JPH05270857A - Laser glass - Google Patents
Laser glassInfo
- Publication number
- JPH05270857A JPH05270857A JP4071599A JP7159992A JPH05270857A JP H05270857 A JPH05270857 A JP H05270857A JP 4071599 A JP4071599 A JP 4071599A JP 7159992 A JP7159992 A JP 7159992A JP H05270857 A JPH05270857 A JP H05270857A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- laser
- cat
- band
- emission intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000087 laser glass Substances 0.000 title claims abstract description 15
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 9
- 239000005303 fluorophosphate glass Substances 0.000 claims abstract description 8
- 241000282326 Felis catus Species 0.000 claims description 24
- -1 erbium ion Chemical class 0.000 claims description 7
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims 1
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 8
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 abstract 2
- 229910009527 YF3 Inorganic materials 0.000 abstract 1
- 229910001632 barium fluoride Inorganic materials 0.000 abstract 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 abstract 1
- 229910001634 calcium fluoride Inorganic materials 0.000 abstract 1
- 150000001768 cations Chemical class 0.000 abstract 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 abstract 1
- 229910001637 strontium fluoride Inorganic materials 0.000 abstract 1
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 25
- 239000011159 matrix material Substances 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 230000005284 excitation Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 229910016569 AlF 3 Inorganic materials 0.000 description 4
- 229910004261 CaF 2 Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000001235 sensitizing effect Effects 0.000 description 4
- CJRJTCMSQLEPFQ-UHFFFAOYSA-N 6-cat Chemical compound ClC1=CC=C2CC(N)CCC2=C1 CJRJTCMSQLEPFQ-UHFFFAOYSA-N 0.000 description 3
- 229910016036 BaF 2 Inorganic materials 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000005365 phosphate glass Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 241000511976 Hoya Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006690 co-activation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザガラスに関し、特
にErを発光中心、YbおよびNdを増感剤として含有
するレーザガラスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser glass, and more particularly to a laser glass containing Er as an emission center and Yb and Nd as sensitizers.
【0002】[0002]
【従来の技術】固体レーザ媒質中に付活されたEr
3+は、0.4〜1μm の波長範囲で光ポンピングされる
と、 4I13/2(始準位)から 4I15/2(基底準位)への
内殻遷移によって、1.53〜1.55μm (室温)の
輻射を生ずる。この発光波長は、希土類イオンの4f電
子がその外側にある5s2 、5p6 電子によって外部
(母体)の影響から遮断されているため、環境にあまり
依存せず、イオン固有の値をとる。したがって、母体材
料として結晶ではなくガラスを用いても、幅の狭い蛍光
スペクトルが得られ、レーザ発振させることが出来る。2. Description of the Related Art Er activated in a solid-state laser medium
3+, when optically pumped at a wavelength range of 0.4~1Myuemu, the inner shell transition from 4 I 13/2 (Hajimejunkurai) to 4 I 15/2 (ground level), 1.53 Radiation of ˜1.55 μm (room temperature) is produced. This emission wavelength has a value unique to the ion because the 4f electron of the rare earth ion is shielded from the influence of the outside (matrix) by the 5s 2 and 5p 6 electrons located outside the rare earth ion, and does not depend much on the environment. Therefore, even if glass is used as the base material instead of crystal, a narrow fluorescence spectrum can be obtained and laser oscillation can be performed.
【0003】ガラスは、光学的均一性を有する質的にす
ぐれたものが容易に得られ、大型化が可能であり、加工
性もよく、又、低価格であるため、固体レーザ媒質とし
て実用性が高い。これ迄に、その特徴を生かして、大出
力のNd3+ドープ核融合用ガラスレーザが製造されてい
る他、測距用、レーザメス用、光増幅ファイバー用など
に利用されはじめている。Glass having excellent optical qualities, which is qualitatively excellent, can be easily obtained, can be made large in size, has good processability, and is low in price. Therefore, it is practical as a solid-state laser medium. Is high. Utilizing these characteristics, high output Nd 3+ doped glass lasers for fusion have been manufactured, and are now being used for distance measurement, laser knife, optical amplification fiber, etc.
【0004】1.5μm 帯Er3+ガラスレーザは1μm
帯Nd3+レーザと比較して眼の組織に吸収される割合が
低く、安全性が高いという理由で測距用光源に用いられ
ている。1.5μm 帯Er3+ガラスレーザの発光強度を
高めるために、従来、母体材料のガラス成分を検討する
と共に増感剤の検討も行なわれきた。蛍光増感は、発光
中心に近接して存在するイオンから励起エネルギーを発
光中心に伝達せしめ、もって発光中心の発光効率を高め
る現象である。Er3+発光中心に対しては、同じ希土類
イオンであるYb3+とNd3+を増感剤として共付活する
ことが、もっとも有効である。この場合、Nd3+からY
b3+へ、Yb3+からEr3+へエネルギーの共鳴伝達が生
ずると考えられる。Er 3+ glass laser in the 1.5 μm band is 1 μm
Compared with the band Nd 3+ laser, it is used as a light source for distance measurement because it has a low rate of being absorbed by eye tissues and is highly safe. In order to increase the emission intensity of a 1.5 μm band Er 3+ glass laser, conventionally, the glass component of the base material has been studied and the sensitizer has also been studied. Fluorescence sensitization is a phenomenon in which the excitation energy is transferred from the ions existing close to the luminescence center to the luminescence center, thereby increasing the luminous efficiency of the luminescence center. For Er 3+ luminescent centers, it is most effective to co-activate Yb 3+ and Nd 3+, which are the same rare earth ions, as sensitizers. In this case, Nd 3+ to Y
It is considered that resonance transfer of energy occurs from Yb 3+ to Er 3+ to b 3+ .
【0005】Yb、Ndを共付活したEr付活ガラスレ
ーザ材料として、リン酸塩を母体材料とするものが既に
市販されている。代表的なものには、HOYA社のLE
G30やKeizer社のQE−7(いずれも商品名)
などがある。これらガラスレーザ材料においては、共付
活されたNd3+濃度、[Nd3+]は0.05 cat%と低
い水準にとどまる。また、これに伴って付活されるEr
3+濃度、[Er3+]もほぼ同じ水準にとどまっていた。
これは、Er3+からNd3+への共鳴伝達効率がNd3+か
らEr3+への伝達効率より高く、したがって[Nd3+]
を高くすると、Er3+の発光効率が低下する危険が生ず
るためである。As an Er-activated glass laser material co-activated with Yb and Nd, one having a phosphate as a base material is already on the market. The representative one is LE of HOYA.
G30 and Keizer QE-7 (both are trade names)
and so on. In these glass laser materials, the co-activated Nd 3+ concentration [Nd 3+ ] is as low as 0.05 cat%. In addition, Er that is activated along with this
The 3+ concentration and [Er 3+ ] remained at the same level.
This resonance transmission efficiency from Er 3+ to Nd 3+ is higher than the transmission efficiency of the Er 3+ from Nd 3+, thus [Nd 3+]
This is because there is a risk of decreasing the luminous efficiency of Er 3+ when the value is increased.
【0006】[0006]
【発明が解決しようとする課題】前記したように、[N
d3+]および[Er3+]を低い水準に抑制すると、0.
8μm 又は0.98μm の光では外部からポンピングし
た場合、増感が低く、また発光中心濃度が低いため発光
強度は低下する。Er3+の1.5μm 帯レーザ光を戸外
での測距に利用する場合、外光の影響を排除して充分遠
距離まで計測を行なうには、出来るだけ大きな出力が要
求される。その意味で、従来市販のYb、Nd共付活E
rガラスレーザの性能は、充分と云えなかった。As described above, [N
Suppressing d 3+ ] and [Er 3+ ] to low levels results in 0.
When pumped from the outside with light of 8 μm or 0.98 μm, the sensitization is low, and the emission center concentration is low, so the emission intensity is low. When the Er 3+ 1.5 μm band laser light is used for distance measurement outdoors, as large an output as possible is required in order to eliminate the influence of outside light and perform measurement at a sufficiently long distance. In that sense, conventional commercially available Yb and Nd co-activated E
The performance of the r-glass laser was not sufficient.
【0007】本発明の目的は、Yb、Nd共付活1.5
μm 帯発光のErガラスレーザの出力を向上させること
の出来るレーザガラスを提供することである。An object of the present invention is to co-activate Yb and Nd 1.5.
An object of the present invention is to provide a laser glass capable of improving the output of an Er glass laser emitting in the μm band.
【0008】[0008]
【課題を解決するための手段】本発明は、発光中心のE
r3+を0.3〜0.5 cat%、増感剤のYb3+を3.5
〜6 cat%およびNd3+を0.3〜0.5 cat%含有し
たフツリン酸塩ガラスを要旨とする。SUMMARY OF THE INVENTION The present invention is based on the emission center E
r 3+ is 0.3 to 0.5 cat%, and sensitizer Yb 3+ is 3.5
The gist is a fluorophosphate glass containing ~ 6 cat% and 0.3-0.5 cat% Nd3 + .
【0009】[0009]
【作用】本発明のレーザガラスにおいてEr3+濃度、
[Er3+]は、従来用いられてきた前記レーザガラスの
場合の5〜10倍に相当する。また、Nd3+濃度、[N
d3+]も同様の倍率で増加している。この結果、強い励
起光に対しても発光強度を高めることができる。また、
フツリン酸塩ガラス母体は、リン酸塩ガラス母体より、
Yb3+からEr3+へのエネルギー伝達効率が高い(図
2)。In the laser glass of the present invention, Er 3+ concentration,
[Er 3+ ] is equivalent to 5 to 10 times that in the case of the laser glass used conventionally. Also, Nd 3+ concentration, [N
d 3+ ] also increases at a similar rate. As a result, the emission intensity can be increased even with strong excitation light. Also,
The fluorophosphate glass matrix is
The energy transfer efficiency from Yb 3+ to Er 3+ is high (Fig. 2).
【0010】[0010]
【実施例】以下、本発明を実施例に基づき、より詳しく
述べる。図1は、本発明を実施するための基礎データで
ある。すなわち、母体ガラスに発光中心であるEr3+を
単独付活した場合(白丸)と、Er3+に加えて増感剤で
あるYb3+を共付活した場合(黒丸)のEr3+1.54
μm 発光帯強度の濃度依存性を示す。励起光源はXeラ
ンプである。図1から[Er3+]が約3.5 cat%付近
で濃度消光の生ずることがわかる。図1のデータは、全
て同じ励起強度下で得られたもので、Yb3+の顕著な増
感効果が示されている。EXAMPLES The present invention will now be described in more detail based on examples. FIG. 1 shows basic data for carrying out the present invention. That, Er 3+ in the case of singly activated with Er 3+ is luminescence center base glass and (open circles), when co-activated with Yb 3+ which is a sensitizing agent in addition to the Er 3+ (closed circles) 1.54
It shows the concentration dependence of the intensity of the μm emission band. The excitation light source is a Xe lamp. It can be seen from FIG. 1 that concentration quenching occurs when [Er 3+ ] is around 3.5 cat%. The data in FIG. 1 were all obtained under the same excitation intensity, and show the remarkable sensitizing effect of Yb 3+ .
【0011】特に、Yb3+の増感は、[Er3+]が約
0.5 cat%以下の領域で著しい。この領域では、Er
3+の増大に伴なってYb3+からEr3+へエネルギー遷移
が増大するためと考えられる。逆に、[Er3+]が0.
5 cat%を越える領域では、Er3+からYb3+への逆エ
ネルギー伝達が顕著になり、増感効果が減少する。In particular, the sensitization of Yb 3+ is remarkable in the region where [Er 3+ ] is about 0.5 cat% or less. In this area, Er
It is considered that the energy transition from Yb 3+ to Er 3+ increases with the increase of 3+ . On the contrary, when [Er 3+ ] is 0.
In the region of more than 5 cat%, the reverse energy transfer from Er 3+ to Yb 3+ becomes remarkable, and the sensitizing effect decreases.
【0012】図1において、[Er3+]>2 cat%の領
域で一旦発光強度が増大するのは[Yb3+]が減少する
ためである([Yb3+]<2 cat%)。本実験では、デ
ータ蒐集の都合上[Er3+]+[Yb3+]=4 cat%と
した。この領域においても、Er3+からYb3+への逆エ
ネルギー伝達は顕著である。In FIG. 1, the emission intensity once increases in the region of [Er 3 + ]> 2 cat% because [Yb 3+ ] decreases ([Yb 3+ ] <2 cat%). In this experiment, [Er 3+ ] + [Yb 3+ ] = 4 cat% was set for the convenience of collecting data. Also in this region, the reverse energy transfer from Er 3+ to Yb 3+ is significant.
【0013】このように、[Er3+]が0.5 cat%を
越えるとYb3+への逆エネルギー伝達が顕著になるの
は、Er3+による励起光の吸収が増大し、それに伴って
増大するEr3+の発光スペクトルとYb3+の吸収スペク
トルの重なりが増大し、Er3+からYb3+への逆遷移が
増すためである。As described above, when [Er 3+ ] exceeds 0.5 cat%, the reverse energy transfer to Yb 3+ becomes remarkable because the absorption of the excitation light by Er 3+ increases, and overlap of the absorption spectrum of the emission spectrum and the Yb 3+ of Er 3+ increasing Te increases is to increase the reverse transition from Er 3+ to Yb 3+.
【0014】図1では、簡単のためにNd3+増感剤は、
共付活しなかった。次に、ガラス母体に、発光中心であ
るEr3+と増感剤のYb3+、Nd3+を共付活して0.8
μmのレーザダイオードおよび0.98μm のレーザダ
イオードにより、光励起を行なった。[Er3+]を0.
45 cat%、[Yb3+]を6.0 cat%とし、[N
d3+]を0〜0.5 cat%の領域で変化させ、一定の励
起条件下でEr3+の1.53μm 帯発光強度を調べた。
その結果、[Nd3+]が0.5 cat%以下の領域で[N
d3+]の増加と共に発光強度が増加することがわかっ
た。特に、[Nd3+]が0.3〜0.5 cat%の領域で
再現性の高い増感効果が得られた。In FIG. 1, for simplicity, the Nd 3+ sensitizer is
Did not co-activate. Next, Er 3+ , which is a luminescent center, and Yb 3+ and Nd 3+, which are sensitizers, were co-activated on the glass matrix to 0.8.
Photoexcitation was performed with a μm laser diode and a 0.98 μm laser diode. Set [Er 3+ ] to 0.
45 cat%, [Yb 3+ ] is 6.0 cat%,
d 3+ ] was changed in the range of 0 to 0.5 cat%, and the emission intensity of Er 3+ in the 1.53 μm band was examined under a constant excitation condition.
As a result, [Nd 3+ ] is [Nd 3+ ] in the region of 0.5 cat% or less.
It was found that the emission intensity increased with the increase of [d 3+ ]. In particular, a highly reproducible sensitizing effect was obtained in the region where [Nd 3+ ] was 0.3 to 0.5 cat%.
【0015】Nd3+、Yb3+およびEr3+のガラス母体
内での輻射遷移の確率は、Nd3+>Yb3+>Er3+の順
に減少し、また蛍光寿命はNd3+<Yb3+<Er3+の順
に増大する。それ故、Nd3+からEr3+への遷移確率に
比べて、Er3+からNd3+への遷移確率がはるかに高
い。このため、従来は[Nd3+]を0.05 cat%程度
に抑制していた。The radiative transition probability of Nd 3+ , Yb 3+ and Er 3+ in the glass matrix decreases in the order of Nd 3+ > Yb 3+ > Er 3+ , and the fluorescence lifetime is Nd 3+ < It increases in the order of Yb 3+ <Er 3+ . Therefore, as compared from Nd 3+ transition probability to the Er 3+, is much higher transition probability from Er 3+ to Nd 3+. Therefore, conventionally, [Nd 3+ ] was suppressed to about 0.05 cat%.
【0016】しかし、Yb3+をEr3+に対して10倍程
度の濃度で同時に共付活することによって、Yb3+から
Er3+へのエネルギー遷移が高い確率で生ずる。逆に、
Er3+からYb3+へのエネルギー遷移は、前記したよう
に[Er3+]が0.5 cat%以下の領域では非常に小さ
い。またEr3+を0.5%以下とすることによってEr
3+からNd3+へのエネルギー逆遷移を抑制しうると考え
られる。実験の結果、Yb3+の適当な濃度範囲は3.5
〜6 cat%であることがわかった。However, co-activating Yb 3+ with Er 3+ at a concentration about 10 times that of Er 3+ causes an energy transition from Yb 3+ to Er 3+ with a high probability. vice versa,
The energy transition from Er 3+ to Yb 3+ is very small in the region where [Er 3+ ] is 0.5 cat% or less as described above. Also, by making Er 3+ 0.5% or less, Er
It is thought that the energy reverse transition from 3+ to Nd 3+ can be suppressed. As a result of the experiment, the suitable concentration range of Yb 3+ is 3.5.
It was found to be ~ 6 cat%.
【0017】Yb、Nd共付活1.54μm 発光のEr
ガラスレーザ発光強度は、主として前記Yb3+→Er3+
遷移確率によって決まる。ガラス母体の種類を変えて、
Er3+の1.54μm 発光強度がどのように変化するか
を示したのが、図2である。図2では、各母体でY
b3+、Nd3+およびEr3+のドープ量をそれぞれ2、
0.3、1 cat%と一定にし、また、励起条件を同一に
している。図2から、従来用いられてきたリン酸塩ガラ
スより、フツリン酸塩ガラスの方が、高い発光強度を示
すことがわかる。図2では、珪酸塩ガラスを母体とした
場合、フツリン酸塩ガラスより高い発光強度が示されて
いる。しかし、珪酸塩ガラスは[Er3+]/[Yb3+]
のより小さい組成領域(0.25以下)ではフツリン酸
塩ガラスより低い発光強度を示す。Er with Yb and Nd co-activation of 1.54 μm emission
The glass laser emission intensity is mainly Yb 3+ → Er 3+
Determined by the transition probability. Changing the type of glass matrix,
FIG. 2 shows how the 1.54 μm emission intensity of Er 3+ changes. In Figure 2, Y
The doping amounts of b 3+ , Nd 3+ and Er 3+ are 2, respectively.
It was kept constant at 0.3 and 1 cat%, and the excitation conditions were the same. From FIG. 2, it can be seen that the fluorophosphate glass exhibits higher emission intensity than the conventionally used phosphate glass. In FIG. 2, when silicate glass is used as the base material, higher emission intensity than that of fluorophosphate glass is shown. However, silicate glass is [Er 3 + ] / [Yb 3+ ]
In the smaller composition region (0.25 or less), the emission intensity is lower than that of the fluorophosphate glass.
【0018】フツリン酸塩ガラス母体としてAl(PO
2 )3 ,Ba(PO3 )2 、AlF3 、YF3 ,MgF
2 、CaF2 、SrF2 およびBaF2 から成る組成の
ガラスを選択し、これにNd3+、Er3+をそれぞれ0.
3、0.5 cat%、Yb3+を6 cat%付活して本発明の
レーザガラスを作成した。As a fluorophosphate glass matrix, Al (PO 4
2 ) 3 , Ba (PO 3 ) 2 , AlF 3 , YF 3 , MgF
2. A glass having a composition consisting of Ca 2 , CaF 2 , SrF 2 and BaF 2 was selected, and Nd 3+ and Er 3+ were added to the glass.
The laser glass of the present invention was prepared by activating 3 , 0.5 cat% and 6 cat% of Yb 3+ .
【0019】次に得られた上記レーザガラスを共振器内
に設置し、0.8μm のレーザダイオードで光ポンピン
グしてEr3+の1.5μm 帯レーザを発振させ、レーザ
光強度を測定した。比較のために、同一励起条件下でH
OYA社のLEG30レーザガラスの光ポンピングも行
なった。LEG30では[Nd3+]は0.045 cat
%、[Er3+]は0.05 cat%、[Yb3+]は5 cat
%である。Next, the obtained laser glass was placed in a resonator and optically pumped by a 0.8 μm laser diode to oscillate an Er 3+ 1.5 μm band laser to measure the laser light intensity. For comparison, H under the same excitation conditions
Optical pumping of OYA LEG30 laser glass was also performed. In LEG30, [Nd 3+ ] is 0.045 cat
%, [Er 3+ ] is 0.05 cat%, [Yb 3+ ] is 5 cat
%.
【0020】この結果、LEG30の発振波長は1.5
08μm で出力6.09mV(電圧で測定)であったが、
本発明のレーザガラスは発振波長1.505μm 、出力
8.83〜8.96mVであった。すなわち、本発明のレ
ーザガラスでは、発光強度で約45%の改善がみられ
た。フツリン酸母体組成および[Er3+]と[N
d3+]、[Yb3+]を最適化することによって、更に高
出力の1.5μm 帯Erガラスレーザが得られる。As a result, the oscillation wavelength of LEG 30 is 1.5.
The output was 6.09 mV (measured by voltage) at 08 μm,
The laser glass of the present invention had an oscillation wavelength of 1.505 μm and an output of 8.83 to 8.96 mV. That is, in the laser glass of the present invention, the emission intensity was improved by about 45%. Fluorophosphate matrix composition and [Er 3+ ] and [N
By optimizing d 3+ ] and [Yb 3+ ], an even higher output 1.5 μm band Er glass laser can be obtained.
【0021】[0021]
【発明の効果】以上述べたように、本発明によれば従来
以上に高い光出力を有する1.5μm帯Erガラスレー
ザを構成することが出来、戸外での測距などに広く利用
することが出来る。As described above, according to the present invention, it is possible to construct a 1.5 μm band Er glass laser having a higher optical output than ever before, and it can be widely used for distance measurement outdoors. I can.
【図1】発光中心Er3+濃度最適化のためのデータであ
る。FIG. 1 is data for optimizing the concentration of emission center Er 3+ .
【図2】Yb、Nd共付活Er1.53μm 帯発光強度
のガラス母体依存性を示す図である。FIG. 2 is a graph showing the dependence of Yb and Nd co-activated Er1.53 μm band emission intensity on the glass matrix.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年6月25日[Submission date] June 25, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0020[Correction target item name] 0020
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0020】この結果、LEG30の発振波長は1.5
08μm で出力6.09mV(電圧で測定)であったが、
本発明のレーザガラスは発振波長1.505μm 、出力
8.83〜8.96mVであった。すなわち、本発明のレ
ーザガラスでは、発光強度で約45%の改善がみられ
た。ガラス母体として実施例で用いたガラス以外のフツ
リン酸塩ガラスを用いることもできる。このようなフツ
リン酸塩ガラスとして、例えば特公昭54−6047号
公報に記載された、P2 O5 −AlF3 −LiF、Na
F、KF−MgF2、CaF2 系ガラスや、特公昭58
−14379号公報に記載された、P2 O5−AlF3
(−YF3 )−BaF2 、SrF2 、CaF2 、MgF
2 (−NaF、LiF、KF)系ガラスや、特公昭61
−14093号公報に記載された、P 2 O5 −AlF3
(−YF3 )−BaF2 、SrF2 、CaF2 、MgF
2 (−NaF、KF、LiF)系ガラスなどが挙げられ
る。フツリン酸母体組成および[Er3+]と[N
d3+]、[Yb3+]を最適化することによって、更に高
出力の1.5μm 帯Erガラスレーザが得られる。As a result, the oscillation wavelength of LEG 30 is 1.5.
The output was 6.09 mV (measured by voltage) at 08 μm,
The laser glass of the present invention had an oscillation wavelength of 1.505 μm and an output of 8.83 to 8.96 mV. That is, in the laser glass of the present invention, the emission intensity was improved by about 45%. Foots other than the glass used in the examples as the glass matrix
Phosphate glass can also be used. Footage like this
As the phosphate glass, for example, Japanese Examined Patent Publication No. 54-6047
Publications described, P 2 O 5 -AlF 3 -LiF , Na
F, KF-MgF 2 , CaF 2 type glass and Japanese Patent Publication Sho 58
No. 14379, P 2 O 5 -AlF 3
(-YF 3) -BaF 2, SrF 2, CaF 2, MgF
2 (-NaF, LiF, KF) type glass and Japanese Patent Publication Sho 61
Described in -14093 JP, P 2 O 5 -AlF 3
(-YF 3) -BaF 2, SrF 2, CaF 2, MgF
2 (-NaF, KF, LiF) type glass, etc.
It Fluorophosphate matrix composition and [Er 3+ ] and [N
By optimizing d 3+ ] and [Yb 3+ ], an even higher output 1.5 μm band Er glass laser can be obtained.
Claims (1)
3+)を0.3〜0.5 cat%、増感剤としてイッテルビ
ウムイオン(Yb3+)を3.5〜6 cat%およびネオジ
ウムイオン(Nd3+)を0.3〜0.5 cat%含有する
フツリン酸塩ガラスから成るレーザガラス。1. An erbium ion (Er) as an emission center.
3+ ) 0.3-0.5 cat%, ytterbium ion (Yb 3+ ) 3.5-6 cat% and neodymium ion (Nd 3+ ) 0.3-0.5 cat as sensitizers. Laser glass consisting of fluorophosphate glass containing 100%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4071599A JPH05270857A (en) | 1992-03-27 | 1992-03-27 | Laser glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4071599A JPH05270857A (en) | 1992-03-27 | 1992-03-27 | Laser glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05270857A true JPH05270857A (en) | 1993-10-19 |
Family
ID=13465287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4071599A Withdrawn JPH05270857A (en) | 1992-03-27 | 1992-03-27 | Laser glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05270857A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001099244A1 (en) * | 2000-06-23 | 2001-12-27 | The Furukawa Electric Co., Ltd. | Light amplifying optical fiber and light amplifier using it |
JP2002536821A (en) * | 1999-01-27 | 2002-10-29 | ショット、グラス、テクノロジーズ、インコーポレイテッド | Optimization of rare earth content for waveguide lasers and amplifiers |
CN112010557A (en) * | 2020-09-09 | 2020-12-01 | 哈尔滨工程大学 | Transparent glass with middle infrared 3.5 mu m luminescence characteristic and preparation method thereof |
-
1992
- 1992-03-27 JP JP4071599A patent/JPH05270857A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002536821A (en) * | 1999-01-27 | 2002-10-29 | ショット、グラス、テクノロジーズ、インコーポレイテッド | Optimization of rare earth content for waveguide lasers and amplifiers |
JP2002536824A (en) * | 1999-01-27 | 2002-10-29 | ショット、グラス、テクノロジーズ、インコーポレイテッド | High power guided laser |
JP4832644B2 (en) * | 1999-01-27 | 2011-12-07 | ショット、グラス、テクノロジーズ、インコーポレイテッド | Rare earth content optimization for waveguide lasers and amplifiers |
WO2001099244A1 (en) * | 2000-06-23 | 2001-12-27 | The Furukawa Electric Co., Ltd. | Light amplifying optical fiber and light amplifier using it |
US6463201B2 (en) | 2000-06-23 | 2002-10-08 | The Furukawa Electric Co., Ltd. | Light amplification optical fiber and light amplifier using the same |
CN112010557A (en) * | 2020-09-09 | 2020-12-01 | 哈尔滨工程大学 | Transparent glass with middle infrared 3.5 mu m luminescence characteristic and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4962067A (en) | Erbium laser glass compositions | |
US5067134A (en) | Device for generating blue laser light | |
US5351335A (en) | Optical fiber for optical amplifier | |
RU2211812C2 (en) | Optic fiber for optical amplifier | |
US5244846A (en) | Optical functioning glass and apparatus using the same | |
US3731226A (en) | Laser using phosphate base laser glass | |
US3611188A (en) | Ytterbium laser device | |
JPWO2005011073A1 (en) | Fiber laser, spontaneous emission light source and optical fiber amplifier | |
US7298768B1 (en) | Thulium-doped heavy metal oxide glasses for 2UM lasers | |
EP0482630B1 (en) | Optical functioning glass, optical fiber waveguide device, and optically active device | |
JPH05270857A (en) | Laser glass | |
JP2908680B2 (en) | Upconversion laser material | |
JP2755280B2 (en) | Rare earth doped optical fiber for optical amplification | |
JP2772349B2 (en) | Optical fiber for optical amplifier | |
JP2007165762A (en) | Material and device for emitting visible light | |
JPH05270856A (en) | Laser glass | |
JP3149119B2 (en) | Optical fiber for optical amplification | |
JPH07226551A (en) | Rare earth ion doped short wavelength laser light source device and rare earth ion doped optical amplifier | |
JPH08208268A (en) | Laser glass and optical fiber | |
JPH0648768A (en) | Laser glass emitting light at 0.8mum wavelength | |
JPH06219775A (en) | Yb-doped laser glass | |
JPH0365522A (en) | Laser glass | |
JPH10509413A (en) | Heavy metal fluoride glass containing indium trifluoride | |
JPH06107431A (en) | 1.03mum light-emission nd-yd doped phosphate laser glass | |
JPH05319859A (en) | Wavelength variable fluoride laser glass doped with tm ion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990608 |