JPH05273614A - Nonlinear optical material - Google Patents
Nonlinear optical materialInfo
- Publication number
- JPH05273614A JPH05273614A JP9609492A JP9609492A JPH05273614A JP H05273614 A JPH05273614 A JP H05273614A JP 9609492 A JP9609492 A JP 9609492A JP 9609492 A JP9609492 A JP 9609492A JP H05273614 A JPH05273614 A JP H05273614A
- Authority
- JP
- Japan
- Prior art keywords
- helicene
- electron
- light
- vinylene group
- nonlinear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、オプトエレクトロニク
ス、光情報処理、光通信等の分野において有用な非線形
光学材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material useful in the fields of optoelectronics, optical information processing, optical communication and the like.
【0002】[0002]
【従来の技術およびその問題点】非線形光学材料は、レ
ーザー光の強電界下、二次以上の非線形応答を示す材料
であって、周波数変換、発振、スイッチング等の光信号
処理において重要な素材である。特に、三次非線形光学
材料は、光が有する高速性、並列性という優れた特性を
十分に発揮させた次世代の光通信、情報処理における基
幹素材として注目されている。2. Description of the Related Art Nonlinear optical materials are materials that exhibit a second-order or higher nonlinear response under a strong electric field of laser light, and are important materials in optical signal processing such as frequency conversion, oscillation, and switching. is there. In particular, the third-order nonlinear optical material has been attracting attention as a basic material for next-generation optical communication and information processing, which fully exhibits the excellent characteristics of light such as high speed and parallelism.
【0003】この非線形光学材料のうち、有機非線形光
学材料は、従来の無機非線形光学材料に比べて高速応答
性で非線形光学定数の大きいものが存在するため、特に
重要である。三次の非線形光学効果の発現機構は、未だ
解明されていないが、例えば、大きな非局在化π電子系
を有するものが、三次の非線形特性を示すことが知られ
ている。Of these nonlinear optical materials, organic nonlinear optical materials are particularly important because there are materials that have faster response and larger nonlinear optical constants than conventional inorganic nonlinear optical materials. Although the mechanism of manifestation of the third-order nonlinear optical effect has not been clarified yet, it is known that, for example, one having a large delocalized π-electron system exhibits the third-order nonlinear characteristic.
【0004】非局在化π電子系を有するものとして、ポ
リジアセチレン等の共役高分子、スチルベン類やシアニ
ン類等の共役色素が知られている。また、芳香環が5個
以上繋がった螺旋状構造を有するヘリセン類が大きな非
局在化π電子系を有するので、大きな三次非線形性を有
し、かつ熱的、光学的損傷がなく三次非線形光学材料と
して優れている。Conjugated polymers such as polydiacetylene and conjugated dyes such as stilbenes and cyanines are known as those having a delocalized π-electron system. In addition, since helicenes having a helical structure in which five or more aromatic rings are connected have a large delocalized π-electron system, they have a large third-order nonlinearity and are free from thermal and optical damage, and third-order nonlinear optics. Excellent as a material.
【0005】しかし、多くの芳香環が繋がっているヘリ
セン類は、π電子系の分子間相互作用と、高度に対称性
の良い構造のために、溶剤への溶解性が著しく劣ってい
る。そのため、光情報処理等のデバイス材料として使用
する際に必要な、高濃度のポリマードープ等の扱いが難
しく、また、合成中間体の溶解性も同様に低下するた
め、多量の反応溶媒と大容量の反応容器を必要とし、効
率的な合成が困難であるという問題がある。However, helicenes, in which many aromatic rings are connected, are extremely inferior in solubility in a solvent due to intermolecular interaction of π electron system and highly symmetrical structure. Therefore, it is difficult to handle a high-concentration polymer dope, etc., which is necessary when using it as a device material for optical information processing, and the solubility of the synthetic intermediate is also reduced. However, there is a problem in that efficient synthesis is difficult.
【0006】一方、三次非線形光学材料は、光の照射に
対して屈折率が変化することを利用しようとするもので
ある。この屈折率変化を読み取る方法として、例えば、
Fabry-Perrot共振器を用いて微小な屈折率変化を増幅す
る方法が提案されているが、この方法では光源の僅かな
不安定性が敏感に共振安定性に影響するので、システム
全体が極めてデリケートなものとなり、これを安定に作
動させるための高度な寸法品質精度がコスト、量産面で
の障害となっている。また、屈折率変化を増大させるた
めに極めて高いエネルギーを注入せざるを得ず、材料の
耐熱性、サーマル効果、高い注入エネルギーに情報を載
せるための技術的障壁などの問題があった。On the other hand, the third-order nonlinear optical material attempts to utilize the fact that the refractive index changes with the irradiation of light. As a method of reading this change in refractive index, for example,
A method for amplifying a minute change in the refractive index using a Fabry-Perrot resonator has been proposed. However, in this method, the slight instability of the light source sensitively affects the resonance stability, so the entire system is extremely delicate. However, the high dimensional quality accuracy for stable operation of this is an obstacle in terms of cost and mass production. Further, in order to increase the refractive index change, extremely high energy has to be injected, and there are problems such as the heat resistance of the material, the thermal effect, and a technical barrier for putting information on the high injection energy.
【0007】これを改善する方法として、弱いプローブ
光の楕円偏光測定により、極めて高い感度で検出する方
法が提案されている。この方法は、強い励起光により物
質に光学的異方性を誘起して直線偏光信号光に偏光の変
化を発生させるものである。この方法では、光誘起され
た光学的異方性を利用するために励起光を円偏光とした
り、励起光の偏光方向を信号光の偏光方向から傾ける等
の工夫が必要であるため、信号処理方法に制限があっ
た。As a method of improving this, there has been proposed a method of detecting with extremely high sensitivity by elliptical polarization measurement of weak probe light. In this method, strong excitation light induces optical anisotropy in a substance to generate a change in polarization of linearly polarized signal light. In this method, it is necessary to make the excitation light circularly polarized in order to utilize the optically induced optical anisotropy, or to incline the polarization direction of the excitation light from the polarization direction of the signal light. There was a limit to the method.
【0008】[0008]
【問題点を解決するための手段】本発明の目的は、前記
問題点を解決し、大きな三次非線形性を示し、かつレー
ザーによる熱的、光学的損傷がなく、しかも溶剤への溶
解性が良好で、合成とデバイス化が容易であり、さら
に、屈折率変化を読み取るために種々の信号処理方法を
適用できる非線形光学材料を提供することである。The object of the present invention is to solve the above-mentioned problems, to exhibit a large third-order nonlinearity, to be free from thermal and optical damage by a laser, and to have good solubility in a solvent. Thus, it is an object of the present invention to provide a non-linear optical material which can be easily synthesized and made into a device and to which various signal processing methods can be applied to read a change in refractive index.
【0009】本発明は、ヘリセン類Zにビニレン基(−
CH=CH−)をはさみ、π電子共役色素Dが結合して
なる、一般式;Z−CH=CH−Dで表される化合物を
含有してなる非線形光学材料に関する。特に、屈折率変
化を読み取るために種々の信号処理方法を適用するため
に、ヘリセン類Zは光学活性体であることが望ましい。In the present invention, the helicene Z has a vinylene group (-
CH = CH-), and a non-linear optical material containing a compound represented by the general formula; Z-CH = CH-D, in which the π-electron conjugated dye D is bonded. In particular, in order to apply various signal processing methods for reading changes in the refractive index, it is desirable that the helicene Z is an optically active substance.
【0010】ヘリセン類Zとしては、カルボヘリセン及
びヘテロヘリセンが挙げられる。カルボヘリセンは、芳
香環が5個以上、好ましくは6個〜20個繋がった螺旋
状構造を有する化合物である。また、ヘテロヘリセン
は、ベンゼンとチオフェン、フラン、ピリジン、ピロー
ル等のヘテロ環との共縮合環からなる化合物である。Examples of helicenes Z include carbohelicene and heterohelicene. Carbohelicene is a compound having a helical structure in which five or more aromatic rings, preferably 6 to 20, are connected. Heterohelicene is a compound composed of a co-condensed ring of benzene and a heterocycle such as thiophene, furan, pyridine and pyrrole.
【0011】このようなカルボヘリセン及びヘテロヘリ
センは、例えば、Top.Curr.Chem.125(Stereochemistr
y),63-130(1984) に記載されている。カルボヘリセン及
びヘテロヘリセンの合成方法としては、特に制限はない
が、例えば、Wittig反応やSiegrist反応により合成した
1,2-diarylethylenes 、bis(arylvinyl)arenes等を光環
化することにより得られる。Such carbohelicene and heterohelicene are described, for example, in Top.Curr.Chem.125 (Stereochemistr
y), 63-130 (1984). The method for synthesizing carbohelicene and heterohelicene is not particularly limited, but for example, it was synthesized by Wittig reaction or Siegrist reaction.
It can be obtained by photocyclization of 1,2-diarylethylenes, bis (arylvinyl) arenes and the like.
【0012】π電子共役色素Dとしては、p−ニトロス
チルベン、DANS(4−N,N−ジメチルアミノ−
4’−ニトロスチルベン)、DEANS(4−N,N−
ジエチルアミノ−4’−ニトロスチルベン)等のスチル
ベン類やDOCI(3,3’−ジエチルオキサカルボシ
アニン)、DODCI(3,3’−ジエチルオキサジカ
ルボシアニン)等のシアニン類等が挙げられる。As the π-electron conjugated dye D, p-nitrostilbene, DANS (4-N, N-dimethylamino-
4'-nitrostilbene), DEANS (4-N, N-
Examples thereof include stilbenes such as diethylamino-4′-nitrostilbene) and cyanines such as DOCI (3,3′-diethyloxacarbocyanine) and DODCI (3,3′-diethyloxadicarbocyanine).
【0013】特に、一方に電子吸引性基を有するものが
好ましい。これは直鎖のπ電子共役系に電子供与性のヘ
リセン類と電子吸引性基が結合することにより、非線形
効果をさらに高める構造が実現されるためである。Particularly, one having an electron-withdrawing group on one side is preferable. This is because the electron-donating helicenes and the electron-withdrawing group are bonded to the linear π-electron conjugated system to realize a structure that further enhances the nonlinear effect.
【0014】本発明の一般式;Z−CH=CH−Dで表
される化合物は、ビニレン基(−CH=CH−)とπ電
子共役色素Dにより非局在化π電子系が広がり、非線形
性が向上する。一方、ヘリセン類の螺旋状の電子系と異
なる、直鎖状のπ電子系−CH=CH−Dが繋がってい
るため、分子間の相互作用は不必要に大きくならないの
で、溶剤への溶解性は低下しない。したがって、合成と
デバイス化が容易となる。In the compound represented by the general formula of the present invention; Z-CH = CH-D, the delocalized π-electron system is expanded by the vinylene group (-CH = CH-) and the π-electron conjugated dye D, and the nonlinear The property is improved. On the other hand, since a linear π-electron system -CH = CH-D, which is different from the helical electron system of helicenes, is connected, the interaction between molecules does not unnecessarily increase, and therefore the solubility in a solvent is high. Does not fall. Therefore, synthesis and deviceization are easy.
【0015】本発明の非線形光学材料は、ヘリセン類Z
にホルミル基を導入し、さらにWittig試薬と反応させる
ことにより合成される。ヘリセン類へのホルミル基の導
入には、多くの方法があるが、最も効果的でかつ適用範
囲の広い方法として、一般にFriedel-Crafts型の反応と
して知られている求電子置換反応により、ヘリセン類へ
の電子供与性の置換位置をホルミル化する方法がある。
ホルミル化の反応試薬は多くの種類のものが知られてお
り、ヘリセン類の反応性に合わせて好適なものを用い
る。この置換位置と反応性については、通常の平面型の
芳香族化合物については高い確度で予測されるが、歪ん
だ平面構造をもつヘリセン類の場合には未だ十分な研究
が進んでいない。そこで、本発明者等が詳細に検討した
結果、極めて効率の良いホルミル基の導入が可能である
ことを見いだした。The non-linear optical material of the present invention is a helicene Z
It is synthesized by introducing a formyl group into and then reacting with Wittig reagent. There are many methods for introducing a formyl group into helicenes, but the most effective and versatile method is the electrophilic substitution reaction, which is generally known as a Friedel-Crafts type reaction. There is a method of formylating the electron donative substitution position to
Many kinds of formylation reaction reagents are known, and one suitable for the reactivity of helicene is used. This substitution position and reactivity are predicted with high accuracy for ordinary planar type aromatic compounds, but sufficient studies have not yet been made in the case of helicenes having a distorted planar structure. Then, as a result of a detailed study by the present inventors, it was found that a formyl group can be introduced with extremely high efficiency.
【0016】例えば、6員環のヘリセンであるヘキサヘ
リセンの場合には、図1に示される5−位と8−位がホ
ルミル化を受け易い置換位置である。反応試薬として好
適なものは、例えばジクロロメチルアルキルエーテルで
あり、高い収率で5−位と8−位にホルミル基を導入す
ることができる。For example, in the case of hexahelicene, which is a 6-membered helicene, the 5-position and 8-position shown in FIG. 1 are substitution positions that are susceptible to formylation. A suitable reaction reagent is, for example, dichloromethyl alkyl ether, which can introduce a formyl group at the 5-position and the 8-position in high yield.
【0017】Wittig試薬の合成は、多くの例が知られて
おり、確立された方法である。Wittig反応によるヘリセ
ン誘導体の合成は、常法に従い、ホルミルヘリセンとWi
ttig試薬によって、容易に良好な収率で行うことができ
る。The synthesis of Wittig reagents is a well-established method with many examples known. Synthesis of helicene derivative by Wittig reaction is carried out according to a conventional method by using formylhelicene and Wi
The ttig reagent can be easily performed in good yield.
【0018】以上のように、ヘリセン類にホルミル基を
導入し、さらにWittig反応により、一般式;Z−CH=
CH−Dで表される化合物を得ることはきわめて適用範
囲の広い、かつ効率的な方法である。しかも、このよう
な化合物は大きなπ電子共役系と取扱いの容易さを両立
させた効果的な材料であり、極めて有用である。As described above, by introducing a formyl group into helicenes and further conducting the Wittig reaction, the general formula; Z-CH =
Obtaining the compound represented by CH-D is a very versatile and efficient method. Moreover, such a compound is an effective material that has both a large π-electron conjugated system and easy handling, and is extremely useful.
【0019】本発明においては、ヘリセン類として光学
活性体を用いてもまったく同様の合成を行うことができ
る。また、一般式;Z−CH=CH−Dで表される化合
物を光学分割して光学活性体を得ることもできる。In the present invention, even if an optically active substance is used as the helicene, the same synthesis can be performed. Further, a compound represented by the general formula; Z-CH = CH-D can be optically resolved to obtain an optically active substance.
【0020】本発明の一般式;Z−CH=CH−Dで表
される化合物のうち、ヘリセン類Zが光学活性体である
化合物は、キラル性を有するので直線偏光に対し光の強
度に依存して偏光面を回転させる特性を有する。Of the compounds represented by the general formula of the present invention; Z-CH = CH-D, the compounds in which the helicene Z is an optically active substance have chiral properties and therefore depend on the intensity of light for linearly polarized light. And has the property of rotating the plane of polarization.
【0021】この場合、吸収スペクトル及び屈折率分散
はL偏光とR偏光に対して周波数のずれを生じる。L偏
光に対する屈折率をnL 、R偏光に対する屈折率をnR
とすると、旋光性は(nL −nR )によって引き起こさ
れ、偏光回転角は、サンプル長をl、波長をλとして πl/λ(nL −nR ) となる。In this case, the absorption spectrum and the refractive index dispersion cause a frequency shift between the L polarized light and the R polarized light. The refractive index for L polarized light is n L , and the refractive index for R polarized light is n R
Then, the optical rotatory power is caused by (n L −n R ), and the polarization rotation angle is πl / λ (n L −n R ) where l is the sample length and λ is the wavelength.
【0022】次に、強い直線偏光励起により非線形な屈
折率変化が引き起こされる場合、直線偏光は左右の円偏
光の合成と考えられるので、nL 、nR の両方に作用し
て、屈折率は変化する。この非線形な屈折率変化をΔn
L 、ΔnR とすると、非線形効果による偏光回転角は、 πl/λ〔(nL −nR )−{(nL +ΔnL )−(n
R +ΔnR )}〕=πl/λ(ΔnL −ΔnR ) となる。即ち、L偏光とR偏光に対する非線形な屈折率
変化の差に応じた偏光回転が起こると考えられる。ま
た、この効果は、旋光性が大きいほど大きくなると期待
される。Next, when the nonlinear refractive index change is caused by the strong linearly polarized light excitation, it is considered that the linearly polarized light is a combination of left and right circularly polarized light. Therefore, it acts on both n L and n R , and the refractive index is Change. This nonlinear refractive index change is expressed as Δn
If L and Δn R , the polarization rotation angle due to the nonlinear effect is πl / λ [(n L −n R ) − {(n L + Δn L ) − (n
R + Δn R )}] = πl / λ (Δn L −Δn R ). That is, it is considered that the polarization rotation occurs according to the difference in the nonlinear refractive index change between the L-polarized light and the R-polarized light. Further, this effect is expected to increase as the optical activity increases.
【0023】したがって、本発明の一般式;Z−CH=
CH−Dで表される化合物のうち、ヘリセン類Zが光学
活性体である化合物に直線偏光を照射する場合に、光の
強度を変化させることにより、偏光面の回転角の変化と
して検出することができる。この特性を利用することに
より、前述の楕円偏光解析の手法を用いれば、励起光と
して偏光に工夫を凝らすことなく、信号と同一方向の直
線偏光でも同様の測定が行えるので、より複雑な光信号
処理が可能になる。Therefore, the general formula of the present invention; Z-CH =
Among the compounds represented by CH-D, when helicenes Z irradiate a compound which is an optically active substance with linearly polarized light, by detecting the change in the rotation angle of the polarization plane by changing the intensity of light. You can By using this characteristic, the elliptic polarization analysis method described above can be used to perform similar measurements on linearly polarized light in the same direction as the signal, without elaborating on the polarization of the excitation light. Processing becomes possible.
【0024】また、励起光と信号光を一本の直線偏光と
し、光の強度による自己回転により信号波形の制御が可
能である。さらに、高繰り返しパルス光源を用いること
により、高周波偏光変調素子と組み合わせてより高い感
度と精度が確保できる。したがって、光通信、光情報処
理等のデバイス材料として好適に使用できる。Further, the excitation light and the signal light are made into one linearly polarized light, and the signal waveform can be controlled by self-rotation by the intensity of the light. Furthermore, by using a highly repetitive pulse light source, higher sensitivity and accuracy can be secured in combination with the high frequency polarization modulator. Therefore, it can be suitably used as a device material for optical communication, optical information processing and the like.
【0025】[0025]
【実施例】以下に、実施例を示す。 合成例1(ホルミルヘキサヘリセンの合成) ヘキサヘリセン0.2gをジクロロメタン20mlに溶解させ、
氷冷下、四塩化スズ0.159gとジクロロメチルメチルエー
テル0.084gを加え、30分間攪拌した。さらに室温で1時
間、希塩酸を加えて30分間攪拌した。反応は窒素気流下
で行った。ジクロロメタンで抽出、溶媒留去後、カラム
クロマトグラフで精製してホルミルヘキサヘリセンの黄
色粉末(5−置換体と8−置換体の2:1混合物)0.16
gを得た。各異性体の純粋なサンプルは、再結晶とHP
LCで得た。EXAMPLES Examples will be shown below. Synthesis Example 1 (Synthesis of formylhexahelicene) 0.2 g of hexahelicene was dissolved in 20 ml of dichloromethane,
Under ice cooling, 0.159 g of tin tetrachloride and 0.084 g of dichloromethyl methyl ether were added, and the mixture was stirred for 30 minutes. Furthermore, diluted hydrochloric acid was added at room temperature for 1 hour, and the mixture was stirred for 30 minutes. The reaction was carried out under a nitrogen stream. After extraction with dichloromethane, evaporation of the solvent and purification by column chromatography, yellow powder of formylhexahelicene (2: 1 mixture of 5-substituted and 8-substituted) 0.16
got g. Pure sample of each isomer was recrystallized and HP
Obtained by LC.
【0026】合成例2(Wittig試薬の合成) p−ニトロフェニル酢酸3.40gとp−トルアルデヒド2.2
6gをピペリジン1.5ml中で140℃で2.5時間攪拌した。冷
却後、濾収物をメタノールで洗浄し、エタノールで再結
晶して4−ニトロ−4’−メチルスチルベン2.27gを得
た。次にこの4−ニトロ−4’−メチルスチルベン2.0g
とN−ブロモスクシンイミド(NBS)1.49gを四塩化
炭素8ml中で7時間還流した。さらにNBS0.3gを加え
て8時間還流した後、熱時濾過し、濾液を0.1Nチオ硫
酸ナトリウムで洗浄し、硫酸マグネシウムで乾燥した
後、溶媒を留去して黄色粉末2.5gを得た。この黄色粉末
2.5gとトリフェニルホスフィン2.4gをキシレン40ml中で
1時間還流した後、熱時濾過し、キシレンと石油エーテ
ルで洗浄してp−(p−ニトロスチリル)ベンジルトリ
フェニルホスホニウムブロミドの赤褐色粉末3.4gを得
た。Synthesis Example 2 (Synthesis of Wittig reagent) 3.40 g of p-nitrophenylacetic acid and 2.2 of p-tolualdehyde
6 g was stirred in 1.5 ml piperidine at 140 ° C. for 2.5 hours. After cooling, the filtered product was washed with methanol and recrystallized with ethanol to obtain 2.27 g of 4-nitro-4′-methylstilbene. Next, 2.0 g of this 4-nitro-4'-methylstilbene
And 1.49 g of N-bromosuccinimide (NBS) were refluxed in 8 ml of carbon tetrachloride for 7 hours. After adding 0.3 g of NBS and refluxing for 8 hours, the mixture was filtered while hot, the filtrate was washed with 0.1N sodium thiosulfate, dried over magnesium sulfate, and the solvent was distilled off to obtain 2.5 g of a yellow powder. This yellow powder
2.5 g of triphenylphosphine and 2.4 g of triphenylphosphine were refluxed in 40 ml of xylene for 1 hour, filtered while hot, washed with xylene and petroleum ether, and red-brown powder of p- (p-nitrostyryl) benzyltriphenylphosphonium bromide 3.4 g. Got
【0027】合成例3(Wittig反応によるヘリセン誘導
体の合成) 合成例1で得られたホルミルヘキサヘリセン37mgと合成
例2で得られたp−(p−ニトロスチリル)ベンジルト
リフェニルホスホニウムブロミド73mgをベンゼン1ml中
で70℃で攪拌し、等モル量のナトリウムエトキシドのベ
ンゼン溶液を滴下した。1時間還流後、室温で1晩攪拌
した。反応は窒素気流下で行った。溶媒留去後、カラム
クロマトグラフで精製して5−[p−(p−ニトロスチ
リル)フェニレンビニレン]ヘキサヘリセン及び8−
[p−(p−ニトロスチリル)フェニレンビニレン]ヘ
キサヘリセンの燈色粉末(5−異性体と8−異性体の
2:1混合物)47mgを得た。異性体の分離は、再結晶ま
たはHPLCにより行った。また、光学分割はHPLC
により行った。Synthesis Example 3 (Synthesis of helicene derivative by Wittig reaction) 37 mg of formylhexahelicene obtained in Synthesis Example 1 and 73 mg of p- (p-nitrostyryl) benzyltriphenylphosphonium bromide obtained in Synthesis Example 2 were mixed with benzene. The mixture was stirred in 1 ml at 70 ° C., and an equimolar amount of a solution of sodium ethoxide in benzene was added dropwise. After refluxing for 1 hour, the mixture was stirred at room temperature overnight. The reaction was carried out under a nitrogen stream. After the solvent was distilled off, it was purified by column chromatography to give 5- [p- (p-nitrostyryl) phenylenevinylene] hexahelicene and 8-
47 mg of a light-colored powder of [p- (p-nitrostyryl) phenylenevinylene] hexahelicene (2: 1 mixture of 5-isomer and 8-isomer) was obtained. Separation of isomers was performed by recrystallization or HPLC. The optical resolution is HPLC
Went by.
【0028】5−異性体と8−異性体共、約410nmに導
入色素に由来する強い吸収を示した。図2にクロロホル
ム溶液で測定したUV、CDスペクトルチャートを示
す。Both the 5-isomer and the 8-isomer showed strong absorption at about 410 nm due to the introduced dye. FIG. 2 shows a UV and CD spectrum chart measured with a chloroform solution.
【0029】実施例1 合成例3で得られた5−[p−(p−ニトロスチリル)
フェニレンビニレン]ヘキサヘリセンのTHF溶液を用
いて、図3に示す偏光・非線形定数測定装置により、三
次非線形光学特性の測定を行った。光源には、Qスイッ
チNd:YAGレーザー1の第3高調波(355nm)
励起による色素レーザー2を用い、この出力光をポンプ
光11とプローブ光21に分け、各々偏光子P1、偏光
子P2により直線偏光にされる。プローブ光21は、試
料3を通った後、検光子P3により消光されている。こ
こで、ポンプ光11とプローブ光21の偏光面を45°
の角度をなすようにし、試料3に照射した。検光子P3
を透過した光を分光器4を通して光電子倍増管5で検出
した。その結果、吸収端波長(540nm)で測定した
三次非線形感受率は、100%換算でヘキサヘリセン及
び5−ニトロヘキサヘリセンより約5倍大きい値を示し
た。Example 1 5- [p- (p-nitrostyryl) obtained in Synthesis Example 3
Third-order nonlinear optical characteristics were measured using a polarization / nonlinear constant measuring device shown in FIG. 3 using a THF solution of phenylenevinylene] hexahelicene. The light source is the third harmonic (355 nm) of the Q-switched Nd: YAG laser 1.
This output light is split into a pump light 11 and a probe light 21 using a dye laser 2 by excitation, and is linearly polarized by a polarizer P1 and a polarizer P2, respectively. After passing through the sample 3, the probe light 21 is quenched by the analyzer P3. Here, the polarization planes of the pump light 11 and the probe light 21 are 45 °.
The sample 3 was irradiated at an angle of. Analyzer P3
The light that passed through was detected by the photomultiplier tube 5 through the spectroscope 4. As a result, the third-order nonlinear susceptibility measured at the absorption edge wavelength (540 nm) was about 5 times larger than that of hexahelicene and 5-nitrohexahelicene in 100% conversion.
【0030】THFへの溶解度は2%以上で、5−ニト
ロヘキサヘリセンと同等であった。一方、13員環のト
リデカヘリセンと比較すると、三次の非線形感受率はほ
ぼ同等で、THFへの溶解度は20倍以上であった。The solubility in THF was 2% or more, which was equivalent to that of 5-nitrohexahelicene. On the other hand, as compared with the 13-membered ring tridecahelicene, the third-order nonlinear susceptibility was almost the same, and the solubility in THF was 20 times or more.
【0031】実施例2 合成例3で得られた(+)−5−[p−(p−ニトロス
チリル)フェニレンビニレン]ヘキサヘリセンのTHF
溶液を用いて、図3に示す偏光・非線形定数測定装置に
より、キラル非線形効果の測定を行った。プローブ光2
1は、偏光子P2により直線偏光にされ、試料3を通っ
た後、検光子P3により消光されている。ここで、偏光
子P1によりプローブ光21と同一な偏光方向をもった
直線偏光ポンプ光11を試料3に照射したところ、キラ
ル非線形効果によるしみ出し光が検出された。Example 2 THF of (+)-5- [p- (p-nitrostyryl) phenylenevinylene] hexahelicene obtained in Synthesis Example 3
The solution was used to measure the chiral nonlinear effect by the polarization / nonlinear constant measuring device shown in FIG. Probe light 2
1 is linearly polarized by the polarizer P2, passes through the sample 3, and is then extinguished by the analyzer P3. Here, when the sample 3 was irradiated with the linearly polarized pump light 11 having the same polarization direction as the probe light 21 by the polarizer P1, bleeding light due to the chiral nonlinear effect was detected.
【図1】図1は、[p−(p−ニトロスチリル)フェニ
レンビニレン]ヘキサヘリセンの合成方法の一例を示す
図である。FIG. 1 is a diagram showing an example of a method for synthesizing [p- (p-nitrostyryl) phenylenevinylene] hexahelicene.
【図2】図2は、[p−(p−ニトロスチリル)フェニ
レンビニレン]ヘキサヘリセンの(+)−5−異性体と
(+)−8−異性体のUVとCDスペクトルを示す図で
ある。FIG. 2 shows UV and CD spectra of (+)-5-isomer and (+)-8-isomer of [p- (p-nitrostyryl) phenylenevinylene] hexahelicene. ..
【図3】図3は、偏光・非線形定数測定装置の概略図で
ある。FIG. 3 is a schematic diagram of a polarization / nonlinear constant measuring device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 一弘 千葉県市原市五井南海岸8番の1 宇部興 産株式会社千葉研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Morita 8-1 Goi Minamikaigan, Ichihara City, Chiba Ube Industries Ltd. Chiba Research Institute
Claims (2)
H−)をはさみ、π電子共役色素Dが結合してなる、一
般式;Z−CH=CH−Dで表される化合物を含有して
なる非線形光学材料。1. The helicene Z has a vinylene group (—CH═C).
A non-linear optical material containing a compound represented by the general formula; Z-CH = CH-D, which is sandwiched between H-) and a π-electron conjugated dye D.
特徴とする請求項1の非線形光学材料。2. The non-linear optical material according to claim 1, wherein the helicene Z is an optically active substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9609492A JP2937279B2 (en) | 1992-03-24 | 1992-03-24 | Nonlinear optical material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9609492A JP2937279B2 (en) | 1992-03-24 | 1992-03-24 | Nonlinear optical material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05273614A true JPH05273614A (en) | 1993-10-22 |
JP2937279B2 JP2937279B2 (en) | 1999-08-23 |
Family
ID=14155811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9609492A Expired - Fee Related JP2937279B2 (en) | 1992-03-24 | 1992-03-24 | Nonlinear optical material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2937279B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997008262A3 (en) * | 1995-08-21 | 1997-04-24 | Thomas J Katz | Aggregrates of substituted [6]helicene compounds that show enhanced optical rotatory power and nonlinear optical response and uses thereof |
US6686065B2 (en) | 2001-12-12 | 2004-02-03 | Canon Kabushiki Kaisha | [5]-helicene and dibenzofluorene materials for use in organic light emitting devices |
-
1992
- 1992-03-24 JP JP9609492A patent/JP2937279B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997008262A3 (en) * | 1995-08-21 | 1997-04-24 | Thomas J Katz | Aggregrates of substituted [6]helicene compounds that show enhanced optical rotatory power and nonlinear optical response and uses thereof |
US5993700A (en) * | 1995-08-21 | 1999-11-30 | The Trustees Of Columbia University In The City Of New York | Aggregrates of substituted (6)helicene compounds that show enhanced optical rotatory power and nonlinear optical response and uses thereof |
US6017470A (en) * | 1995-08-21 | 2000-01-25 | The Trustees Of Columbia University In The City Of New York | Substituted [6]helicene compounds that show enhanced nonlinear optical rotatory power and uses thereof |
US6686065B2 (en) | 2001-12-12 | 2004-02-03 | Canon Kabushiki Kaisha | [5]-helicene and dibenzofluorene materials for use in organic light emitting devices |
Also Published As
Publication number | Publication date |
---|---|
JP2937279B2 (en) | 1999-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Iwase et al. | Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge | |
Saki et al. | Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold | |
Jia et al. | A series of novel ferrocenyl derivatives: Schiff bases-like push-pull systems with large third-order optical responses | |
Prabu et al. | Ferrocene conjugated donor-π-acceptor malononitrile dimer: Synthesis, theoretical calculations, electrochemical, optical and nonlinear optical studies | |
Kaur et al. | Functionalized 3-pyrrolyl boron-dipyrromethenes | |
Kesavan et al. | Carbazole substituted boron dipyrromethenes | |
Raposo et al. | 5′-Alkoxy-2, 2′-bithiophene azo dyes: a novel promising series of NLO-chromophores | |
Garcia-Rodriguez et al. | Design of novel conjugated systems bearing donor-acceptor groups (pyrene-bodipy): Optical, photophysical properties and energy transfer | |
Durmuş et al. | Peripherally alpha (α)-substituted novel phthalocyanines | |
Ito et al. | Photophysical properties of 2-picolinoylpyrrole boron complex in solutions | |
JP2937279B2 (en) | Nonlinear optical material | |
Chen et al. | Third-order nonlinear optical properties of axially modified indium phthalocyanines with alkyl chains | |
Hussein et al. | Distinctive tunable photophysical properties of versatile environmentally-sensitive tribranched cyanopyridine fluorophores | |
Hua et al. | New nonlinear optical chromophores exhibiting good transparency and large nonlinearity: synthesis and characterization of chromophores with stilbene and ring-locked triene as a combined conjugation bridge | |
Hewavitharanage et al. | Efficient energy transfer in phenyl-ethynyl-linked asymmetric BODIPY dimers | |
Mashraqui et al. | π‐Aryl/heteroaryl conjugated coumarin‐thiazoles: Synthesis, optical spectral and nonlinear optic properties | |
JP2937278B2 (en) | Organic nonlinear optical material | |
Indirapriyadharshini et al. | Spectral and photophysical properties of 1, 6-naphthyridine derivatives: a new class of compounds for nonlinear optics | |
Tian et al. | Syntheses of novel non-aggregated binuclear phthalocyaninato vanadyl complexes using a palladium-catalyzed cross-coupling reaction | |
Yang et al. | Investigation of structure–property relationships of multi-branched two-photon absorption chromophores based on π-conjugation core | |
JPS62156628A (en) | Organic nonlinear optical materials | |
Chen et al. | Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing different steric hindrance groups | |
Benelhadj et al. | Synthesis and optical properties of π-conjugated push–pull dyes incorporating a functionalized benzo [1, 2-b: 3, 4-b′] difuran spacer | |
Yang et al. | Design, Synthesis and Optical Properties of 2‐(1‐Azaazulenyl) pyrrole‐Boron Difluoride Complexes | |
Kollár et al. | Spectral properties of probes based on pyrene and piperazine: the singlet and triplet route of deactivation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |