[go: up one dir, main page]

JPH0526795A - Strand compression test method and test equipment - Google Patents

Strand compression test method and test equipment

Info

Publication number
JPH0526795A
JPH0526795A JP2962891A JP2962891A JPH0526795A JP H0526795 A JPH0526795 A JP H0526795A JP 2962891 A JP2962891 A JP 2962891A JP 2962891 A JP2962891 A JP 2962891A JP H0526795 A JPH0526795 A JP H0526795A
Authority
JP
Japan
Prior art keywords
test piece
strand
test
compression
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2962891A
Other languages
Japanese (ja)
Inventor
Kenji Taniguchi
硯士 谷口
Hiroshi Toshima
宏 戸島
Eiki Tsushima
栄樹 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2962891A priority Critical patent/JPH0526795A/en
Publication of JPH0526795A publication Critical patent/JPH0526795A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials

Landscapes

  • Artificial Filaments (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

(57)【要約】 (修正有) 【構成】 所定フィラメント数からなる繊維束に熱硬化
性樹脂或は熱可塑性樹脂を含浸させ、これを成形、硬化
させて直径が30mm以下の円形断面を持つストランド
を作製し、硬化したストランドを10mm以上、300
mm以下の所定の長さに切断し、次いで、ストランドの
両端に接着剤を用いて金属性円筒状タブを接着して試験
片3を作製する。試験片の両端は下ホルダー4及び上ホ
ルダー5にて保持し、両ホルダー4、5はガイド手段6
にて摺動自在に案内される。 【効果】 少量の不連続短繊維にても試験片の作製が可
能で、しかも試験片の作製及び測定操作が簡便で長時間
を必要とせず、又、試験片及び試験冶具が小型で取り扱
い性に優れ、更に、測定誤差が少なく、再現性の高い、
ピッチ系、PAN系、レーヨン系などの炭素繊維、ガラ
ス繊維、その他種々の繊維及び複合材料の圧縮物性を求
めることができる。
(57) [Summary] (Modified) [Construction] A fiber bundle consisting of a predetermined number of filaments is impregnated with a thermosetting resin or a thermoplastic resin, which is molded and cured to have a circular cross section with a diameter of 30 mm or less. Strands are made and the cured strands are 10 mm or more, 300
A test piece 3 is produced by cutting the strand to a predetermined length of not more than mm, and then adhering metallic cylindrical tabs to both ends of the strand using an adhesive. Both ends of the test piece are held by a lower holder 4 and an upper holder 5, and both holders 4 and 5 are guide means 6.
Is slidably guided by. [Effect] A test piece can be produced even with a small amount of discontinuous short fibers, and the test piece production and measurement operations are simple and do not require a long time, and the test piece and test jig are small and easy to handle. Excellent in reproducibility with less measurement error.
Compressive physical properties of pitch-based, PAN-based, rayon-based carbon fibers, glass fibers, and other various fibers and composite materials can be determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般に、ピッチ系、P
AN系、レーヨン系などの炭素繊維、ガラス繊維、その
他種々の繊維の圧縮時の強度、弾性率、歪みなどの圧縮
物性、或は斯かる繊維を強化繊維とした複合材料の圧縮
物性を求めるための、樹脂含浸ストランド(以後単に
「ストランド」という。)圧縮試験法に関するものであ
る。
FIELD OF THE INVENTION The present invention generally relates to pitch systems, P
To obtain the compression properties of carbon fiber such as AN type and rayon type, glass fiber, and other various types of fibers, such as strength, elastic modulus and strain at the time of compression, or the compression physical properties of composite materials using such fibers as reinforcing fibers. The present invention relates to a resin-impregnated strand (hereinafter simply referred to as "strand") compression test method.

【0002】[0002]

【従来の技術】例えば、ピッチ系、PAN系、レーヨン
系などの炭素繊維の中、特に、高引張強度、高引張弾性
率を有する高性能炭素繊維は、宇宙・航空産業、エネル
ギー産業、自動車産業、建築産業、更にはスポーツ、レ
ジャー産業などの種々の産業分野にて、軽量且つ高強
度、高弾性の複合材料の素材としてその用途拡大が期待
されている。このように炭素繊維及びその複合材料を構
造用材料として用いる場合、その圧縮物性は引張物性と
同様に、時にはそれ以上に重要な物性であり、従って、
高引張物性と同時に高圧縮物性を有する炭素繊維の開発
が望まれている。
2. Description of the Related Art For example, among pitch-based, PAN-based, rayon-based carbon fibers, in particular, high-performance carbon fibers having high tensile strength and high tensile elastic modulus are used in the space / aviation industry, energy industry, automobile industry. In various industrial fields such as the building industry, sports and leisure industries, its application is expected to be expanded as a material of a composite material that is lightweight and has high strength and high elasticity. Thus, when carbon fiber and its composite material are used as structural materials, their compressive physical properties are, as with tensile properties, sometimes more important physical properties.
Development of carbon fiber having high tensile properties and high compression properties is desired.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現在、
炭素繊維の圧縮物性はその研究が進んでおらず、未だに
未解明の部分が多く残されている。その原因の一つに、
圧縮物性の正確な評価方法、即ち、圧縮試験法が十分に
整備されていないことが挙げられる。高圧縮特性を有す
る炭素繊維の開発には、繊維の圧縮物性の正確な評価が
必要不可欠である。
However, at the present time,
The study of compressed physical properties of carbon fiber has not progressed, and many unexplained parts remain. One of the causes is
The accurate evaluation method of the compression properties, that is, the compression test method is not sufficiently prepared. Accurate evaluation of the compressed physical properties of fibers is essential for the development of carbon fibers with high compression properties.

【0004】現在、我国では、炭素繊維或は炭素繊維強
化複合材料の圧縮試験法に関する規格はなく、欧米諸国
の規格に基づく試験法にて炭素繊維強化複合材料の圧縮
強度が求められ、炭素繊維の圧縮物性が評価されてい
る。しかしながら、これら試験法はそのいづれもが後述
するような問題点を有しており、定着するには至ってい
ない。
At present, there is no standard in Japan for the compression test method of carbon fiber or carbon fiber reinforced composite material, and the compressive strength of the carbon fiber reinforced composite material is required by the test method based on the standards of Western countries. The compressed physical properties of are evaluated. However, each of these test methods has problems as described below, and has not been established.

【0005】例えば、ASTM D3410(Celanese
法、IITRI 法)によれば、試験片は所定量の炭素繊維を
含有する板状の樹脂含浸複合材料が用いられる。例え
ば、 (1)先ず、エポキシ樹脂を含浸させた幅500mmの
一方向プリプレグ(シート)を製造し、これを300m
m×300mmに切り出したものを20枚積層し、オー
トクレープ中で130℃、2時間の熱処理を行って樹脂
を硬化させて厚さ2mmの積層板を得る。 (2)次いで、該積層板を幅(6.35mm)×厚(2
mm)×長さ(140mm)の短冊状に切り出し、エポ
キシ系接着剤を用いて両端にFRP製タブを接着する。
ことによって得られる。
For example, ASTM D3410 (Celanese
Method, IITRI method), a plate-shaped resin-impregnated composite material containing a specified amount of carbon fiber is used as the test piece. For example, (1) First, a unidirectional prepreg (sheet) with a width of 500 mm impregnated with an epoxy resin is manufactured,
20 pieces cut out into m × 300 mm are laminated and heat-treated at 130 ° C. for 2 hours in an autoclave to cure the resin to obtain a laminated plate having a thickness of 2 mm. (2) Next, the laminated plate is formed into a width (6.35 mm) × thickness (2
(mm) × length (140 mm) cut into strips, and FRP tabs are attached to both ends using an epoxy adhesive.
Obtained by

【0006】又、このようにして得られた試験片は、専
用の圧縮試験冶具、例えばCelanese法圧縮試験治具に装
着し、これを材料試験機に設置して、クロスヘッドにて
圧縮荷重を負荷し、最大荷重から圧縮強度が算出され
た。
Further, the test piece thus obtained is mounted on a dedicated compression test jig, for example, a Celanese method compression test jig, which is installed in a material testing machine, and a compression load is applied by a crosshead. The load was applied and the compressive strength was calculated from the maximum load.

【0007】このような圧縮試験法は、 (1)試験片の作製に大量の連続繊維を必要とする。 (2)試験片の成形、加工が困難で長時間を要する。 (3)試験片及び冶具が大型で形状が複雑なため取扱い
が不便である。 (4)測定操作が複雑で長時間を要する。 といった問題を有すると共に、 (5)試験片の寸法精度、表面加工状態の影響を受け易
いといった重大な問題を有している。即ち、この試験法
によれば、圧縮荷重を受ける試験片の部分は、長さが1
2.7mmとされ、クロスヘッドにて圧縮荷重を負荷し
た場合に、場合によってはこの部分が撓み、試験片に純
粋な一軸圧縮応力を付与することが困難であり、結果と
して、圧縮強度が小さめにでるという欠点があった。
Such a compression test method (1) requires a large amount of continuous fibers for producing a test piece. (2) Molding and processing of the test piece is difficult and requires a long time. (3) Handling is inconvenient because the test pieces and jigs are large and the shapes are complicated. (4) The measurement operation is complicated and requires a long time. In addition to the above problems, (5) there is a serious problem that the dimensional accuracy of the test piece and the surface processing state are easily affected. That is, according to this test method, the portion of the test piece that receives a compressive load has a length of 1
It is 2.7 mm, and when a compressive load is applied by the crosshead, this part bends in some cases, and it is difficult to give pure uniaxial compressive stress to the test piece, and as a result, the compressive strength is small. It had the drawback of leaving.

【0008】又、ASTM D695が炭素繊維の圧縮
物性評価試験法としてしばしば用いられる。この方法に
よると、試験片は両側面部分が平板にて拘束されるので
圧縮による変形が抑制され、結果として、圧縮強度が大
きめにでるという問題があった。
Further, ASTM D695 is often used as a test method for evaluating the compression properties of carbon fibers. According to this method, the test piece is constrained by flat plates on both side surfaces, so that deformation due to compression is suppressed, and as a result, there is a problem that the compressive strength is relatively large.

【0009】従って、本発明の目的は、上述した従来の
試験法に見られる問題点を全て解決して、少量の不連続
短繊維にても試験片の作製が可能で、しかも試験片の作
製及び測定操作が簡便で長時間を必要とせず、又、試験
片及び試験冶具が小型で取り扱い性に優れ、更に、測定
誤差が少なく、再現性の高い、ピッチ系、PAN系、レ
ーヨン系などの炭素繊維、ガラス繊維、その他種々の繊
維及び複合材料の圧縮物性を求めるための、ストランド
圧縮試験法及びそのための試験装置を提供することであ
る。
Therefore, an object of the present invention is to solve all the problems found in the above-mentioned conventional test methods, and to make a test piece even with a small amount of discontinuous short fibers, and to make a test piece. In addition, the measurement operation is simple and does not require a long time, the test piece and the test jig are small and easy to handle, and the measurement error is small and the reproducibility is high, such as pitch type, PAN type and rayon type. It is an object of the present invention to provide a strand compression test method and a test apparatus therefor for determining the compression properties of carbon fibers, glass fibers, and various other fibers and composite materials.

【0010】[0010]

【課題を解決するための手段】上記目的は本発明に係る
ストランド圧縮試験法及び試験装置にて達成される。要
約すれば、本発明は、(a)所定フィラメント数からな
る繊維束に熱硬化性樹脂或は熱可塑性樹脂を含浸させ、
これを成形、硬化させて直径が30mm以下の円形断面
を持つストランドを作製すること、(b)前記硬化した
ストランドを10mm以上、300mm以下の所定の長
さに切断し、該ストランドの両端に接着剤を用いて金属
性円筒状タブを接着し、試験片を作製すること、(c)
前記試験片の両端を下ホルダー及び上ホルダーにて保持
し、該両ホルダーを摺動自在に案内するガイド手段に装
着すること、(d)前記試験片に、前記上ホルダーを介
して、材料試験機のクロスヘッドにて圧縮荷重を負荷
し、圧縮荷重と試験片の長さ変位量を測定すること、
(e)前記圧縮荷重と試験片の長さ変位量に基づいて繊
維及び/又は複合材料の圧縮物性を算出すること、を特
徴とするストランド圧縮試験法である。
The above object can be achieved by the strand compression test method and test apparatus according to the present invention. In summary, the present invention comprises: (a) impregnating a fiber bundle having a predetermined number of filaments with a thermosetting resin or a thermoplastic resin,
This is molded and cured to produce a strand having a circular cross section with a diameter of 30 mm or less, (b) the cured strand is cut into a predetermined length of 10 mm or more and 300 mm or less, and adhered to both ends of the strand. Adhesively bonding the metallic cylindrical tabs to form a test piece, (c)
Both ends of the test piece are held by a lower holder and an upper holder and mounted on guide means for slidably guiding both holders, (d) a material test is performed on the test piece via the upper holder. Apply a compressive load with the machine crosshead and measure the compressive load and the length displacement of the test piece.
(E) A strand compression test method characterized in that the compressive physical properties of the fiber and / or the composite material are calculated based on the compression load and the amount of length displacement of the test piece.

【0011】更に、上記ストランド圧縮試験法は、所定
フィラメント数からなる繊維束に熱硬化性樹脂或は熱可
塑性樹脂を含浸させ、これを成形、硬化させて直径が3
0mm以下の円形断面を持つストランドを作製し、該硬
化したストランドを10mm以上、300mm以下の所
定の長さに切断し、次いで該ストランドの両端に接着剤
を用いて金属性円筒状タブを接着して作製された試験片
と、前記試験片の両端を保持する下ホルダー及び上ホル
ダーと、前記両ホルダーを摺動自在に案内するガイド手
段とを有することを特徴とするストランド圧縮試験装置
にて好適に実施される。
Further, in the above strand compression test method, a fiber bundle having a predetermined number of filaments is impregnated with a thermosetting resin or a thermoplastic resin, which is molded and cured to have a diameter of 3 mm.
A strand having a circular cross section of 0 mm or less is produced, the hardened strand is cut into a predetermined length of 10 mm or more and 300 mm or less, and then a metallic cylindrical tab is adhered to both ends of the strand with an adhesive. Suitable for a strand compression test apparatus characterized by having a test piece produced by the above, a lower holder and an upper holder for holding both ends of the test piece, and guide means for slidably guiding the both holders. Will be carried out.

【0012】[0012]

【実施例】次に、本発明に係るストランド圧縮試験法及
びそのための試験装置を図面に則して更に詳しく説明す
る。本実施例では、繊維としては炭素繊維を使用するも
のとして説明するが、本発明はこれに限定されるもので
はない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The strand compression test method and test equipment therefor according to the present invention will now be described in more detail with reference to the drawings. Although carbon fibers are used as the fibers in this embodiment, the present invention is not limited to this.

【0013】先ず、本発明に使用される試験片について
説明する。例えばピッチ系炭素繊維の場合には1000
〜3000フィラメント、PAN系炭素繊維の場合には
6000フィラメント程度の少量の炭素繊維からなる繊
維束に、熱硬化性樹脂或は熱可塑性樹脂を含浸させ、こ
れを成形、硬化させて直径(DS )が30mm以下、例
えば1mm程度の円形断面を持つストランドを作製す
る。次いで、この硬化したストランドを10mm以上、
300mm以下、通常30mm以上、150mm以下の
所定の長さに切断し、図1に図示するように、ストラン
ド1の両端に接着剤を用いて金属性円筒状タブ2を接着
し、試験片3が形成される。本発明の試験片にて、圧縮
荷重を受けて変形する部分(LS )は、100mm以
下、好ましくは5〜15mmとされ、通常5mmとされ
る。
First, the test piece used in the present invention will be described. For example, in the case of pitch-based carbon fiber, 1000
~ 3000 filaments, in the case of PAN-based carbon fibers, a fiber bundle consisting of a small amount of carbon fibers of about 6000 filaments is impregnated with a thermosetting resin or a thermoplastic resin, which is molded and cured to obtain a diameter (D S ) Is 30 mm or less, for example, a strand having a circular cross section of about 1 mm is produced. Then, the cured strand is 10 mm or more,
Cut to a predetermined length of 300 mm or less, usually 30 mm or more and 150 mm or less, and as shown in FIG. 1, the metallic cylindrical tabs 2 are bonded to both ends of the strand 1 using an adhesive, and the test piece 3 is It is formed. At the test piece of the present invention, the portion deformed by the compressive load (L S) is, 100 mm or less, is preferably a 5 to 15 mm, are usually 5 mm.

【0014】金属性円筒状タブ2は、任意の材料にて形
成し得るが、長さ(l)が30mm、内径(d1 )が1
mm、外径(d2 )が3mmとされるステンレススチー
ルパイプが好適に使用できる。
The metallic cylindrical tab 2 can be made of any material, but has a length (l) of 30 mm and an inner diameter (d 1 ) of 1.
mm, and a stainless steel pipe having an outer diameter (d 2 ) of 3 mm can be preferably used.

【0015】本発明に従ったストランド圧縮試験装置
は、図1に図示されるように、上述の如き構成とされる
試験片3の両端を保持する下ホルダー4及び上ホルダー
5と、該両ホルダー4、5を摺動自在に案内するガイド
手段6とを有する。下ホルダー4は、例えばステンレス
スチールなどで作製された円柱状の部材とされ、上面に
開口した試験片保持孔4aが形成される。上ホルダー5
は、下ホルダー4と同様に、例えばステンレススチール
などで作製された円柱状の部材とされ、下面に開口した
試験片保持孔5aを備え、上面には、詳しくは後述する
目的のための点荷重負荷用ボール7を担持するための円
錐状凹所5bが形成される。又、ガイド手段6は、任意
の構成とし得るが、本実施例では、例えばステンレスス
チールなどで作製された円筒状スリーブとされ、従っ
て、上記両円柱状ホルダー4、5が、該円筒状スリーブ
内に摺動自在に嵌合される。
As shown in FIG. 1, the strand compression test apparatus according to the present invention comprises a lower holder 4 and an upper holder 5 for holding both ends of a test piece 3 having the above-mentioned structure, and both holders. And a guide means 6 for slidably guiding 4. The lower holder 4 is a cylindrical member made of, for example, stainless steel, and has a test piece holding hole 4a formed in the upper surface thereof. Upper holder 5
Like the lower holder 4, is a columnar member made of, for example, stainless steel, has a test piece holding hole 5a opened on the lower surface, and the upper surface has a point load for the purpose described later in detail. A conical recess 5b for carrying the loading ball 7 is formed. Further, although the guide means 6 may have any configuration, in the present embodiment, it is a cylindrical sleeve made of, for example, stainless steel, so that both the cylindrical holders 4 and 5 are arranged in the cylindrical sleeve. Is slidably fitted to.

【0016】本発明を限定する目的ではなく、より理解
を容易とするために、具体的に数値を挙げて説明する
と、本実施例で、下ホルダー4の外径(DH)は15m
m、長さ(LH )は40mmとされ、試験片保持孔4a
は、金属性円筒状タブ2が円滑に挿入できる程度の孔径
とされ、その長さ(Lh )は25mmとされた。又、上
ホルダー5は、下ホルダー4と同じ形状寸法とされ、た
だ上面に深さ4mmの円錐状凹所5bが穿設された。ガ
イド手段である円筒状スリーブ6は、両ホルダー4、5
が円滑に摺動できる程度の孔径を有した、外径(DG
が20mm、長さ(LG )が80mmとされた。
For the purpose of facilitating the understanding and not for limiting the present invention, the numerical value will be specifically described. In this embodiment, the outer diameter (D H ) of the lower holder 4 is 15 m.
m, length (L H ) is 40 mm, and the test piece holding hole 4a
Has a hole diameter such that the metallic cylindrical tab 2 can be smoothly inserted, and its length (L h ) is 25 mm. Further, the upper holder 5 has the same shape and size as the lower holder 4, and only a conical recess 5b having a depth of 4 mm is formed on the upper surface. The cylindrical sleeve 6 as the guide means is provided with the holders 4, 5
The outside diameter (D G ) is such that the hole can slide smoothly.
Was 20 mm and the length (L G ) was 80 mm.

【0017】このように構成された、本発明の試験装置
は、材料試験機の固定台101に設置され、試験片3に
は、点荷重負荷用ボール7及び上ホルダー5を介して、
材料試験機のクロスヘッド102にて圧縮荷重が負荷さ
れる。クロスヘッド102の移動速度は、通常1mm/
分程度が好適である。
The test apparatus of the present invention thus constructed is installed on the fixed base 101 of the material testing machine, and the test piece 3 is mounted on the test piece 3 via the point load ball 7 and the upper holder 5.
A compressive load is applied by the crosshead 102 of the material testing machine. The moving speed of the crosshead 102 is usually 1 mm /
Minutes are suitable.

【0018】繊維の圧縮強度(σf )及び複合材料の圧
縮強度(σc )は、上記圧縮試験における最大荷重から
次式にて算出される。
The compressive strength (σ f ) of the fiber and the compressive strength (σ c ) of the composite material are calculated by the following formula from the maximum load in the compression test.

【0019】 σf =P/Af =(Pmax +w)×ρ/T×1000 (1) σc =σf ×Vf =(Pmax +w)×ρ/T×1000×Vf (2) ここで、P :総荷重(kg) Pmax :最大荷重(kg) w :上部治具重量(kg) Af :繊維の全断面積(mm2 ) ρ :繊維の密度(g/cm3 ) T :繊維の繊度(mg/m) Vf :繊維の体積含有率Σ f = P / A f = (P max + w) × ρ / T × 1000 (1) σ c = σ f × V f = (P max + w) × ρ / T × 1000 × V f (2 ) Where P: total load (kg) P max : maximum load (kg) w: upper jig weight (kg) A f : total fiber cross-sectional area (mm 2 ) ρ: fiber density (g / cm 3). ) T: Fiber fineness (mg / m) V f : Fiber volume content

【0020】又、繊維の体積含有率Vf =60%とする
と、 σc =(Pmax +w)×ρ/T×1000×0.6 (3)
If the volume content of the fiber is V f = 60%, then σ c = (P max + w) × ρ / T × 1000 × 0.6 (3)

【0021】更に、繊維の圧縮弾性率(Ef )及び圧縮
歪み(εf )、並びに複合材料の圧縮弾性率(Ec )及
び圧縮歪み(εc )は、上記圧縮試験にて得られた荷重
−変位曲線から次式にて算出される。尤も、繊維の圧縮
歪み(εf )と複合材料の圧縮歪み(εc )は実質的に
同じと考えられるので、εf =εc =εである。
Further, the compressive elastic modulus (E f ) and compressive strain (ε f ) of the fiber, and the compressive elastic modulus (E c ) and compressive strain (ε c ) of the composite material were obtained by the above compression test. It is calculated from the load-displacement curve by the following formula. However, since the compressive strain of the fiber (ε f ) and the compressive strain of the composite material (ε c ) are considered to be substantially the same, ε f = ε c = ε.

【0022】 Ef =△P/(Af ・△ε) (4) Ec =Ef ×Vf ={△P/(Af ・△ε)}×Vf (5) ここで、△P :荷重の増加分(kg) △ε :歪みの増加分 Af :繊維の全断面積(mm2 ) Vf :繊維の体積含有率E f = ΔP / (A f · Δε) (4) E c = E f × V f = {ΔP / (A f · Δε)} × V f (5) where Δ P: Increase in load (kg) Δε: Increase in strain A f : Total cross-sectional area of fiber (mm 2 ) V f : Volume content of fiber

【0023】次に、実施例について、本発明をより具体
的に説明する。
Next, the present invention will be described more specifically with reference to examples.

【0024】実施例1 ピッチ系超高弾性炭素繊維(引張弾性率約700GP
a、引張強度約3.5GPa)の連続長繊維を用いて、
JIS.R7601「炭素繊維試験方法6.6.2樹脂
含浸ストランドの試験」に定めるところの方法及び樹脂
含浸装置により、ストランドを作製した。
Example 1 Pitch-based super high elasticity carbon fiber (tensile modulus of about 700 GP
a, continuous long fibers having a tensile strength of about 3.5 GPa),
JIS. Strands were produced by the method and resin impregnating apparatus defined in R7601 "Test method for carbon fiber test method 6.6.2 Test of resin-impregnated strand".

【0025】つまり、一定張力下にある1000フィラ
メントからなる試料繊維束にエポキシ樹脂溶液を含浸さ
せた。このときエポキシ樹脂が試料の単繊維間によく滲
み込むように、試料繊維束はジグザグに配列した自由回
転するローラ間を波状に通過させた。又、樹脂付着量を
調節するために、ダイスを通過させるか或は余分の樹脂
を吸収する能力のある紙、不織布若しくは織物を巻き付
けたローラを通過させた。樹脂が含浸された試料繊維
束、即ちストランドを硬化用枠(ワインダ)に巻き取
り、試料ストランドを直線状に保持した状態で乾燥器で
加熱硬化した。硬化したストランドは、長さ300mm
に切断した。又、このストランドは直径1mmの円形断
面とされた。
That is, a sample fiber bundle consisting of 1000 filaments under constant tension was impregnated with an epoxy resin solution. At this time, the sample fiber bundle was made to pass between the freely rotating rollers arranged in a zigzag pattern so that the epoxy resin was well permeated between the single fibers of the sample. In addition, in order to adjust the amount of resin adhered, it was passed through a die or a roller wrapped with paper, non-woven fabric or woven fabric capable of absorbing excess resin. The resin-impregnated sample fiber bundle, that is, the strand, was wound around a curing frame (winder), and the sample strand was held in a straight line and heat-cured in a dryer. Cured strands have a length of 300 mm
Disconnected. The strand had a circular cross section with a diameter of 1 mm.

【0026】次いで、ストランド1の両端にエポキシ系
接着剤を用いて、長さ(l)が30mm、内径(d1
が1mm、外径(d2 )が3mmとされるステンレスス
チールパイプにて形成された金属性円筒状タブ2を接着
し、試験片3を作製した。試験片3のストランド露出部
(LS )は5mmであった。
Next, using epoxy adhesives on both ends of the strand 1, the length (l) is 30 mm and the inner diameter (d 1 ).
And a metal cylindrical tab 2 formed of a stainless steel pipe having an outer diameter (d 2 ) of 1 mm and an outer diameter (d 2 ) of 3 mm were adhered to prepare a test piece 3. The exposed strand portion (L S ) of the test piece 3 was 5 mm.

【0027】このようにして作製した試験片3の両端を
それぞれ、下ホルダー4及び上ホルダー5に取付け、両
ホルダー4、5を円筒状スリーブ6内に挿入した。両ホ
ルダー4、5は外径(DH )が15mm、長さ(LH
が40mmのステンレススチールにて作製し、ステンレ
ススチール製の円筒状スリーブ6中に装着した。
Both ends of the thus-prepared test piece 3 were attached to the lower holder 4 and the upper holder 5, respectively, and both holders 4 and 5 were inserted into the cylindrical sleeve 6. Both holders 4 and 5 have an outer diameter (D H ) of 15 mm and a length (L H ).
Was made of 40 mm stainless steel and mounted in a stainless steel cylindrical sleeve 6.

【0028】このように組み立てられた試験装置を、材
料試験機の固定台101に設置し、材料試験機のクロス
ヘッド102にて、点荷重負荷用ボール7及び上ホルダ
ー5を介して、試験片3に圧縮荷重を負荷した。クロス
ヘッド102の移動速度は1mm/分とした。
The test apparatus assembled in this way is installed on the fixed base 101 of the material tester, and the crosshead 102 of the material tester is used to insert the test piece through the point load ball 7 and the upper holder 5. A compressive load was applied to 3. The moving speed of the crosshead 102 was 1 mm / min.

【0029】上記式(1)、(3)、(4)、(5)よ
り算出した結果、複合材料の圧縮強度(σc )は41k
g/mm2 、圧縮弾性率(Ec )は33ton/mm2
であった。本測定作業に費やした時間は、試験片作製が
8時間、測定が4時間であった。
As a result of calculation from the above equations (1), (3), (4) and (5), the compressive strength (σ c ) of the composite material is 41 k.
g / mm 2 , compression modulus (E c ) is 33 ton / mm 2
Met. The time spent for the main measurement work was 8 hours for producing the test piece and 4 hours for the measurement.

【0030】比較例1 実施例1と同一の繊維を用いて、エポキシ樹脂を含浸さ
せた幅500mmの一方向プリプレグ(シート)を製造
し、これを300mm×300mmに切り出したものを
20枚積層し、オートクレープ中で130℃、2時間の
熱処理を行って樹脂を硬化させ、厚さ2mmの積層板を
得た。該積層板を6.6mm×3.8mm×140mm
の短冊状に切り出し、エポキシ系接着剤を用いて両端に
FRP製タブを接着し、試験片を作製した。この試験片
をCelanese法圧縮試験治具に装着し、材料試験機に設置
し、ASTM D3410の規格に従った圧縮試験を行
なった。クロスヘッド移動速度は1mm/分であった。
上記式(1)、(3)、(4)、(5)に従って、圧縮
強度及び圧縮弾性率を算出した。得られた圧縮強度は4
2kg/mm2 、圧縮弾性率は32ton/mm2 であ
った。本測定作業に費やした時間は、試験片作製24時
間、測定8時間であった。
Comparative Example 1 Using the same fibers as in Example 1, a unidirectional prepreg (sheet) having a width of 500 mm impregnated with an epoxy resin was manufactured, and 20 pieces cut out into 300 mm × 300 mm were laminated. The resin was cured by heat treatment at 130 ° C. for 2 hours in an autoclave to obtain a laminated plate having a thickness of 2 mm. The laminated plate is 6.6 mm x 3.8 mm x 140 mm
Was cut into strips and FRP tabs were attached to both ends using an epoxy adhesive to prepare test pieces. The test piece was mounted on a Celanese method compression test jig, installed in a material testing machine, and subjected to a compression test according to the standard of ASTM D3410. The crosshead moving speed was 1 mm / min.
The compressive strength and the compressive elastic modulus were calculated according to the above formulas (1), (3), (4) and (5). The compressive strength obtained is 4
It was 2 kg / mm 2 and the compression modulus was 32 ton / mm 2 . The time spent for the main measurement work was 24 hours for producing the test piece and 8 hours for the measurement.

【0031】実施例2 PAN系高強度炭素繊維(引張弾性率約235GPa、
引張強度3.2GPa)の連続長繊維を用いて、実施例
1と同様の方法、条件にてストランド試験片を作製し、
同様にして圧縮試験を行い、圧縮強度及び圧縮弾性率を
求めた。圧縮強度は156kg/mm2 、圧縮弾性率は
15ton/mm2であった。本作業に費やした時間
は、試験片作製8時間、測定4時間であった。
Example 2 PAN-based high strength carbon fiber (tensile modulus of about 235 GPa,
A continuous strand fiber having a tensile strength of 3.2 GPa) was used to prepare a strand test piece under the same method and conditions as in Example 1,
A compression test was conducted in the same manner, and the compression strength and the compression elastic modulus were obtained. The compressive strength was 156 kg / mm 2 , and the compressive elastic modulus was 15 ton / mm 2 . The time spent for this work was 8 hours for producing the test piece and 4 hours for the measurement.

【0032】比較例2 実施例2と同一の繊維を用いて、比較例1と同様の方
法、条件にてストランド試験片を作製し、同様にして圧
縮試験を行い、圧縮強度及び圧縮弾性率を求めた。圧縮
強度は147kg/mm2 、圧縮弾性率は13ton/
mm2 であった。本作業に費やした時間は、試験片作製
24時間、測定8時間であった。
Comparative Example 2 Using the same fibers as in Example 2, a strand test piece was prepared under the same method and conditions as in Comparative Example 1, and a compression test was conducted in the same manner to determine the compression strength and compression elastic modulus. I asked. Compressive strength is 147 kg / mm 2 , compressive elastic modulus is 13 ton /
It was mm 2 . The time spent for this work was 24 hours for producing the test piece and 8 hours for the measurement.

【0033】実施例3 実施例1と同じ炭素繊維の、長さ70mmの不連続短繊
維を用い、この繊維をエポキシ樹脂中に浸漬し、金属或
はプラスチック製のストランド含浸成形装置中にて繊維
を一方向に配列させ、そのままの状態で乾燥器で加熱硬
化させた後、取り出して直径1mmの円形断面を持つ、
長さ70mmのストランド片を作製した。
Example 3 The same carbon fiber as in Example 1 was used as a discontinuous short fiber having a length of 70 mm, the fiber was dipped in an epoxy resin, and the fiber was placed in a metal or plastic strand impregnation molding apparatus. Are arranged in one direction, heat-cured as it is in a dryer, then taken out and have a circular cross section with a diameter of 1 mm,
A strand piece having a length of 70 mm was produced.

【0034】以下、実施例1と同様の方法で試験片を作
成し、実施例1と同様の条件でストランド圧縮試験を行
った。得られた圧縮強度は40kg/mm2 、圧縮弾性
率は33ton/mm2 であった。本作業に費やした時
間は、試験片作製が8時間、測定が4時間であった。
A test piece was prepared in the same manner as in Example 1 and a strand compression test was conducted under the same conditions as in Example 1. The obtained compressive strength was 40 kg / mm 2 and the compressive elastic modulus was 33 ton / mm 2 . The time spent for this work was 8 hours for producing the test piece and 4 hours for the measurement.

【0035】実施例4 実施例2に用いたのと同じ炭素繊維の、長さ70mm不
連続短繊維を用い、実施例3と同様の方法にてストラン
ド試験片を作製し、実施例1と同様の方法、条件にて圧
縮試験を行った。得られた圧縮強度は150kg/mm
2 、圧縮弾性率は14ton/mm2 であった。本作業
に費やした時間は、試験片作製8時間、測定4時間であ
った。
Example 4 A strand test piece was prepared in the same manner as in Example 3 using the discontinuous short fibers having a length of 70 mm of the same carbon fiber as that used in Example 2, and the same as in Example 1. A compression test was performed under the method and conditions described in 1. The compressive strength obtained is 150 kg / mm
2 , the compression modulus was 14 ton / mm 2 . The time spent for this work was 8 hours for producing the test piece and 4 hours for the measurement.

【0036】[0036]

【発明の効果】以上説明したように、本発明に係るスト
ランド圧縮試験法及び試験装置によれば、少量の不連続
短繊維にても試験片の作製が可能で、しかも試験片の作
製及び測定操作が簡便で長時間を必要とせず、又、試験
片及び試験冶具が小型で取り扱い性に優れ、更に、測定
誤差が少なく、再現性の高い、ピッチ系、PAN系、レ
ーヨン系などの炭素繊維、ガラス繊維、その他種々の繊
維及び複合材料の圧縮物性を求めることができる。
As described above, according to the strand compression test method and the test apparatus according to the present invention, it is possible to prepare a test piece even with a small amount of discontinuous short fibers, and further, to prepare and measure the test piece. Carbon fiber such as pitch-based, PAN-based, rayon-based carbon fiber that is easy to operate and does not require a long time, and that the test piece and test jig are small and easy to handle, and that there are few measurement errors and high reproducibility. The compressive physical properties of glass, glass fiber, and various other fibers and composite materials can be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るストランド圧縮試験試験装置の断
面図である。
FIG. 1 is a cross-sectional view of a strand compression test test apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 :ストランド 2 :金属性円筒状タブ 3 :試験片 4、5 :ホルダー 6 :ガイド手段 7 :点荷重用負荷用ボール 1: Strand 2: Metallic cylindrical tab 3: Test piece 4, 5: Holder 6: Guide means 7: Load ball for point load

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)所定フィラメント数からなる繊維
束に熱硬化性樹脂或は熱可塑性樹脂を含浸させ、これを
成形、硬化させて直径が30mm以下の円形断面を持つ
ストランドを作製すること、(b)前記硬化したストラ
ンドを10mm以上、300mm以下の所定の長さに切
断し、該ストランドの両端に接着剤を用いて金属性円筒
状タブを接着し、試験片を作製すること、(c)前記試
験片の両端を下ホルダー及び上ホルダーにて保持し、該
両ホルダーを摺動自在に案内するガイド手段に装着する
こと、(d)前記試験片に、前記上ホルダーを介して、
材料試験機のクロスヘッドにて圧縮荷重を負荷し、圧縮
荷重と試験片の長さ変位量を測定すること、(e)前記
圧縮荷重と試験片の長さ変位量に基づいて繊維及び/又
は複合材料の圧縮物性を算出すること、を特徴とするス
トランド圧縮試験法。
1. (a) A fiber bundle consisting of a predetermined number of filaments is impregnated with a thermosetting resin or a thermoplastic resin, which is molded and cured to produce a strand having a circular cross section with a diameter of 30 mm or less. (B) cutting the hardened strand into a predetermined length of 10 mm or more and 300 mm or less, and adhering metal cylindrical tabs to both ends of the strand with an adhesive to prepare a test piece, c) holding both ends of the test piece by a lower holder and an upper holder, and mounting the both holders on guide means for slidably guiding them; (d) attaching the test piece to the test piece through the upper holder;
A compressive load is applied by the crosshead of the material testing machine to measure the compressive load and the length displacement of the test piece, and (e) the fiber and / or the fiber based on the compressive load and the length displacement of the test piece. A method for strand compression test, which comprises calculating a compression property of a composite material.
【請求項2】 所定フィラメント数からなる繊維束に熱
硬化性樹脂或は熱可塑性樹脂を含浸させ、これを成形、
硬化させて直径が30mm以下の円形断面を持つストラ
ンドを作製し、該硬化したストランドを10mm以上、
300mm以下の所定の長さに切断し、次いで、該スト
ランドの両端に接着剤を用いて金属性円筒状タブを接着
して作製された試験片と、前記試験片の両端を保持する
下ホルダー及び上ホルダーと、前記両ホルダーを摺動自
在に案内するガイド手段とを有することを特徴とするス
トランド圧縮試験装置。
2. A fiber bundle having a predetermined number of filaments is impregnated with a thermosetting resin or a thermoplastic resin, and this is molded,
By curing, a strand having a circular cross section with a diameter of 30 mm or less is produced, and the cured strand is 10 mm or more,
A test piece produced by cutting a predetermined length of 300 mm or less and then adhering metallic cylindrical tabs to both ends of the strand with an adhesive, and a lower holder for holding both ends of the test piece, and A strand compression test apparatus comprising an upper holder and guide means for slidably guiding the both holders.
JP2962891A 1991-01-29 1991-01-29 Strand compression test method and test equipment Pending JPH0526795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2962891A JPH0526795A (en) 1991-01-29 1991-01-29 Strand compression test method and test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2962891A JPH0526795A (en) 1991-01-29 1991-01-29 Strand compression test method and test equipment

Publications (1)

Publication Number Publication Date
JPH0526795A true JPH0526795A (en) 1993-02-02

Family

ID=12281355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2962891A Pending JPH0526795A (en) 1991-01-29 1991-01-29 Strand compression test method and test equipment

Country Status (1)

Country Link
JP (1) JPH0526795A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2284311A1 (en) * 2005-03-30 2007-11-01 Trenzas Y Cables De Acero P.S.C., S.L. Testing method for traction on cords for pretension, involves measuring deformation of cord under effort applied, where displacement among external longitudinal wires and central wire cord is measured in relation to effort applied
JP2019035627A (en) * 2017-08-10 2019-03-07 国立研究開発法人産業技術総合研究所 Compression test jig, resin-impregnated strand compression test piece, compression test piece preparation jig, and compression test method
JP2022009532A (en) * 2017-08-10 2022-01-14 国立研究開発法人産業技術総合研究所 Compression test jig, resin impregnated strand compression test piece, and compression test piece manufacturing jig

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2284311A1 (en) * 2005-03-30 2007-11-01 Trenzas Y Cables De Acero P.S.C., S.L. Testing method for traction on cords for pretension, involves measuring deformation of cord under effort applied, where displacement among external longitudinal wires and central wire cord is measured in relation to effort applied
ES2284311B1 (en) * 2005-03-30 2008-09-16 Trenzas Y Cables De Acero P.S.C., S.L. PROCEDURE FOR TRACTION TEST ON CORDS FOR PRETESADO.
JP2019035627A (en) * 2017-08-10 2019-03-07 国立研究開発法人産業技術総合研究所 Compression test jig, resin-impregnated strand compression test piece, compression test piece preparation jig, and compression test method
JP2022009532A (en) * 2017-08-10 2022-01-14 国立研究開発法人産業技術総合研究所 Compression test jig, resin impregnated strand compression test piece, and compression test piece manufacturing jig

Similar Documents

Publication Publication Date Title
Chiao et al. Measurement of shear properties of fibre composites: Part 1. Evaluation of test methods
US6261675B1 (en) Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
Botelho et al. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites
Adams et al. The dynamic properties of unidirectional carbon and glass fiber reinforced plastics in torsion and flexure
Ladizesky et al. Ultra-high-modulus polyethylene fibre composites: I—The preparation and properties of conventional epoxy resin composites
Cui et al. Interlaminar tensile strength (ILTS) measurement of woven glass/polyester laminates using four-point curved beam specimen
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
Chavan et al. Study on vibration analysis of composite plate
Jenny et al. Formability of textile preforms for composite applications. Part 1: Characterization experiments
US5916682A (en) Carbon fiber reinforced composite material
JPH0526795A (en) Strand compression test method and test equipment
Walsh et al. Mechanical properties of zylon/epoxy composite at 295K and 77 K
Fila et al. Work of fracture of fibre-reinforced polymers
US20150182824A1 (en) Shaft made of fiber-reinforced composite material
Soutis Compression testing of pultruded carbon fibre-epoxy cylindrical rods
JPH11123782A (en) Tubular body made of fiber reinforced composite material
US5098688A (en) Carbon fibres
Chiao et al. Tensile properties of PRD-49 fiber in epoxy matrix
Zic et al. Mechanical properties of composite panels reinforced with integrally woven 3-D fabrics
Rosen et al. Hollow glass fiber reinforced plastics
Dauksys et al. Properties of Graphite Fiber Nonmetallic Matrix Composites
Newaz Influence of matrix material on flexural fatigue performance of unidirectional composites
JPH09277389A (en) Hollow shaft with taper
Guess et al. End-grip configurations for axial loading of composite tubes: The influence of two gripping methods on stress (strain) distribution within tubular composite specimens loaded in uniaxial and biaxial tension are examined by finite-element analysis and strain-gage measurements
Hayakawa et al. Sonic modulus in fiber-axis direction of carbon fibers 1