤外線ア
レイセンサ1の前面に赤外線を集光するためのシリコン
赤外線レンズ2を設け、さらにシリコン赤外線レンズ2
の入射面には赤外線を断続的に遮断するチョッパー3を
設ける。回転部4はステッピングモータ5に機械的に接
続する。
(Embodiment 1) FIG. 1 is a perspective sectional view of a sensor portion of this embodiment. The rotating portion 4 is provided with a pyroelectric infrared array sensor 1 having a plurality of light receiving portions arranged in a line, and a silicon infrared lens 2 for condensing infrared rays on the front surface of the infrared array sensor 1, and a silicon infrared lens. Two
A chopper 3 for intermittently blocking infrared rays is provided on the incident surface of the. The rotating unit 4 is mechanically connected to the stepping motor 5.

【0013】今、赤外線アレイセンサ1の長軸方向を縦
方向に設置し、チョッパー3を10Hzで駆動すると1
/10sec毎に赤外線アレイセンサ1およびレンズが
面している方向の縦列の輻射熱量の分布、すなわち温度
分布が測定できる。測定できる空間範囲はシリコン赤外
線レンズ2の画角と赤外線アレイセンサ1のサイズによ
るものである。
Now, when the long axis direction of the infrared array sensor 1 is installed vertically and the chopper 3 is driven at 10 Hz,
It is possible to measure the distribution of the amount of radiant heat in the column in the direction in which the infrared array sensor 1 and the lens are facing, that is, the temperature distribution, every / 10 sec. The measurable spatial range depends on the angle of view of the silicon infrared lens 2 and the size of the infrared array sensor 1.

【0014】また、図2に本実施例の測定装置の電気信
号に関するブロック図を示す。I/Oポート11は、ス
テッピングモータ5、チョッパ3およびクロック発生
部、演算部、メモリを内蔵しているCPU10と電気的
に接続されている。赤外線アレイセンサ1からの信号は
ノイズフィルター6で処理しアンプ7で増幅後、マルチ
プレクサー8で選択され、選択されたエレメントの信号
がA/Dコンバータ9で処理されCPU10に入力され
る。ステッピングモータ5の回転によりセンサ回転部4
の断続的回転と、チョッパ3の開閉により赤外線アレイ
センサ1の出力が得られるものである。
Further, FIG. 2 shows a block diagram of electric signals of the measuring apparatus of this embodiment. The I / O port 11 is electrically connected to the stepping motor 5, the chopper 3, the clock generator, the calculator, and the CPU 10 having a built-in memory. The signal from the infrared array sensor 1 is processed by the noise filter 6, amplified by the amplifier 7, and then selected by the multiplexer 8. The signal of the selected element is processed by the A / D converter 9 and input to the CPU 10. The rotation of the stepping motor 5 causes the sensor rotation unit 4 to rotate.
The output of the infrared array sensor 1 is obtained by the intermittent rotation of and the opening and closing of the chopper 3.

【0015】以上の構成において、赤外線アレイセンサ
1の受光部の数をnとすると、データの番地は例えば、
S11,S12,−−−,S1nとし、それぞれのステップ毎
にデータを保存し、m回方向を前進回転させて測定し、
そのときのデータの番地をSm1,Sm2,−−−,Smnと
することができる。
In the above configuration, if the number of light receiving portions of the infrared array sensor 1 is n, the data address is, for example,
S11, S12, ---, S1n, save data for each step, measure forward by rotating m times,
The addresses of the data at that time can be Sm1, Sm2, ---, Smn.

【0016】最終体面方向の測定(m番目の測定)が終
了後、CPU10からの信号によりモータ駆動方向信号
を後進方向とし、ステッピングモータ5をトータル(m
*θ)度逆回転し、初期の体面方向に戻し、次の測定に
対する待機状態に入る。逆回転速度は、できる限り速い
方がよい。次に、測定データをCPU10に送信し
After the measurement of the final body surface direction (m-th measurement) is completed, the motor driving direction signal is set to the backward direction by the signal from the CPU 10, and the stepping motor 5 is totally (m).
* Θ) reverse rotation, return to the initial body surface direction, and enter the standby state for the next measurement. The reverse rotation speed should be as fast as possible. Next, send the measurement data to the CPU 10.

【0017】[0017]

【表1】 [Table 1]

【0018】のマトリックスとして処理することによ
り、空間の温度分布を(n*m)の分解能で測定処理で
きる。
By processing as a matrix of, the temperature distribution of the space can be measured with a resolution of (n * m).

【0019】赤外線アレイセンサ1の長軸方向を縦方向
に設置し、センサ回転送り、チョッパ3を10Hzで駆
動すると1/10sec毎に1方向の縦列の温度分布が
測定できる。測定できる空間範囲はシリコン赤外線レン
ズ2の画角と赤外線アレイセンサ1のサイズによるもの
である。また、縦列の空間分解能は赤外線アレイセンサ
1中に設けて受光部の数に依存するものであり、例え
ば、レンズの画角を70度とし、赤外線アレイセンサ1
に10個の受光部を設けた場合には、縦の分解能は10
でそれぞれ7度の範囲の温度を測定することになる。
If the long axis direction of the infrared array sensor 1 is set in the vertical direction, the sensor is rotated and fed, and the chopper 3 is driven at 10 Hz, the temperature distribution in one direction can be measured every 1/10 sec. The measurable spatial range depends on the angle of view of the silicon infrared lens 2 and the size of the infrared array sensor 1. Further, the spatial resolution of the columns is provided in the infrared array sensor 1 and depends on the number of light receiving parts. For example, the angle of view of the lens is 70 degrees, and the infrared array sensor 1
When 10 light receiving parts are provided in the vertical direction, the vertical resolution is 10
Will measure the temperature in the range of 7 degrees.

【0020】つぎに、回転部を断続的に前進回転させる
ことにより赤外線アレイセンサ1およびシリコン赤外線
レンズ2が面している方向を走査させながら、前述と同
様にチョッパー3を駆動させて温度分布を測定する。測
定後、電気信号処理により各方向の縦の温度分布をつな
ぎ合わせると、空間の2次元の反転温度分布が得られ
る。横(左右)方向の空間分解能はセンサの回転送り角
度に依存するものである。例えば、5度回転毎に信号入
力し、トータル100度回転させた場合には、横方向の
空間分解能は20となり、センサ位置から見て縦70
度、横100度の空間を(10*20)の分解能で数分
の間隔で温度分布を測定できる。
Next, the chopper 3 is driven in the same manner as described above while the direction in which the infrared array sensor 1 and the silicon infrared lens 2 are facing is scanned by intermittently rotating the rotating part forward so that the temperature distribution is determined. taking measurement. After the measurement, by connecting the vertical temperature distributions in each direction by electrical signal processing, a two-dimensional inversion temperature distribution of space is obtained. The spatial resolution in the lateral (left-right) direction depends on the rotational feed angle of the sensor. For example, when a signal is input every 5 ° rotation and the signal is rotated by 100 ° in total, the spatial resolution in the horizontal direction is 20 and the vertical resolution is 70 when viewed from the sensor position.
The temperature distribution can be measured at intervals of several minutes with a resolution of (10 * 20) in a space of 100 degrees and a width of 100 degrees.

【0021】具体的測定例として、図3に示したような
車両で席3Aと4Dおよび4Eに乗客がいる車両の天井
部に垂直方向に対して斜め40度の方向を中心となるよ
うにセンサ12を設置し、斜め前方から上下70度、左
右100度の範囲で図3の矢印線に示した範囲を測定し
た場合、図4に示す温度分布が得られる。センサ12は
10エレメントからなる赤外線アレイセンサで左右方向
の1回の回転角は5度とすると(10*20)分割の熱
画像が得られる。1回目の体面方向の信号が図中のS1
1−S110であり,20回目の信号がS201−S2
010である。
As a specific measurement example, in a vehicle as shown in FIG. 3, a sensor is installed so that the center of the vehicle is at an angle of 40.degree. When 12 is installed and the range shown by the arrow line in FIG. 3 is measured in the range of 70 degrees vertically and 100 degrees horizontally from diagonally forward, the temperature distribution shown in FIG. 4 is obtained. The sensor 12 is an infrared array sensor composed of 10 elements, and if a rotation angle in the left-right direction is 5 degrees, a thermal image of (10 * 20) divisions can be obtained. The signal of the first body surface direction is S1 in the figure.
1-S110, and the 20th signal is S201-S2
It is 010.

【0022】図4において,直線h−h’およびn−
n’の外側は窓からの赤外線入射エネルギ−に反応する
ものであり、この部分の出力は基本的には考慮しなくて
もよい。また,直線k−k’とl−l’間も通路に対応
するので在席者情報には考慮しなくてもよい。ここで直
線h−h’とi−i’間はA席に対応し,直線i−i’
とg−g’間はB席,直線g−g’とk−k’間はC
席,直線l−l’とm−m’間はD席,直線m−m’と
n−n’間はE席に各々対応するものである。
In FIG. 4, straight lines hh 'and n-
The outside of n'reacts to the infrared incident energy from the window, and the output of this portion basically does not need to be considered. Further, since the line kk 'and the line l-l' also correspond to the passage, it is not necessary to consider the occupant information. Here, between the straight lines hh 'and ii' corresponds to the seat A, and the straight line ii '
Seat between B and g-g ', C between straight lines g-g' and k-k '
Seats between the straight lines ll 'and mm' correspond to seats D, and between the straight lines mn 'and nn' correspond to seats E.

【0023】図中に示した黒塗のデ−タ部分が高出力領
域に対応するものであり,席3Aと4Dおよび4Eに乗
客が居ると判断できる。
The black-painted data portion shown in the figure corresponds to the high output area, and it can be determined that there are passengers in the seats 3A, 4D and 4E.

【0024】(実施例2)図5には赤外線アレイセンサ
141とシリコン赤外レンズ15及びチョッパ16とか
ら構成される1次元のセンサの一例を示す。前記センサ
を図6に示した車両内天井に2つ設置し、(実施例1)
と同様に席3Aと4Dおよび4Eに乗客がいる車両の天
井部に垂直方向に対して斜め40度の方向を中心となる
ようにセンサ12を設置し、斜め前方から矢印線に示し
た範囲を測定した場合、図7に示す温度分布が得られ
る。この場合、判定としては3A,3B,3Cのいずれ
かに在席者いることと、4D、4Eのいずれかに在席者
が居ると判断できる。さらに、その温度レベルの差か
ら、4D、4E席には2人で、3A、3B、3C席には
1〜2人程度であると推測できる。このように,1次元
の赤外線アレイセンサを用いても在席状況が得られた。
(Embodiment 2) FIG. 5 shows an example of a one-dimensional sensor composed of an infrared array sensor 141, a silicon infrared lens 15 and a chopper 16. Two sensors are installed on the ceiling in the vehicle shown in FIG. 6, (Example 1)
Similarly, the sensor 12 is installed on the ceiling of the vehicle having passengers in the seats 3A, 4D and 4E so that the center is at an angle of 40 degrees with respect to the vertical direction. When measured, the temperature distribution shown in FIG. 7 is obtained. In this case, it can be determined that there is a person present in any of 3A, 3B, and 3C and that there is a person present in any of 4D and 4E. Furthermore, from the difference in the temperature levels, it can be estimated that there are two people in the 4D and 4E seats and one to two people in the 3A, 3B and 3C seats. In this way, the presence situation was obtained even using the one-dimensional infrared array sensor.

【0025】(実施例3) (実施例1)、(実施例2)において、判定した人体位
置情報に基づいて、車内の在席位置を特定し、暖房運転
の場合には在席者の周辺の環境を局所的に温熱環境を最
適値24℃になるよう設定し、不在の席に対しては最小
限の環境制御になるよう18℃になるように制御する。
また、冷房運転の場合には在席者の周辺の環境を局所的
に温熱環境を最適値25℃になるよう設定し、不在の席
に対しては最小限の環境制御になるよう28℃になるよ
うに制御する。
(Embodiment 3) In (Embodiment 1) and (Embodiment 2), the seating position inside the vehicle is specified based on the determined human body position information, and in the case of heating operation, around the seated person. The local environment is set so that the thermal environment is an optimum value of 24 ° C, and the absentee seats are controlled to be 18 ° C so that the environmental control is minimal.
Also, in the case of air-conditioning operation, the environment around the occupants is locally set so that the thermal environment is the optimum value of 25 ° C, and the minimum environmental control is set to 28 ° C for the absence of seats. Control to be.

【0026】空質制御に関しては換気回数を車両内の在
席率に応じて、3−15回/hの範囲で在席率が低い場
合には換気回数を低減させる。
Regarding air quality control, the ventilation frequency is reduced according to the occupancy rate in the vehicle within a range of 3-15 times / h when the occupancy rate is low, the ventilation frequency is reduced.

【0027】以上の制御により、省エネルギ−で、在席
者にとって快適な温熱環境を達成できる。
By the above control, energy saving and a comfortable thermal environment for the seated person can be achieved.

【0028】照明制御に関しては、全体照明のレベルを
低照度状態で一律とし、在席が確認された位置にスポッ
ト照明を可能とし、利用者が選択できるようする。
Regarding the lighting control, the level of the total lighting is uniform in a low illuminance state, spot lighting is possible at a position where seating is confirmed, and a user can select.

【0029】さらには、前述の在席位置情報に基づいて
BGM等の音環境を制御すると、より快適な環境を達成
できる。
Furthermore, a more comfortable environment can be achieved by controlling the sound environment such as BGM based on the above-mentioned seating position information.

【0030】(実施例4)判定した人体位置情報に基づ
いて、車内の在席位置を特定しチケット販売による予約
情報と総合判断することにより、空席状況や在席者管理
を自動化することが可能となる。さらに、通路に対応す
る信号出力により車内の通路における人数を検知し、乗
客率、混雑状態を自動検知することが可能となる。
(Embodiment 4) Based on the determined human body position information, it is possible to automate the vacant seat status and occupant management by specifying the seating position in the vehicle and making a comprehensive judgment with the reservation information by ticket sales. Becomes Further, it becomes possible to detect the number of passengers in the passage in the vehicle by the signal output corresponding to the passage, and automatically detect the passenger rate and the congestion state.

【0031】以上の実施例は、特に列車を対象に記載し
たが列車に限定されることなく輸送手段が飛行機、バ
ス、乗用車もしくは船のいずれの場合にも適用できるこ
とはいうまでもない。
Although the above embodiments have been described especially for trains, it is needless to say that the present invention is not limited to trains and can be applied to any means of transportation such as airplanes, buses, passenger cars or ships.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
によれば空間温度分布を測定する手段と,温度分布から
輸送手段内部の人体位置を判定する手段と、環境を制御
する手段とにより、判定した人体の位置情報に基づい
て,車内の在席位置を特定し,在席者の周辺の環境を局
所的もしくは全体的に制御することができ、在席者にと
って快適な環境を提供できる。また、人体の位置情報に
より混雑状況などを瞬時に的確に把握できるという効果
を有するものである。
As is apparent from the above description, according to the present invention, the means for measuring the spatial temperature distribution, the means for determining the human body position inside the transportation means from the temperature distribution, and the means for controlling the environment are provided. Based on the determined position information of the human body, the seating position in the vehicle can be specified, and the environment around the seated person can be locally or entirely controlled, and a comfortable environment for the seated person can be provided. .. In addition, the position information of the human body can be used to instantaneously and accurately grasp the congestion situation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の輸送手段の構成要素である
温度分布測定手段の外観斜視部分断面図
FIG. 1 is an external perspective partial cross-sectional view of temperature distribution measuring means, which is a constituent element of a transportation means according to an embodiment of the present invention.

【図2】同温度分布測定手段のブロック構成図FIG. 2 is a block diagram of the temperature distribution measuring means.

【図3】同温度分布測定手段の測定走査範囲を示す概念
図 (a)は平面図 (b)は側面図
FIG. 3 is a conceptual diagram showing a measurement scanning range of the temperature distribution measuring means (a) is a plan view and (b) is a side view.

【図4】同温度分布測定手段による測定結果を示す図FIG. 4 is a diagram showing a measurement result by the temperature distribution measuring means.

【図5】本発明の輸送手段における他の実施例の温度分
布測定手段の一部断面斜視図
FIG. 5 is a partial cross-sectional perspective view of temperature distribution measuring means of another embodiment of the transportation means of the present invention.

【図6】同温度分布測定手段の測定走査範囲を示す図 (a)は平面図 (b)は側面図FIG. 6 is a plan view showing a measurement scanning range of the temperature distribution measuring means (a) and a side view (b).

【図7】同温度分布測定手段による測定結果を示す図FIG. 7 is a diagram showing a measurement result by the temperature distribution measuring means.

【符号の説明】[Explanation of symbols]

1 赤外線アレイセンサ 2 シリコン赤外線レンズ 3 チョッパ 4 回転部 5 ステピングモータ 6 フィルター 7 アンプ 8 マルチプレクサー 9 A/Dコンバータ 10 CPU 11 I/Oポート 12 センサ 13 座席 14 赤外線アレイセンサ 15 シリコン赤外線レンズ 16 チョッパ 1 Infrared Array Sensor 2 Silicon Infrared Lens 3 Chopper 4 Rotating Part 5 Stepping Motor 6 Filter 7 Amplifier 8 Multiplexer 9 A / D Converter 10 CPU 11 I / O Port 12 Sensor 13 Seat 14 Infrared Array Sensor 15 Silicon Infrared Lens 16 Chopper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森仲 克也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西野 敦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Katsuya Morinaka 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Atsushi Nishino 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一定の空間における温度分布を測定する手
段と、前記手段により測定された温度分布から人が存在
している位置を判定する手段と、この手段からの信号に
より温熱環境、空質環境、音環境もしくは照明環境を局
所的もしくは全体的に制御する手段とを備えたことを特
徴とする輸送手段。
1. A means for measuring a temperature distribution in a constant space, a means for determining a position where a person is present from the temperature distribution measured by the means, and a thermal environment and a quality of air based on a signal from the means. A transportation means comprising means for locally or globally controlling an environment, a sound environment or a lighting environment.
【請求項2】温度分布を測定する手段が、複数個の受光
部をアレイ状に設けたセンサと、赤外線レンズと、光線
を断続的に遮断するチョッピング手段とからなる一次元
温度分布測定手段であることを特徴とする請求項1記載
の輸送手段。
2. A one-dimensional temperature distribution measuring means comprising a sensor having a plurality of light receiving portions arranged in an array, an infrared lens, and a chopping means for intermittently blocking light rays. The vehicle of claim 1, wherein the vehicle is a vehicle.
【請求項3】温度分布を測定する手段が、複数個の受光
部をアレイ状に設けたセンサと、赤外線レンズと、光線
を断続的に遮断するチョッピング手段と、前記センサの
受光方向を前記チョッピング手段と同調して回転させる
センサ回転手段とからなる二次元温度分布測定手段であ
ることを特徴とする請求項1記載の輸送手段。
3. A sensor for measuring a temperature distribution, a sensor having a plurality of light receiving portions arranged in an array, an infrared lens, a chopping means for intermittently blocking light rays, and a chopping direction for receiving light from the sensor. 2. The transportation means according to claim 1, wherein the transportation means is a two-dimensional temperature distribution measuring means including a sensor rotating means that rotates in synchronization with the means.
【請求項4】一定の空間における温度分布を測定する手
段と、前記手段により測定された温度分布から人が存在
している位置を判定する手段と、前記人が存在している
位置を判定する手段からの信号に基づいて乗客に関する
情報を処理する手段を備えることを特徴とする輸送手
段。
4. A means for measuring a temperature distribution in a constant space, a means for determining a position where a person is present from the temperature distribution measured by the means, and a position where the person is present. A vehicle comprising means for processing information about a passenger based on a signal from the means.
【請求項5】輸送手段が列車、飛行機、バス、乗用車も
しくは船のいずれかであることを特徴とする請求項4記
載の輸送手段。
5. The vehicle according to claim 4, wherein the vehicle is a train, an airplane, a bus, a passenger car or a ship.
JP4076678A 1992-03-31 1992-03-31 Transportation means Pending JPH05278441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076678A JPH05278441A (en) 1992-03-31 1992-03-31 Transportation means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076678A JPH05278441A (en) 1992-03-31 1992-03-31 Transportation means

Publications (1)

Publication Number Publication Date
JPH05278441A true JPH05278441A (en) 1993-10-26

Family

ID=13612094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076678A Pending JPH05278441A (en) 1992-03-31 1992-03-31 Transportation means

Country Status (1)

Country Link
JP (1) JPH05278441A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161292A (en) * 1994-12-09 1996-06-21 Matsushita Electric Ind Co Ltd Method and system for detecting congestion degree
JP2006096306A (en) * 2004-09-30 2006-04-13 Toshiba Corp Vehicular air-conditioning control system
JP2007131202A (en) * 2005-11-11 2007-05-31 Denso Corp Air-conditioning control device for vehicle
EP2944498A1 (en) 2013-10-11 2015-11-18 Panasonic Intellectual Property Corporation of America Processing method, program, processing apparatus, and detection system
WO2016166938A1 (en) * 2015-04-16 2016-10-20 パナソニックIpマネジメント株式会社 Air-conditioning control device
WO2017122446A1 (en) * 2016-01-15 2017-07-20 株式会社デンソー Passenger detection system, and vehicle air-conditioning device equipped with same
JP2017128321A (en) * 2016-01-15 2017-07-27 株式会社デンソー Occupant detection system and vehicle air conditioner equipped with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161292A (en) * 1994-12-09 1996-06-21 Matsushita Electric Ind Co Ltd Method and system for detecting congestion degree
JP2006096306A (en) * 2004-09-30 2006-04-13 Toshiba Corp Vehicular air-conditioning control system
JP2007131202A (en) * 2005-11-11 2007-05-31 Denso Corp Air-conditioning control device for vehicle
JP4547626B2 (en) * 2005-11-11 2010-09-22 株式会社デンソー Air conditioning control device for vehicles
EP2944498A1 (en) 2013-10-11 2015-11-18 Panasonic Intellectual Property Corporation of America Processing method, program, processing apparatus, and detection system
US10272920B2 (en) 2013-10-11 2019-04-30 Panasonic Intellectual Property Corporation Of America Processing method, program, processing apparatus, and detection system
US10829125B2 (en) 2013-10-11 2020-11-10 Panasonic Intellectual Property Corporation Of America Processing method, program, processing apparatus, and detection system
WO2016166938A1 (en) * 2015-04-16 2016-10-20 パナソニックIpマネジメント株式会社 Air-conditioning control device
JPWO2016166938A1 (en) * 2015-04-16 2018-02-15 パナソニックIpマネジメント株式会社 Air conditioning controller
WO2017122446A1 (en) * 2016-01-15 2017-07-20 株式会社デンソー Passenger detection system, and vehicle air-conditioning device equipped with same
JP2017128321A (en) * 2016-01-15 2017-07-27 株式会社デンソー Occupant detection system and vehicle air conditioner equipped with the same

Similar Documents

Publication Publication Date Title
US7084774B2 (en) Temperature control system
JP7159462B2 (en) Heat control method for heat control device especially for passenger compartment
JPH10160580A (en) Judging method for thermal image, and control method for air conditioner
US4920759A (en) Radiant heat control apparatus for automotive vehicle
JPH08161292A (en) Method and system for detecting congestion degree
JP2018177188A (en) Controlling apparatus
US10486490B2 (en) Air-conditioning control device
JPH05193338A (en) Air conditioning controller
JPH05278441A (en) Transportation means
JP2792997B2 (en) Control method of air conditioner
JP2020172218A (en) Air-conditioning control system and air-conditioning control method
US6962196B2 (en) Mode switching control device of vehicle air-conditioning apparatus
JP4821327B2 (en) Sweating determination device and method for determining sweat state
JP3260833B2 (en) Sensor unit used for vehicle air conditioners
JP4252368B2 (en) Air conditioner for vehicles
JP3220402B2 (en) Vehicle air conditioner
JP2960243B2 (en) Air conditioner
JPH0643252A (en) Occupied seat detecting device and environmental control method using the same
JP4327498B2 (en) Air conditioner for vehicles
JP4501643B2 (en) Vehicle air conditioner and vehicle air conditioning control method
JPH06147600A (en) Indoor environment measuring device and air conditioning device equipped with the same
CN116552192A (en) Control method and device of vehicle heating system, vehicle and storage medium
JP2002005747A (en) Processing method for temperature distribution data
JP2001199217A (en) Vehicular air conditioner
JP4010282B2 (en) Air conditioner for vehicles