[go: up one dir, main page]

JPH05275410A - Evaluation method for organic compound adhering to wafer surface - Google Patents

Evaluation method for organic compound adhering to wafer surface

Info

Publication number
JPH05275410A
JPH05275410A JP10224392A JP10224392A JPH05275410A JP H05275410 A JPH05275410 A JP H05275410A JP 10224392 A JP10224392 A JP 10224392A JP 10224392 A JP10224392 A JP 10224392A JP H05275410 A JPH05275410 A JP H05275410A
Authority
JP
Japan
Prior art keywords
wafer
wafer surface
measured
organic compound
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10224392A
Other languages
Japanese (ja)
Inventor
Mari Sakurai
真理 桜井
Chizuko Okada
千鶴子 岡田
Etsuro Morita
悦郎 森田
Takayuki Shingyouchi
隆之 新行内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP10224392A priority Critical patent/JPH05275410A/en
Publication of JPH05275410A publication Critical patent/JPH05275410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To evaluate the cleanliness of a clean room by simplify evaluating an organic matter adhering to a wafer surface in a non-destructive manner and by simply determining the adhering state of a contaminant organic compound, when a wafer is stored in the clean room. CONSTITUTION:The difference between film thickness before and after the adhesion of a contaminant organic compound to a wafer surface is measured by ellipsometry and the change of a contact angle is also measured simultaneously so that the quantitative and qualitative analysis of the contaminant are performed by a non-destructive inspection. For example, after SCI cleaning of the wafer surface, a film thickness is measured and, after a predetermined period of time, the wafer surface is cleaned by a surfactant and the film thickness is measured. The degree of organic-matter contamination is determined by the difference between these measured values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はウェーハ表面に付着し
て、半導体ウェーハの品質を損なう有機物の量および性
状を判定するウェーハ表面への付着有機化合物の評価方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating an organic compound adhering to a wafer surface for determining the amount and properties of an organic material adhering to the wafer surface and impairing the quality of a semiconductor wafer.

【0002】[0002]

【従来の技術】半導体ウェーハに一旦付着または洗浄後
残存した汚染物は、その内容によってはその後のいかな
る洗浄工程によっても除去し難い形で残り、最終的にデ
バイス性能を損なうことにつながる例が多い。したがっ
て、ウェーハ表面を汚染させないという認識が非常に重
要である。特に、全ウェーハプロセス終了後の保管時の
ウェーハ汚染には細心の注意を払う必要がある。例えば
有機物汚染により低温プロセスでの酸化膜の成長を阻害
したり、ウェーハ表面を発水性として金属汚染物の除去
を困難にするからである。この洗浄後のウェーハに付着
する汚染物、特に有機化合物の定性分析はX線光電子分
光分析法(XPS)、赤外分光分析法(ATR)等によ
り行われていた。
2. Description of the Related Art Contaminants that have once adhered to semiconductor wafers or remain after cleaning remain in a form that is difficult to remove by any subsequent cleaning process depending on the content thereof, and eventually lead to impaired device performance in many cases. .. Therefore, the recognition that it does not contaminate the wafer surface is very important. In particular, it is necessary to pay close attention to wafer contamination during storage after the completion of all wafer processes. This is because, for example, organic contaminants inhibit the growth of an oxide film in a low temperature process, or make the wafer surface water-repellent to make it difficult to remove metallic contaminants. Qualitative analysis of contaminants attached to the wafer after the cleaning, particularly organic compounds, has been performed by X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (ATR), or the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の方法は、実質的にいずれも破壊検査の形態をとらねば
ならず、そのウェーハ自体を再利用することができなか
った。すなわち、非破壊法にて付着有機化合物の定性定
量分析を同時に行う評価技術は確立されていない。ま
た、このため、クリーンルーム内の有機化合物による汚
染、特にワックス、オイル、樹脂等のみならず作業者の
人体からの分秘物や剥離物等による汚染物を定量分析し
てクリーンルーム内の清浄度を点検する方法は確立され
ていなかった。
However, in all of these methods, substantially all of these methods must take the form of destructive inspection, and the wafer itself cannot be reused. That is, no evaluation technique has been established for simultaneously performing the qualitative and quantitative analysis of the attached organic compound by the nondestructive method. Therefore, the cleanliness in the clean room is quantitatively analyzed not only by the organic compounds in the clean room, but especially by the wax, oil, resin, etc. The method of checking was not established.

【0004】本発明はウェーハ表面への有機化合物の付
着状況を非破壊状態で、かつ、簡便に検査することがで
きるとともに、例えばクリーンルーム内の汚染度を評価
し得るウェーハ表面への付着有機化合物の評価方法を提
案することを目的としている。
The present invention is capable of easily inspecting the state of adhesion of organic compounds on the surface of a wafer in a non-destructive state and, for example, it is possible to evaluate the degree of contamination in a clean room. The purpose is to propose an evaluation method.

【0005】[0005]

【課題を解決するための手段】このような目的は下記の
本発明により達成される。すなわち、本発明において
は、NH4OHおよびH22をH2Oで希釈した液で洗浄
後の所定時間にウェーハ表面へ堆積した付着物の膜厚の
増減を測定することにより、および/または、接触角の
変化を測定することにより、ウェーハ表面への付着有機
化合物の評価を行うものである。
Such objects are achieved by the present invention described below. That is, in the present invention, by measuring the increase / decrease in the film thickness of the deposits deposited on the wafer surface at a predetermined time after cleaning with a liquid obtained by diluting NH 4 OH and H 2 O 2 with H 2 O, and / Alternatively, the organic compound attached to the wafer surface is evaluated by measuring the change in contact angle.

【0006】本発明は、まず、ウェーハ表面をSC1洗
浄液による洗浄を行う。SC1洗浄液としては例えばH
2O:H22:NH4OH=5:1:1(容積比)のもの
を使用する。そして、この洗浄直後のウェーハ表面に付
着した有機物の膜厚を例えばエリプソメータによって測
定する。または、このウェーハ表面に純水を滴下しその
接触角を測定する。そして、この測定後のウェーハを例
えばクリーンルームまたは保管用クリーンケース内に所
定時間(数時間)保管し、再び、上記接触角測定および
エリプソメトリによる膜厚測定を行う。そして、洗浄直
後の測定値と保管後の測定値との差を求めることによ
り、ウェーハ表面の有機物による汚染度、すなわちクリ
ーンルームまたは保管ケース内の汚染度を評価する。
In the present invention, first, the wafer surface is cleaned with an SC1 cleaning solution. As the SC1 cleaning liquid, for example, H
2 O: H 2 O 2 : NH 4 OH = 5: 1: 1 (volume ratio) is used. Then, the film thickness of the organic substance attached to the wafer surface immediately after this cleaning is measured by, for example, an ellipsometer. Alternatively, pure water is dropped on the surface of the wafer and the contact angle is measured. Then, the wafer after the measurement is stored in, for example, a clean room or a storage clean case for a predetermined time (several hours), and the contact angle measurement and the film thickness measurement by ellipsometry are performed again. Then, by obtaining the difference between the measured value immediately after cleaning and the measured value after storage, the degree of contamination by organic substances on the wafer surface, that is, the degree of contamination in the clean room or storage case is evaluated.

【0007】さらに、本発明の具体的構成について詳述
する。クリーンルーム内汚染度評価用のダミーウェーハ
を用意し、このウェーハ上に熱酸化膜を形成してからS
C1洗浄を行う。なお、この酸化膜の膜厚はエリプソメ
トリ測定の容易性、確実性、感度等を考慮して、100
0オングストローム程度とするのが好ましい。そして、
この洗浄後のダミーウェーハの有機物の膜厚およびその
表面に滴下した純水滴の接触角を測定する。膜厚測定は
通常のエリプソメトリ法で行えばよく、接触角も通常の
方法にて行うことができる。この熱酸化膜を形成したダ
ミーウェーハをクリーンルーム内にて所定の日数保管す
る。日数は1日〜10日程度とし、その間を区切って1
〜5点程度の測定を行うことにより、汚染物の増加状況
を適確に追跡評価することができる。
Further, the specific constitution of the present invention will be described in detail. Prepare a dummy wafer for contamination degree evaluation in a clean room, form a thermal oxide film on this wafer, and then perform S
C1 cleaning is performed. The thickness of the oxide film is 100 in consideration of the ease, certainty, sensitivity, etc. of ellipsometry measurement.
It is preferably about 0 angstrom. And
The film thickness of the organic substance of the dummy wafer after this cleaning and the contact angle of the pure water drop dropped on the surface thereof are measured. The film thickness may be measured by a usual ellipsometry method, and the contact angle may be measured by a usual method. The dummy wafer having this thermal oxide film formed is stored in a clean room for a predetermined number of days. The number of days should be 1 to 10 days, with 1 in between.
By measuring about 5 points, it is possible to appropriately follow up and evaluate the increase in pollutants.

【0008】例えば、3日後のダミーウェーハの膜厚を
エリプソメトリにより測定して、3日前の酸化膜形成直
後の膜厚との差を求めることにより、ウェーハ上に堆積
した有機化合物の定量を行うことができる。そして、こ
の膜厚の差が小さい程、クリーンルーム内の清浄度が高
いということを判定し得る。また、ダミーウェーハの接
触角の差を求めることにより汚染物の定性を行うことが
できる。特にその差が零の場合には、ダミーウェーハの
清浄度が完全に保持されていることを確認することがで
きるので、前記熱酸化膜形成直後の接触角測定が有効と
なる。また、図7a、bに示すように、一般に接触角θ
は、被測定物3が親水性物質の場合は小、疎水性物質の
場合は大となるので、この液滴1または2の接触角の大
小により、付着物の性質を特定することができる。すな
わち、接触角が大きい場合(bの場合)には有機化合
物、特にワックス、樹脂等の存在が推定され、接触角が
小さい場合(aの場合)には、有機化合物の他に、無機
化合物の汚染源が存在することが推定される。また、有
機化合物の種類によっても接触角は異なるので、より厳
密な定性分析を行うことができる。本発明の評価方法
は、このように汚染有機化合物の定量、定性分析を同時
に行い得るので、より確実に、クリーンルーム内の清浄
度を評価することができ、また、汚染物の種類を特定で
きるので、その汚染源の推定や清浄度を高めるための対
策および再洗浄の目やす等を立案する場合に有益であ
る。また、本発明の評価方法は非破壊検査であるのでコ
スト的にも有利である。なお、本発明に用いるダミーウ
ェーハを図8に示すようにウェーハカセット4内に載置
した複数枚の実ウェーハ内に混在させるならば、実ウェ
ーハの汚染度を同一雰囲気中で評価することができるの
で、より効果的である。
For example, the film thickness of the dummy wafer after 3 days is measured by ellipsometry, and the difference from the film thickness immediately after the oxide film is formed 3 days before is obtained to quantify the organic compound deposited on the wafer. be able to. Then, the smaller the difference between the film thicknesses, the higher the cleanliness in the clean room can be determined. Further, the contaminants can be qualitatively determined by obtaining the difference in contact angle between the dummy wafers. Especially when the difference is zero, it is possible to confirm that the cleanliness of the dummy wafer is completely maintained, so that the contact angle measurement immediately after the formation of the thermal oxide film is effective. Moreover, as shown in FIGS.
Is small when the DUT 3 is a hydrophilic substance and is large when the DUT is a hydrophobic substance. Therefore, the nature of the deposit can be specified by the size of the contact angle of the droplets 1 or 2. That is, when the contact angle is large (in the case of b), the presence of an organic compound, particularly wax, resin, etc. is presumed, and when the contact angle is small (in the case of a), in addition to the organic compound, an inorganic compound It is estimated that there is a pollution source. Further, since the contact angle varies depending on the type of organic compound, more rigorous qualitative analysis can be performed. Since the evaluation method of the present invention can perform quantitative and qualitative analysis of polluted organic compounds at the same time in this manner, it is possible to more reliably evaluate the cleanliness in the clean room and to identify the type of contaminants. , It is useful for estimating the source of pollution, planning measures to improve cleanliness, and planning recleaning. Further, the evaluation method of the present invention is a non-destructive inspection, which is advantageous in terms of cost. If the dummy wafers used in the present invention are mixed in a plurality of real wafers placed in the wafer cassette 4 as shown in FIG. 8, the contamination degree of the real wafers can be evaluated in the same atmosphere. So it is more effective.

【0009】[0009]

【実施例】実施例1 2枚のシリコンウェーハにSiO2膜を形成してからS
C1洗浄を行って、接触角測定およびエリプソメトリに
よる膜厚測定を行った。熱酸化膜の厚さは995オング
ストロームであった。次いで、このウェーハを2種類の
クリーンルーム内に保管した。ここでウェーハAを有機
物除去フィルターを使用していないクリーンルーム、ウ
ェーハBを有機物除去フィルターを使用しているクリー
ンルームに保管した。そして、経時変化による有機化合
物の付着状況を測定し、前記測定との差を求めた。膜厚
測定の結果を図1に、接触角測定の結果を図2に示す。
この結果から本発明の評価方法が有効であることが明ら
かである。
EXAMPLES Example 1 After forming a SiO 2 film on two silicon wafers, S
After C1 cleaning, contact angle measurement and film thickness measurement by ellipsometry were performed. The thickness of the thermal oxide film was 995 Å. Next, this wafer was stored in two types of clean rooms. Here, the wafer A was stored in a clean room not using the organic substance removing filter, and the wafer B was stored in a clean room using the organic substance removing filter. Then, the adhesion state of the organic compound due to the change with time was measured, and the difference from the above measurement was obtained. The result of the film thickness measurement is shown in FIG. 1, and the result of the contact angle measurement is shown in FIG.
From this result, it is clear that the evaluation method of the present invention is effective.

【0010】実施例2 同様にして2枚のウェーハを用意し、クリーンルーム内
でウェーハCにはケースを被せ、ウェーハDは大気に暴
して保管した。その経時変化を図3、図4に示す。この
結果から、本発明の評価方法の有効性が確認された。
Two wafers were prepared in the same manner as in Example 2 , the wafer C was covered with a case and the wafer D was exposed to the atmosphere and stored in a clean room. The change over time is shown in FIGS. From this result, the effectiveness of the evaluation method of the present invention was confirmed.

【0011】実施例3 次に有機物量が同じ状態のクリーンルームで湿度のみを
変えてウェーハを保管した。ウェーハEは湿度が30R
H%、ウェーハFは湿度が50RH%の状態で保管して
同様の測定を行った。結果を図5、図6に示す。このこ
とからも本発明の評価方法は有効である。
Example 3 Next, the wafer was stored in a clean room in which the amount of organic substances was the same, while changing only the humidity. Wafer E has a humidity of 30R
H% and wafer F were stored in a humidity of 50 RH% and the same measurement was performed. The results are shown in FIGS. From this, the evaluation method of the present invention is effective.

【0012】[0012]

【発明の効果】本発明方法によれば、ウェーハを破壊す
ることなくその有機物汚染を簡便に測定することができ
る。したがって、測定対象たるウェーハは純水洗浄によ
り再使用することができる。また、この結果、クリーン
ルーム等雰囲気の清浄度測定、および、界面活性剤によ
る洗浄結果の評価を行うことができる。また、熱酸化膜
を形成することにより、自然酸化膜の影響を排除してそ
の測定を正確に行うことができる。さらに、膜厚測定と
接触角測定とを併用することにより、汚染物の定量、定
性分析を同時に行い得る。各プロセスまたはクリーンル
ーム内の清浄度を評価する方法として最適である。
According to the method of the present invention, the organic contamination can be easily measured without destroying the wafer. Therefore, the wafer to be measured can be reused by washing with pure water. Further, as a result, it is possible to measure the cleanliness of an atmosphere such as a clean room and evaluate the result of cleaning with a surfactant. Moreover, by forming the thermal oxide film, the influence of the natural oxide film can be eliminated and the measurement can be performed accurately. Further, by using the film thickness measurement and the contact angle measurement together, the quantitative and qualitative analysis of contaminants can be performed at the same time. It is the most suitable method to evaluate the cleanliness of each process or clean room.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係るウェーハ表面への付着有機化合
物の評価方法において、保管場所を変更した場合のウェ
ーハの膜厚の経時変化を示すグラフである。
FIG. 1 is a graph showing a change with time in a film thickness of a wafer when a storage location is changed in the method for evaluating an organic compound attached to a wafer surface according to Example 1.

【図2】その接触角の変化を示すグラフである。FIG. 2 is a graph showing changes in the contact angle.

【図3】実施例2に係るケースの有無による付着有機化
合物の膜厚の経時変化を示すグラフである。
FIG. 3 is a graph showing changes over time in the film thickness of an attached organic compound with and without a case according to Example 2.

【図4】同じくその接触角の変化を示すグラフである。FIG. 4 is a graph showing changes in the contact angle of the same.

【図5】実施例3に係るクリーンルームの湿度を変化さ
せた場合の膜厚の経時変化を示すグラフである。
FIG. 5 is a graph showing changes with time in film thickness when the humidity of the clean room according to Example 3 is changed.

【図6】同じくその接触角の変化を示すグラフである。FIG. 6 is a graph showing changes in the contact angle of the same.

【図7】(a)、(b)は親水性物質および疎水性物質
に純水を滴下した場合の接触角の変化の度合を示す模式
図である。
7A and 7B are schematic diagrams showing the degree of change in contact angle when pure water is dropped on a hydrophilic substance and a hydrophobic substance.

【図8】本発明においてダミーウェーハの使用方法の他
の例を示す模式図である。
FIG. 8 is a schematic diagram showing another example of a method of using a dummy wafer in the present invention.

【符号の説明】[Explanation of symbols]

1、2 純水 3 ウェーハ 4 ウェーハカセット θ 接触角 1, 2 Pure water 3 Wafers 4 Wafer cassette θ Contact angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 悦郎 埼玉県大宮市北袋町一丁目297番地 三菱 マテリアル株式会社中央研究所内 (72)発明者 新行内 隆之 埼玉県大宮市北袋町一丁目297番地 三菱 マテリアル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuro Morita 1-297 Kitabukuro-cho, Omiya-shi, Saitama Prefecture Central Research Laboratory, Mitsubishi Materials Corporation (72) Inventor Takayuki Shingouchi 1-297 Kitabukuro-cho, Omiya-shi, Saitama Central Research Laboratory of Materials Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NH4OHおよびH22をH2Oで希釈し
た液で洗浄(以下SC1洗浄と称す)後の所定時間にウ
ェーハ表面へ堆積した付着物の膜厚の増減を測定するこ
とにより、および/または、接触角の変化を測定するこ
とにより、ウェーハ表面への付着有機化合物の評価を行
うことを特徴とするウェーハ表面の付着有機化合物の評
価方法。
1. An increase / decrease in film thickness of deposits deposited on a wafer surface at a predetermined time after cleaning (hereinafter referred to as SC1 cleaning) with a solution obtained by diluting NH 4 OH and H 2 O 2 with H 2 O is measured. And / or by measuring the change in the contact angle, the evaluation of the organic compound attached to the wafer surface is performed.
JP10224392A 1992-03-27 1992-03-27 Evaluation method for organic compound adhering to wafer surface Pending JPH05275410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10224392A JPH05275410A (en) 1992-03-27 1992-03-27 Evaluation method for organic compound adhering to wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10224392A JPH05275410A (en) 1992-03-27 1992-03-27 Evaluation method for organic compound adhering to wafer surface

Publications (1)

Publication Number Publication Date
JPH05275410A true JPH05275410A (en) 1993-10-22

Family

ID=14322183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10224392A Pending JPH05275410A (en) 1992-03-27 1992-03-27 Evaluation method for organic compound adhering to wafer surface

Country Status (1)

Country Link
JP (1) JPH05275410A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128962A (en) * 1994-10-31 1996-05-21 Fujitsu Ltd Trace pollution status survey method
US6303397B1 (en) * 1999-04-13 2001-10-16 Agere Systems Guardian Corp. Method for benchmarking thin film measurement tools
JP2002075844A (en) * 2000-08-31 2002-03-15 Tokyo Electron Ltd Device and method for detecting service life of filter and semiconductor manufacturing device
JP2005327938A (en) * 2004-05-14 2005-11-24 Ebara Corp Method for polishing thin film formed on substrate
JP2006253335A (en) * 2005-03-09 2006-09-21 Ricoh Co Ltd Measurement device
JP2010249833A (en) * 1998-04-30 2010-11-04 Kla-Tencor Corp System and method for inspecting semiconductor wafers
WO2019049610A1 (en) * 2017-09-07 2019-03-14 株式会社フジミインコーポレーテッド Polishing composition and silicon-substrate polishing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128962A (en) * 1994-10-31 1996-05-21 Fujitsu Ltd Trace pollution status survey method
JP2010249833A (en) * 1998-04-30 2010-11-04 Kla-Tencor Corp System and method for inspecting semiconductor wafers
US6303397B1 (en) * 1999-04-13 2001-10-16 Agere Systems Guardian Corp. Method for benchmarking thin film measurement tools
JP2002075844A (en) * 2000-08-31 2002-03-15 Tokyo Electron Ltd Device and method for detecting service life of filter and semiconductor manufacturing device
JP2005327938A (en) * 2004-05-14 2005-11-24 Ebara Corp Method for polishing thin film formed on substrate
JP4714427B2 (en) * 2004-05-14 2011-06-29 株式会社荏原製作所 Method for polishing thin film formed on substrate
JP2006253335A (en) * 2005-03-09 2006-09-21 Ricoh Co Ltd Measurement device
JP4566032B2 (en) * 2005-03-09 2010-10-20 株式会社リコー measuring device
WO2019049610A1 (en) * 2017-09-07 2019-03-14 株式会社フジミインコーポレーテッド Polishing composition and silicon-substrate polishing method
JPWO2019049610A1 (en) * 2017-09-07 2020-11-19 株式会社フジミインコーポレーテッド Polishing composition and silicon substrate polishing method

Similar Documents

Publication Publication Date Title
US8361814B2 (en) Method for monitoring chamber cleanliness
US7379826B2 (en) Semiconductor wafer inspection system
JPH05275410A (en) Evaluation method for organic compound adhering to wafer surface
Muaz et al. Fabrication of interdigitated electrodes (IDE's) by conventional photolithography technique for pH measurement using micro-gap structure
US20080318343A1 (en) Wafer reclaim method based on wafer type
Phillips et al. The impact of surface analysis technology on the development of semiconductor wafer cleaning processes
Miller et al. Semiconductor applications of nanoliter droplet methodology with total reflection X-ray fluorescence analysis
JP3031053B2 (en) Cleaning ability evaluation method
JPH0964133A (en) Detecting method of cu concentration in semiconductor substrate
JPH11195685A (en) Defect evaluation device and defect evaluation method
González-Aguirre et al. Ammonia sorption outgassing and cross contamination ability of Entegris FOUPs evaluation and its volatile acids comparison
JPH0431740A (en) Method for inspecting presence or absence of contaminant in atmosphere
Arora Surface Contamination Measurement and Control by Nondestructive Techniques
Florescu et al. Detection and measurement of particulate contaminants
JP2772361B2 (en) Ultrapure water quality evaluation method
JPS6378057A (en) Analysis of impurity
JP2843424B2 (en) Mass production start-up in semiconductor manufacturing process and foreign matter inspection method and apparatus for mass production line
JP2833597B2 (en) Environmental cleanliness evaluation method
Chawla 1 How Clean Is Clean? Measuring Surface Cleanliness and Defining Acceptable Level of Cleanliness
Shimazaki et al. Analysis of low metallic contamination on silicon wafer surfaces by vapor-phase treatment and total reflection X-ray fluorescence analysis
Nakano et al. Control and reduction of immersion defectivity for yield enhancement at high volume production
JP2874655B2 (en) Silicon wafer for environmental cleanliness evaluation
JPH02224243A (en) Cleaner and cleaning degree measuring method
Welling et al. A new settling method for preparing quantitative radiolarian slides from plankton, sediment trap and deep-sea sediment samples
Okamura et al. Simultaneous observation of molecular contamination behavior in semiconductor clean room using quartz crystal microbalance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000523