[go: up one dir, main page]

JPH05266892A - Method for producing electrode material for solid oxide fuel cell - Google Patents

Method for producing electrode material for solid oxide fuel cell

Info

Publication number
JPH05266892A
JPH05266892A JP4093516A JP9351692A JPH05266892A JP H05266892 A JPH05266892 A JP H05266892A JP 4093516 A JP4093516 A JP 4093516A JP 9351692 A JP9351692 A JP 9351692A JP H05266892 A JPH05266892 A JP H05266892A
Authority
JP
Japan
Prior art keywords
powder
electrode material
sol
ions
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4093516A
Other languages
Japanese (ja)
Other versions
JP3117781B2 (en
Inventor
Kiyoshi Okumura
清志 奥村
Yuzo Yamamoto
雄三 山本
Takehisa Fukui
武久 福井
Shinji Takeuchi
伸二 竹内
Masatoshi Hattori
雅俊 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Original Assignee
FINE CERAMICS CENTER
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER, Kansai Electric Power Co Inc, Chubu Electric Power Co Inc filed Critical FINE CERAMICS CENTER
Priority to JP04093516A priority Critical patent/JP3117781B2/en
Publication of JPH05266892A publication Critical patent/JPH05266892A/en
Application granted granted Critical
Publication of JP3117781B2 publication Critical patent/JP3117781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

(57)【要約】 【目的】 作製工程を簡略化し得て、かつ作製工程での
不純物の混入を少くすることができ、かつ固体電解質型
燃料電池に適用した場合、電極特性としての分極値を低
下させて長期の安定性に優れた燃料極となし得る、燃料
極材料の作製方法を提供すること。 【構成】 酢酸ニッケル4水和物の0.25mol/リ
ットル水溶液1リットルを用意し、これに、8mol%
2 3 安定化ZrO2 (8YSZ)のゾル(20wt
%ゾル)をNi/8YSZのモル比が68/32になる
ように加えて混合し、これを滴下熱分解法により750
℃で熱処理後、粗解砕して燃料極材料粉末を得る。次い
で、この粉末をアルミナ坩堝中に入れ、電気炉にて10
00℃、24時間仮焼し粗解砕して燃焼極材料粉末を得
る。
(57) [Abstract] [Purpose] The manufacturing process can be simplified, impurities can be less mixed in the manufacturing process, and when applied to a solid oxide fuel cell, the polarization value as an electrode characteristic can be reduced. To provide a method for producing a fuel electrode material which can be lowered to form a fuel electrode excellent in long-term stability. [Structure] 1 liter of a 0.25 mol / liter aqueous solution of nickel acetate tetrahydrate was prepared, and 8 mol%
Y 2 O 3 stabilized ZrO 2 (8YSZ) sol (20 wt
% Sol) was added and mixed so that the molar ratio of Ni / 8YSZ was 68/32, and this was mixed by a dropping thermal decomposition method for 750
After heat treatment at ℃, it is roughly crushed to obtain a fuel electrode material powder. Next, this powder was put into an alumina crucible and heated in an electric furnace for 10
It is calcined at 00 ° C for 24 hours and coarsely crushed to obtain a combustion electrode material powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体電解質型燃料電池
用電極材料の作製方法に関し、詳しくは、固体電解質型
燃料電池用の燃料極材料、及び空気極材料の作製方法に
係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material for a solid oxide fuel cell, and more particularly to a method for producing a fuel electrode material and an air electrode material for a solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来、固体電解質型燃料電池(以下、S
OFCと言う。)の燃料極(燃料側電極)にはニッケル
(Ni),コバルト(Co),ルテニウム(Ru)等の
金属と、酸化ジルコニウム(ZrO2 ),酸化セリウム
(CeO2 )等の混合物(サーメット)が使用されてい
る。 (イ)この燃料極の作製方法は、例えばNi−ZrO2
サーメットの場合、酸化ニッケル又は金属ニッケルの粉
末とジルコニア粉末をポットミルや乳鉢などを使って混
合し、この粉末をスラリー又はペースト状として固体電
解質基体上に塗布または印刷して焼成する工程、或いは
この粉末を固体電解質基体上に直接溶射する工程にて行
なわれている。 (ロ)また、燃料極用のNi−ZrO2 サーメットは電
気化学蒸着(EVD)によって作製する方法がある。こ
の方法はニッケルとジルコニウムの混合過程と電極成膜
を同時に行うことができ、ニッケルとジルコニウムの分
散性が良く分極値が小さく、また長期安定性にも比較的
優れている。
2. Description of the Related Art Conventionally, solid oxide fuel cells (hereinafter referred to as S
It is called OFC. ), The fuel electrode (fuel side electrode) contains a mixture of metal such as nickel (Ni), cobalt (Co), ruthenium (Ru) and zirconium oxide (ZrO 2 ), cerium oxide (CeO 2 ) (cermet). It is used. (B) The method for producing this fuel electrode is, for example, Ni-ZrO 2
In the case of cermet, a step of mixing nickel oxide or metallic nickel powder and zirconia powder using a pot mill or a mortar, applying or printing the powder as a slurry or paste on a solid electrolyte substrate, or firing the powder. Is directly sprayed onto the solid electrolyte substrate. (B) Further, there is a method of producing the Ni—ZrO 2 cermet for the fuel electrode by electrochemical vapor deposition (EVD). According to this method, the mixing process of nickel and zirconium and the electrode film formation can be performed at the same time, the dispersibility of nickel and zirconium is good, the polarization value is small, and the long-term stability is relatively excellent.

【0003】一方、従来のSOFCの空気極(空気側電
極)には、アルカリ土類元素でドープされたLaMnO
3 ,LaFeO3 ,LaCoO3 ,LaNiO3 ,La
CrO3 等のペロブスカイト酸化物が使用されており、
さらに、電解質との熱膨張の整合性を図るため或いは電
極活性を向上させるために、これら酸化物とイットリア
安定化ジルコニア等の酸化物との混合物が使用されてい
る。 (ハ)この空気極の作製方法はペロブスカイト酸化物の
粉末とジルコニア粉末をポットミルや乳鉢などを使って
混合し、この粉末をスラリー又はペースト状として固体
電解質基体上に塗布或いはスクリーン印刷し、その後、
焼成して電極とされる。
On the other hand, the air electrode (air-side electrode) of the conventional SOFC has LaMnO doped with an alkaline earth element.
3 , LaFeO 3 , LaCoO 3 , LaNiO 3 , La
Perovskite oxide such as CrO 3 is used,
Further, a mixture of these oxides and an oxide such as yttria-stabilized zirconia is used in order to match the thermal expansion with the electrolyte or to improve the electrode activity. (C) This air electrode is prepared by mixing the powder of perovskite oxide and the zirconia powder using a pot mill or a mortar, and coating or screen-printing the powder as a slurry or paste on a solid electrolyte substrate, and then
It is fired to form an electrode.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記
(イ)における燃料極の作製方法はポットミルや乳鉢に
おけるニッケルとジルコニアの分散性が悪く、またジル
コニア粒子径が不均一で、SOFCの燃料極としての分
極値が大きいと言う問題点があった。そしてSOFCを
長期に運転した場合は、ニッケルが焼結し、粒成長して
活性を失い、時間とともに分極値が増大することより長
期安定性に欠ける問題点があった。更に、混合過程で不
純物が混入し易い工程上の問題点もあった。そして、前
記(ロ)におけるNi−ZrO2 サーメットの作製方法
は高価な大型の蒸着装置を必要とし、現状では広い面積
にわたって均一に成膜する事が難しく、成膜速度も非常
に遅いという問題点があった。
However, in the method for producing a fuel electrode in the above (a), the dispersibility of nickel and zirconia in a pot mill or a mortar is poor, and the zirconia particle size is not uniform, so that the fuel electrode of SOFC is There was a problem that the polarization value was large. When the SOFC is operated for a long period of time, nickel sinters, grains grow and lose activity, and the polarization value increases with time, resulting in lack of long-term stability. Further, there is a problem in the process that impurities are easily mixed in the mixing process. The method of producing the Ni—ZrO 2 cermet in the above (b) requires an expensive large-sized vapor deposition apparatus, and it is difficult at present to form a uniform film over a large area, and the film forming speed is very slow. was there.

【0005】また、前記(ハ)における空気極の作製方
法はペロブスカイト酸化物とジルコニアの分散性が悪
く、またジルコニア粒子径が不均一で、SOFCの空気
極に適用した場合、電極特性としての分極値が通電によ
り大きく劣化し長期安定性に欠ける問題点があった。ま
た燃料極と同様に、混合過程で不純物が混入し易い工程
上の問題点もあった。
Further, in the method of producing the air electrode in the above (c), the dispersibility of the perovskite oxide and zirconia is poor, and the zirconia particle size is not uniform, and when applied to the SOFC air electrode, polarization as an electrode characteristic is obtained. There was a problem that the value deteriorated greatly by energization and lacked long-term stability. Further, like the fuel electrode, there is a problem in the process that impurities are easily mixed in during the mixing process.

【0006】そこで、本発明の第1の課題は従来の燃料
極材料の作製における前記した問題点を解消せんとした
ものであり、作製工程を簡略化し得て、かつ作製工程で
の不純物の混入を少くすることができ、かつSOFCに
適用した場合、粒子の分散性均一性を上げ、電極特性と
しての分極値を低下させて長期の安定性に優れた燃料極
となし得る、燃料極材料の作製方法を提供することにあ
る。
Therefore, the first object of the present invention is to solve the above-mentioned problems in the production of the conventional fuel electrode material, which can simplify the production process and mix impurities in the production process. Of the fuel electrode material, which can reduce the amount of particles and, when applied to SOFC, can improve the uniformity of particle dispersibility and reduce the polarization value as an electrode characteristic to form a fuel electrode excellent in long-term stability. It is to provide a manufacturing method.

【0007】また、本発明の第2の課題は従来の空気極
材料の作製における前記した問題点を解消せんとしたも
のであり、作製工程を簡略化し得て、かつ作製工程での
不純物の混入を少くすることができ、かつSOFCに適
用した場合、粒子の分散性均一性を上げ、電極特性とし
ての分極値を低下させて長期の安定性に優れた空気極と
なし得る、空気極材料の作製方法を提供することにあ
る。
A second object of the present invention is to solve the above-mentioned problems in the production of the conventional air electrode material, the production process can be simplified, and impurities are mixed in the production process. Of the air electrode material, which can reduce the number of particles, and when applied to SOFC, can improve the uniformity of particle dispersibility and reduce the polarization value as an electrode characteristic to form an air electrode excellent in long-term stability. It is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】上記した第1の課題を達
成するために、請求項1の発明は、ニッケル,コバルト
及びルテニウムの群から選ばれた一種以上の物質のイオ
ンを含む水溶液と、酸化ジルコニウム又は酸化セリウム
又はその両方を含むゾルとを混合し、これを熱処理して
粉末を得ることを特徴とする。
In order to achieve the above-mentioned first object, the invention of claim 1 provides an aqueous solution containing ions of one or more substances selected from the group consisting of nickel, cobalt and ruthenium, It is characterized in that zirconium oxide, cerium oxide, or a sol containing both of them is mixed and heat-treated to obtain a powder.

【0009】そして、上記した第1の課題を達成するた
めの、請求項2の発明は、ニッケルのイオン、又はニッ
ケルのイオン及びマグネシウムのイオンを含む水溶液
と、酸化イットリウム及び酸化ジルコニウムからなるゾ
ルとを混合し、これを熱処理して粉末を得ることを特徴
とする。
In order to achieve the above-mentioned first object, the invention of claim 2 provides an aqueous solution containing nickel ions or nickel ions and magnesium ions, and a sol composed of yttrium oxide and zirconium oxide. Is mixed and heat-treated to obtain a powder.

【0010】また、上記した第2の課題を達成するため
に請求項3の発明は、ランタンのイオンと、マンガン・
鉄・コバルト・ニッケル及びクロムの群から選ばれた一
種以上の物質のイオンを含む水溶液と、酸化ジルコニウ
ム又は酸化セリウム又はその両方を含むゾルとを混合
し、これを熱処理して粉末を得ることを特徴とする。
In order to achieve the above-mentioned second object, the invention of claim 3 provides lanthanum ions and manganese.
Mixing an aqueous solution containing ions of one or more substances selected from the group of iron, cobalt, nickel, and chromium with a sol containing zirconium oxide, cerium oxide, or both, and heat-treating this to obtain a powder. Characterize.

【0011】さらに、上記した第2の課題を達成するた
めの請求項4の発明は、ランタンのイオンとマンガンの
イオンと、ストロンチウムまたはカルシウムのイオンを
含む水溶液と、酸化イットリウム及び酸化ジルコニウム
からなるゾルとを混合し、これを熱処理して粉末を得る
ことを特徴とする。
Furthermore, the invention of claim 4 for achieving the above-mentioned second object is a sol comprising an aqueous solution containing lanthanum ions and manganese ions, strontium or calcium ions, and yttrium oxide and zirconium oxide. And are mixed and heat-treated to obtain a powder.

【0012】一般にゾルとは、液体を分散媒とし固体を
分散粒子とするコロイドのことで、分散粒子が普通の光
学顕微鏡では認められないが、原子或いは低分子よりは
大きい粒子として分散しているものを言うが、本発明に
おけるゾルはこれに限るものではなく、光学顕微鏡で認
められる粒子を含むもの、あるいは超微粒子を水などの
液体と混合して懸濁したスラリーであって、容易には沈
殿物を生じないものであっても良く、これらを含めた広
い意味でのゾルとする。
Generally, a sol is a colloid in which a liquid is a dispersion medium and a solid is a dispersion particle, and although the dispersion particle cannot be recognized by an ordinary optical microscope, it is dispersed as a particle larger than an atom or a low molecule. However, the sol in the present invention is not limited to this, and includes a particle recognized by an optical microscope, or a slurry in which ultrafine particles are mixed with a liquid such as water and suspended, and easily. It may be a sol in the broad sense that includes no precipitates.

【0013】酸化ジルコニウム又は酸化セリウム又はこ
の両方を含むゾルとは、アルカリ土類元素または希土類
元素で安定化された、または部分安定化された酸化ジル
コニウム又は酸化セリウム又はこの両方を含むゾルを含
む。酸化イットリウムと酸化ジルコニウムからなるゾル
とは、酸化イットリウムゾルと酸化ジルコニウムゾルの
混合物であっても良いし、酸化イットリウムで安定化又
は部分安定化された酸化ジルコニウムのゾルであっても
良い。前記熱処理はイオンを含む水溶液とゾルとの混合
物を、加熱炉、滴下熱分解装置、あるいは噴霧熱分解装
置等を使って加熱する手段を言う。また、熱処理によっ
て粉末を得るとは、ポットミルや乳鉢などを使って解砕
することにより、容易に粉末状となるような塊状のもの
が得られる場合も含む。
The sol containing zirconium oxide or cerium oxide or both includes a sol containing zirconium oxide or cerium oxide or both of which are stabilized or partially stabilized with an alkaline earth element or a rare earth element. The sol composed of yttrium oxide and zirconium oxide may be a mixture of yttrium oxide sol and zirconium oxide sol, or zirconium oxide sol stabilized or partially stabilized with yttrium oxide. The heat treatment is a means for heating a mixture of an aqueous solution containing ions and a sol by using a heating furnace, a dropping thermal decomposition apparatus, a spray thermal decomposition apparatus, or the like. In addition, obtaining the powder by heat treatment includes the case where a lump that can be easily made into a powder can be obtained by crushing with a pot mill or a mortar.

【0014】[0014]

【作用】各請求項において、金属イオンを含む水溶液
と、酸化ジルコニウム又は酸化セリウムを含むゾルとの
混合物は直接に熱処理される。請求項1及び請求項2に
て得られる燃料極材料は分散性及び均一性がよい。請求
項3及び請求項4にて得られる空気極材料は分散性及び
均一性がよい。
In each claim, a mixture of an aqueous solution containing metal ions and a sol containing zirconium oxide or cerium oxide is directly heat-treated. The fuel electrode material obtained in claims 1 and 2 has good dispersibility and uniformity. The air electrode material obtained in claims 3 and 4 has good dispersibility and uniformity.

【0015】[0015]

【実施例】次に、SOFC用の燃料極材料を作製する本
発明の第1実施例を、図1〜図9を参照して説明する。
図1に示すように、まず、酢酸ニッケル4水和物(純度
99.0%以上)を蒸留水に溶かし0.25mol/リ
ットル水溶液1リットルを用意した。次に、8mol%
2 3 安定化ZrO2 (以下8YSZという。)のゾ
ル(20wt%ゾル)を、先に準備した0.25mol
/リットル水溶液にNi/8YSZのモル比が68/3
2になるように加えて混合し、これを滴下熱分解法によ
り750℃で熱処理して溶液水分が蒸発し熱分解した生
成物を得る。
EXAMPLE Next, a first example of the present invention for producing a fuel electrode material for SOFC will be described with reference to FIGS.
As shown in FIG. 1, first, nickel acetate tetrahydrate (purity 99.0% or more) was dissolved in distilled water to prepare 1 liter of an aqueous solution of 0.25 mol / liter. Next, 8 mol%
0.25 mol of the sol (20 wt% sol) of Y 2 O 3 stabilized ZrO 2 (hereinafter referred to as 8YSZ) was prepared.
/ Liter aqueous solution has a Ni / 8YSZ molar ratio of 68/3
The resulting product was added and mixed so as to be 2, and this was heat-treated at 750 ° C. by a dropping thermal decomposition method to obtain a product in which the water content of the solution was evaporated and thermally decomposed.

【0016】前記滴下熱分解法は図2に示すように、φ
30×600mmの片端封じの石英管11の封じ端11
A側を縦型環状の加熱炉12に上方より突っ込んだ装置
13を使用し、炉温度を約750℃に保つ一方、液槽1
4の混合原料の溶液15を吸上げ管16にてマイクロフ
ィーダー17を介して上方へ吸上げ、吸上げ管16の上
端16Aより溶液15を石英管11内に雫15Aとして
徐々に落として溶液の蒸発・熱分解を瞬時に行って生成
物15Bを得る方法である。
In the dropping thermal decomposition method, as shown in FIG.
30 x 600 mm single-end sealed quartz tube 11 sealing end 11
A device 13 in which the A side is inserted into a vertical annular heating furnace 12 from above is used to keep the furnace temperature at about 750 ° C.
The solution 15 of the mixed raw material of No. 4 is sucked upward by the suction pipe 16 through the micro feeder 17, and the solution 15 is gradually dropped from the upper end 16A of the suction pipe 16 into the quartz pipe 11 as a drop 15A. In this method, the product 15B is obtained by instantaneously performing evaporation and thermal decomposition.

【0017】滴下熱分解して得た生成物15Bは図1に
示すように、粗解砕して粉末とした。この粉末はアルミ
ナ坩堝中に入れ、電気炉にて800℃、24時間仮焼
し、粗解砕して燃料極材料用の粉末を得た。以上の方法
を以後「ゾルを使用した滴下熱分解」と言う。
The product 15B obtained by the dropping thermal decomposition was roughly crushed into powder as shown in FIG. This powder was placed in an alumina crucible, calcined in an electric furnace at 800 ° C. for 24 hours, and coarsely crushed to obtain a powder for a fuel electrode material. The above method is hereinafter referred to as "drop thermal decomposition using sol".

【0018】一方、比較例1として酢酸ニッケルの水溶
液から滴下熱分解して得た酸化ニッケル粉末と市販の8
YSZの粉末をNi/8YSZのモル比が68/32に
成るよう秤量し、それら総量で10gに対し、エタノー
ルを10g加えてアルミナ自動乳鉢にて混合しエタノー
ルは蒸発させ更に乾燥器中で一昼夜乾燥して粉末を得
た。この比較例1の方法を以後「粉末混合法」と言う。
On the other hand, as Comparative Example 1, nickel oxide powder obtained by dropping thermal decomposition from an aqueous solution of nickel acetate and commercially available 8
YSZ powder was weighed so that the molar ratio of Ni / 8YSZ was 68/32, 10 g of ethanol was added to 10 g of the total amount and mixed in an alumina automatic mortar, and ethanol was evaporated and dried in a drier for 24 hours. To obtain a powder. The method of Comparative Example 1 is hereinafter referred to as "powder mixing method".

【0019】「ゾルを使用した滴下熱分解」及び「粉末
混合法」で得たこれら各粉末2.0gに、ポリエチレン
グリコールを0.8g、エタノールを4g加え、アルミ
ナ自動乳鉢にて20分間練り、エタノールは完全に蒸発
させ、これをスクリーン印刷用ペーストとし、φ14×
1mmの大きさの各8YSZ焼結体ペレット上にφ6m
mの大きさに各々印刷した。これらは1400℃、2時
間焼成し、SOFCの各燃料極とした。他方の面には酸
化ランタン、二酸化マンガン、炭酸ストロンチウムを原
料として滴下熱分解法で得たLa0 8 Sr0 2 Mn
3 粉末をスクリーン印刷し、その後、焼成してこれを
SOFCの空気極とした。また燃料極の分極値のみ分離
出来るよう、白金線を8YSZペレットに巻き付け白金
ペーストで焼きつけて参照極とした。これをSOFC試
験セルと言う。
0.8 g of polyethylene glycol and 4 g of ethanol were added to 2.0 g of each powder obtained by "dripping pyrolysis using sol" and "powder mixing method", and the mixture was kneaded in an alumina automatic mortar for 20 minutes, Evaporate ethanol completely and use it as a screen printing paste.
Φ6m on each 8YSZ sintered body pellet of 1mm size
Each was printed in a size of m. These were fired at 1400 ° C. for 2 hours and used as SOFC fuel electrodes. On the other surface, La 0. was obtained by the dropping thermal decomposition method using lanthanum oxide, manganese dioxide, and strontium carbonate as raw materials. 8 Sr 0 . 2 Mn
The O 3 powder was screen-printed and then fired to form an SOFC air electrode. Further, a platinum wire was wrapped around an 8YSZ pellet and baked with a platinum paste so that only the polarization value of the fuel electrode could be separated, and used as a reference electrode. This is called an SOFC test cell.

【0020】このSOFC試験セルを理学製の固体電解
質評価装置に設定し、1000℃に昇温後、燃料極側に
25℃加湿水素、空気極側に空気を流した。この状態で
燃料極は還元され、NiOはNi金属に変化している。
白金メッシュを集電体として使用し、電流遮断法にて燃
料極の電気化学分極値ηを測定した。この測定結果はタ
ーフェルプロットの形で図3に示す。図3において、○
印は本例1で得た粉末を燃料極に適用したもの(ゾルを
使用した滴下熱分解)の場合、●印は比較例1で得た粉
末を燃料極に適用したもの(粉末混合法)の場合を示
す。図3にて明らかなように、本例1で得た粉末を燃料
極に適用した場合は、比較例1より電気化学分極値ηは
格段に小さくなった。
This SOFC test cell was set in a solid electrolyte evaluation device manufactured by Rigaku Co., Ltd., and after heating to 1000 ° C., humidified hydrogen at 25 ° C. was supplied to the fuel electrode side and air was supplied to the air electrode side. In this state, the fuel electrode is reduced and NiO is changed to Ni metal.
Using a platinum mesh as a current collector, the electrochemical polarization value η of the fuel electrode was measured by the current interruption method. The measurement results are shown in FIG. 3 in the form of Tafel plot. In Figure 3, ○
The mark indicates that the powder obtained in Example 1 was applied to the fuel electrode (dripping pyrolysis using sol), and the mark indicates that the powder obtained in Comparative Example 1 was applied to the fuel electrode (powder mixing method). Shows the case. As is apparent from FIG. 3, when the powder obtained in Example 1 was applied to the fuel electrode, the electrochemical polarization value η was significantly smaller than that in Comparative Example 1.

【0021】次に電気化学分極値測定後、燃料極を水素
にさらしたまま室温まで降温し、燃料極表面の電子顕微
鏡(SEM)による微構造観察を行った本例1の結果を
図4に示し、比較例1の結果を図5に示す。本例1によ
り得た粉末を燃料極に適用した場合は比較例1より粒子
径が均一であるのが判る。
Next, after measuring the electrochemical polarization value, the fuel electrode was exposed to hydrogen and cooled to room temperature, and the microstructure of the fuel electrode surface was observed by an electron microscope (SEM). The results of Comparative Example 1 are shown in FIG. When the powder obtained in Example 1 is applied to the fuel electrode, it can be seen from Comparative Example 1 that the particle size is uniform.

【0022】一方、試験前の燃料極破断面の微構造観察
及びエネルギー分散型X線分析装置(EDX)によるジ
ルコニウム、ニッケルの線分析結果を図6及び図8に示
す。図6は本例1のものであり、図8は比較例1であ
る。図6及び図8において、燃料極破断面の微構造は各
写真に示す通りであり、破断面組織におけるジルコニウ
ム、及びニッケルの各線分析の結果は各写真のグラフに
示す通りである。なお、図6及び図8における線分析の
グラフは判りにくいので、図6のグラフは図7に、図8
のグラフは図9に、抽出して示した。図7及び図9にお
いて、20A、20BはX線分析位置を示す線、21
A、21BはニッケルのX線強度、22A、22Bはジ
ルコニウムのX線強度を示す線を各々示している。図6
及び図7に示すように本例1は、ジルコニウム及びニッ
ケルのX線強度が波型を示してそれぞれの山と谷が逆に
なり、その波の周期が比較例1より本例1で得た粉末を
燃料極に適用した場合の方が小さいことから、本例1は
比較例1よりも粒子の高分散性が判明した。
On the other hand, FIGS. 6 and 8 show the microstructure observation of the fuel electrode fracture surface before the test and the line analysis results of zirconium and nickel by the energy dispersive X-ray analyzer (EDX). FIG. 6 shows the example 1, and FIG. 8 shows the comparative example 1. 6 and 8, the microstructure of the fracture surface of the fuel electrode is as shown in each photograph, and the result of each line analysis of zirconium and nickel in the fracture surface structure is as shown in the graph of each photograph. Since the graphs of the line analysis in FIGS. 6 and 8 are difficult to understand, the graph of FIG.
The graph of is extracted and shown in FIG. 7 and 9, 20A and 20B are lines indicating the X-ray analysis position, 21
A and 21B indicate the X-ray intensity of nickel, and 22A and 22B indicate the X-ray intensity of zirconium. Figure 6
As shown in FIG. 7, in Example 1, the X-ray intensities of zirconium and nickel showed a wave shape, and the peaks and valleys thereof were reversed, and the wave period was obtained in Comparative Example 1 from Example 1. Since the case where the powder was applied to the fuel electrode was smaller, this Example 1 was found to have higher particle dispersibility than Comparative Example 1.

【0023】以上はNi−8YSZサーメットの例であ
るが、同様にNi−CSZ,Ru−YSZ,Co−YS
Z,Ni−SDC(なお、YSZはイットリア安定化ジ
ルコニア、CSZはカルシア安定化ジルコニア、SDC
はサマリア添加セリアを意味する。)に関し、「ゾルを
使用した滴下熱分解」と「粉末混合法」で得た粉末を燃
料極に適用した場合の特性比較を200mA/cm2
流遮断法による燃料極の電気化学分極値ηで比較した結
果を表1に示す。
The above is an example of the Ni-8YSZ cermet, but similarly, Ni-CSZ, Ru-YSZ, Co-YS.
Z, Ni-SDC (YSZ is yttria-stabilized zirconia, CSZ is calcia-stabilized zirconia, SDC
Means Samaria-added ceria. ), The characteristics of the powder obtained by the “dropping thermal decomposition using sol” and the “powder mixing method” when applied to the fuel electrode are compared with the electrochemical polarization value η of the fuel electrode by the 200 mA / cm 2 current interruption method. The results of the comparison are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1にて明らかなように、実施例1のもの
は、いずれも比較例1に較べて高性能であることが認め
られる。
As is clear from Table 1, it is recognized that all of Example 1 have higher performance than Comparative Example 1.

【0026】次に、SOFC用の燃料極材料を作製する
本発明の第2実施例を、図10を参照して説明する。ま
ず、酢酸ニッケル4水和物(純度99.0%以上)と、
酢酸マグネシウム4水和物(純度99.0%以上)をN
i/Mgの比が80/20に成るよう秤量し、これを蒸
留水に溶かし酢酸ニッケル、酢酸マグネシウム総量で
0.25mol/リットル水溶液とした。次いで、8Y
SZのゾル(20wt%ゾル)を先に準備した0.25
mol/リットル水溶液に(Ni+Mg)/8YSZの
モル比が、90/10,80/20,75/25,68
/32,60/40になるよう各々加えて5種類の水溶
液を作り、前記した実施例1と同様に「ゾルを使用した
滴下熱分解法」により粉末を得た。この粉末をアルミナ
坩堝中に入れ電気炉にて1000℃、24時間仮焼し粗
解砕して本例2の電極材料粉末を得た。
Next, a second embodiment of the present invention for producing a SOFC fuel electrode material will be described with reference to FIG. First, nickel acetate tetrahydrate (purity 99.0% or more),
Magnesium acetate tetrahydrate (purity 99.0% or more)
It was weighed so that the ratio of i / Mg was 80/20, and this was dissolved in distilled water to give an aqueous solution of 0.25 mol / liter in total of nickel acetate and magnesium acetate. Then 8Y
SZ sol (20 wt% sol) was previously prepared 0.25
The molar ratio of (Ni + Mg) / 8YSZ in the mol / liter aqueous solution is 90/10, 80/20, 75/25, 68.
/ 32 and 60/40 were added respectively to make 5 kinds of aqueous solutions, and powder was obtained by the "drop thermal decomposition method using sol" as in Example 1 described above. This powder was put into an alumina crucible, calcined in an electric furnace at 1000 ° C. for 24 hours, and coarsely crushed to obtain an electrode material powder of Example 2.

【0027】比較例2として8YSZゾルを加えない
0.25mol/リットル水溶液を滴下熱分解後、同様
に仮焼して粉末を得た。この8YSZゾルを加えない
0.25mol/リットル水溶液の滴下熱分解で得た粉
末と、市販の8YSZ粉末を(Ni+Mg)/8YSZ
のモル比が、90/10,80/20,68/32,6
0/40になるよう加えて50mlのエタノールととも
にアルミナ自動乳鉢にて混合しエタノールは蒸発させ、
更に乾燥器中で一昼夜乾燥して4種類の粉末を得た。な
お、(Ni+Mg)/8YSZのモル比が、90/1
0,80/20,75/25,68/32,60/40
である粉末から得た燃料極をそれぞれ8YSZ添加量1
0,20,25,32,40mol%の燃料極と言う。
As Comparative Example 2, a 0.25 mol / liter aqueous solution containing no 8YSZ sol was dropped and pyrolyzed, and similarly calcined to obtain a powder. (Ni + Mg) / 8YSZ is a powder obtained by dropping thermal decomposition of an aqueous solution of 0.25 mol / liter without adding this 8YSZ sol and a commercially available 8YSZ powder.
The molar ratio of 90 / 10,80 / 20,68 / 32,6
Add to 0/40 and mix with 50 ml of ethanol in an alumina mortar and evaporate the ethanol,
Further, it was dried for one day in a dryer to obtain 4 kinds of powders. The molar ratio of (Ni + Mg) / 8YSZ is 90/1.
0,80 / 20,75 / 25,68 / 32,60 / 40
8YSZ addition amount 1 for each fuel electrode obtained from the powder
It is called a fuel electrode of 0, 20, 25, 32, 40 mol%.

【0028】これらの粉末を実施例1と同様にSOFC
試験セルとし、複素インピーダンス測定により燃料極の
電気化学分極値ηを測定した。この測定結果を表2に示
す。ここに示すように例2の燃料極は比較例2より電気
化学分極値ηが小さく成っているのが判る。
These powders were treated with SOFC in the same manner as in Example 1.
The electrochemical polarization value η of the fuel electrode was measured by measuring the complex impedance in a test cell. The results of this measurement are shown in Table 2. As shown here, it can be seen that the fuel electrode of Example 2 has a smaller electrochemical polarization value η than Comparative Example 2.

【0029】[0029]

【表2】 [Table 2]

【0030】次に、SOFC用の空気極材料を作製する
本発明の第3の実施例を、図11〜図13を参照して説
明する。図11に示すように、まず、酸化ランタン(純
度99.0%以上)、炭酸ストロンチウム(純度99.
0%以上)、二酸化マンガン(純度99.0%以上)を
La:Sr:Mnの比が8:2:10に成るよう秤量
し、これを濃硝酸と過酸化水素水を加えながら蒸留水に
溶かし二酸化マンガンが0.25mol/リットルの水
溶液とする。次に、8YSZゾル(20wt%ゾル)
を、先に準備した水溶液にMn/8YSZのモル比が5
0/50になるよう加えて混合し、これを滴下熱分解法
により750℃で熱処理後、粗解砕して粉末を得た。次
いで、この粉末をアルミナ坩堝中に入れ電気炉にて10
00℃、4時間仮焼し、粗解砕して空気極材料となる粉
末を得た。
Next, a third embodiment of the present invention for producing an SOFC air electrode material will be described with reference to FIGS. As shown in FIG. 11, first, lanthanum oxide (purity 99.0% or more), strontium carbonate (purity 99.0% or more).
0% or more) and manganese dioxide (purity 99.0% or more) are weighed so that the ratio of La: Sr: Mn is 8: 2: 10, and this is added to distilled water while adding concentrated nitric acid and hydrogen peroxide solution. Dissolve manganese dioxide into an aqueous solution containing 0.25 mol / liter. Next, 8YSZ sol (20 wt% sol)
Was added to the previously prepared aqueous solution at a Mn / 8YSZ molar ratio of 5
The mixture was added to 0/50 and mixed, and this was heat-treated at 750 ° C. by a dropping thermal decomposition method and then roughly crushed to obtain a powder. Then, this powder was put into an alumina crucible and heated in an electric furnace for 10
It was calcined at 00 ° C. for 4 hours and coarsely crushed to obtain a powder as an air electrode material.

【0031】また、比較例3として前記0.25mol
/リットルの水溶液をそのまま滴下熱分解法に従って仮
焼して粉末を得、これに市販の8YSZ粉末をMn/8
YSZのモル比が50/50に成るよう秤量し、それら
総量で10gに対し、エタノール50mlとともにアル
ミナ自動乳鉢にて混合しエタノールは蒸発させ更に乾燥
器中で一昼夜乾燥して粉末(粉末混合法による比較例3
の粉末)を得た。
As Comparative Example 3, the above 0.25 mol
/ L of the aqueous solution was calcined as it was according to the dropping thermal decomposition method to obtain a powder, and a commercially available 8YSZ powder was added to this with Mn / 8.
YSZ is weighed so that the molar ratio becomes 50/50, and the total amount of 10 g is mixed with 50 ml of ethanol in an alumina automatic mortar, ethanol is evaporated, and the powder is dried in a dryer for a whole day and night (by the powder mixing method). Comparative Example 3
Powder) was obtained.

【0032】「ゾルを使用した滴下熱分解による本例3
の粉末」及び「粉末混合法」で得た比較例3の各粉末
2.0gには、ポリエチレングリコールを0.8g、エ
タノールを4g加え、アルミナ自動乳鉢にて20分間練
り、エタノールは完全に蒸発させ、これをスクリーン印
刷用ペーストとし、φ14×1mmの大きさの各8YS
Z焼結体ペレットの両面にφ6mmの大きさに各々印刷
した。これを1200℃にて4時間焼成し、SOFC空
気極とした。また片方の空気極の分極値のみ分離出来る
よう、白金線を8YSZペレットに巻き付け白金ペース
トで焼き付けて参照極とした。
"This Example 3 by dripping pyrolysis using sol
Powder "and 2.0 g of each powder of Comparative Example 3 obtained by the" powder mixing method ", 0.8 g of polyethylene glycol and 4 g of ethanol were added, and the mixture was kneaded in an alumina automatic mortar for 20 minutes to completely evaporate ethanol. This is used as a screen printing paste, and each 8YS with a size of φ14 × 1mm.
Each of the Z sintered body pellets was printed on both sides with a size of φ6 mm. This was calcined at 1200 ° C. for 4 hours to obtain an SOFC air electrode. Also, a platinum wire was wrapped around an 8YSZ pellet and baked with a platinum paste so that only the polarization value of one of the air electrodes could be separated, and used as a reference electrode.

【0033】このSOFCセルを理学製の固体電解質評
価装置に設定し、1000℃に昇温後、両側に空気を流
して電流遮断法にて空気極の電気化学分極値ηを測定し
た。また、ある程度通電(12時間)後にもηを測定し
た。本例3の測定結果は図12、比較例3の測定結果は
図13に示す通りであった。なお、図12,図13にお
いて、●印のグラフは初期の分極値ηを示し、○印のグ
ラフは12時間通電後の分極値ηを示す。この測定結果
から判るように本例3の初期の特性は比較例3とあまり
差がないが通電後の分極値は本例3のものの方が格段に
よいことが認められる。
The SOFC cell was set in a solid electrolyte evaluation device manufactured by Rigaku Co., Ltd., the temperature was raised to 1000 ° C., air was passed through both sides, and the electrochemical polarization value η of the air electrode was measured by the current interruption method. Also, η was measured after a certain amount of electricity was applied (12 hours). The measurement result of this Example 3 was as shown in FIG. 12, and the measurement result of Comparative Example 3 was as shown in FIG. In addition, in FIGS. 12 and 13, the graphs with ● marks show the initial polarization value η, and the graphs with ○ marks show the polarization value η after 12 hours of energization. As can be seen from the measurement results, the initial characteristics of Example 3 are not so different from those of Comparative Example 3, but it is recognized that the polarization value after energization of Example 3 is much better.

【0034】また、200mA/cm2 通電による長期
発電試験の結果は表3に示す通りであった。表3は空気
極の電流遮断法による初期の電気化学分極値ηからの変
化を示す。表3中において+印はηの増加で劣化を意味
し、−印は初期特性よりηが小さくなり、特性が向上し
たことを意味する。
Table 3 shows the results of the long-term power generation test with 200 mA / cm 2 energization. Table 3 shows the change from the initial electrochemical polarization value η by the current interruption method of the air electrode. In Table 3, + means deterioration due to increase of η, and − means that η is smaller than the initial characteristic and the characteristic is improved.

【0035】[0035]

【表3】 [Table 3]

【0036】このように、実施例3は1000時間にも
及ぶ長期試験においても特性が劣化せず非常に安定して
いることが認められる。
As described above, it is recognized that the characteristics of Example 3 are not deteriorated even in the long-term test for 1000 hours and are very stable.

【0037】次に、本発明の第4実施例を説明する。前
記した実施例は、La0.8 Sro.2 MnO3 −YSZの
例であるが、同様にしてLa0.9 Ca0.1 MnO3 −Y
SZ,LaFeO3 −YSZ,La0.9 Ca0.1 MnO
3 −SDC,La0.9 Ca0.1 CoO3 −CSZ,La
NiO3 −SDC,La0.9 Ca0.1 CrO3 −YSZ
に関し、「ゾルを使用した滴下熱分解」と「粉末混合
法」で得た粉末を空気極に適用した場合の特性を電気化
学分極値の12時間200mA/cm2 通電前後の変化
で比較した結果は表4であった。表4は空気極の電流遮
断法による初期の電気化学分極値ηからの変化を示す。
表4において+はηの増加で劣化を意味し、−は初期特
性よりηが小さくなり特性が向上したことを意味する。 なお、表4中、はLa0.9 Ca0.1 MnO3 −YS
Z、はLaFeO3 −YSZ、はLa0.9 Ca0.1
MnO3 −SDC、はLa0.9 Ca0.1 CoO3 −C
SZ、はLaNiO3 −SDC、はLa0.9 Ca
0.1 CrO3 −YSZを表わす。これに見られるように
実施例4はいずれも通電後の特性は向上し分極値が低下
したことが認められる。
Next, a fourth embodiment of the present invention will be described. The example described above is an example of La 0.8 Sr O.2 MnO 3 —YSZ, but La 0.9 Ca 0.1 MnO 3 —Y is similarly prepared.
SZ, LaFeO 3 -YSZ, La 0 . 9 Ca 0.1 MnO
3- SDC, La 0.9 Ca 0.1 CoO 3 -CSZ, La
NiO 3 -SDC, La 0.9 Ca 0.1 CrO 3 -YSZ
The results of comparing the characteristics when applying the powder obtained by the "dropping thermal decomposition using sol" and the "powder mixing method" to the air electrode by changing the electrochemical polarization value before and after energization of 200 mA / cm 2 for 12 hours Was Table 4. Table 4 shows the change from the initial electrochemical polarization value η by the current interruption method of the air electrode.
In Table 4, + means deterioration due to an increase in η, and − means that η is smaller than the initial characteristics and the characteristics are improved. In Table 4, is La 0.9 Ca 0.1 MnO 3 —YS.
Z is LaFeO 3 -YSZ, is La 0.9 Ca 0.1.
MnO 3 -SDC is La 0.9 Ca 0.1 CoO 3 -C
SZ is LaNiO 3 -SDC, is La 0.9 Ca
Representing a 0.1 CrO 3 -YSZ. As can be seen from this, it can be seen that in all of Example 4, the characteristics after energization were improved and the polarization value was decreased.

【0038】[0038]

【発明の効果】請求項1及び請求項2の燃料極材料の作
製方法によれば、作製工程を簡略化し得て、作製コスト
の低廉化に役立ち、かつ作製工程での不純物の混入を少
くすることができ、かつSOFCに適用した場合、粒子
の分散性均一性を上げ、電極特性としての分極値を低下
させて長期の安定性に優れた燃料極となし得る。請求項
3及び請求項4の空気極材料の作製方法によれば、作製
工程を簡略化し得て、作製コストの低廉化に役立ちかつ
作製工程での不純物の混入を少くすることができ、かつ
SOFCに適用した場合、粒子の分散性均一性を上げ、
電極特性としての分極値を低下させて長期の安定性に優
れた空気極となし得る。
According to the method for producing the fuel electrode material of the first and second aspects, the production process can be simplified, the production cost can be reduced, and impurities can be less mixed in the production process. In addition, when applied to SOFC, the uniformity of particle dispersibility can be increased, and the polarization value as an electrode characteristic can be reduced to form a fuel electrode excellent in long-term stability. According to the method for manufacturing an air electrode material according to claims 3 and 4, the manufacturing process can be simplified, the manufacturing cost can be reduced, the amount of impurities mixed in the manufacturing process can be reduced, and the SOFC can be reduced. When applied to, increase the dispersion uniformity of the particles,
The polarization value as an electrode characteristic can be reduced to form an air electrode having excellent long-term stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の燃料極材料(粉末)を得る工程図。FIG. 1 is a process diagram for obtaining a fuel electrode material (powder) of Example 1.

【図2】滴下熱分解法の装置説明図。FIG. 2 is an explanatory view of an apparatus of a dropping thermal decomposition method.

【図3】実施例1及び比較例1の燃料極分極値のターフ
ェルプロットを示すグラフ。
FIG. 3 is a graph showing Tafel plots of fuel electrode polarization values of Example 1 and Comparative Example 1.

【図4】実施例1の燃料極表面の電子顕微鏡写真。FIG. 4 is an electron micrograph of the fuel electrode surface of Example 1.

【図5】比較例1の燃料極表面の電子顕微鏡写真。5 is an electron micrograph of the fuel electrode surface of Comparative Example 1. FIG.

【図6】実施例1の燃料極破断面の電子顕微鏡写真。6 is an electron micrograph of a cross section of a fuel electrode of Example 1. FIG.

【図7】図6の写真のグラフを示す図。FIG. 7 is a diagram showing a graph of the photograph in FIG.

【図8】比較例1の燃料極破断面の電子顕微鏡写真。8 is an electron micrograph of the cross section of the fuel electrode of Comparative Example 1. FIG.

【図9】図8の写真のグラフを示す図。9 is a diagram showing a graph of the photograph in FIG.

【図10】実施例2の燃料極材料粉末を得る工程図。FIG. 10 is a process diagram for obtaining a fuel electrode material powder of Example 2.

【図11】実施例3の空気極材料粉末を得る工程図。FIG. 11 is a process drawing of obtaining the air electrode material powder of Example 3.

【図12】実施例3の空気極の分極値ηを示すグラフ。FIG. 12 is a graph showing the polarization value η of the air electrode of Example 3.

【図13】比較例3の空気極の分極値ηを示すグラフ。13 is a graph showing the polarization value η of the air electrode of Comparative Example 3. FIG.

【符号の説明】[Explanation of symbols]

11 石英管 12 加熱炉 15 溶液 15A 雫 15B 生成物 16 吸上げ管 11 Quartz tube 12 Heating furnace 15 Solution 15A Drop 15B Product 16 Suction tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 雄三 大阪府高槻市古曽部町3丁目20番23号 東 北アパート203号 (72)発明者 福井 武久 愛知県大府市共和町六丁目28番地の3 メ ープルタウンSAKANO (72)発明者 竹内 伸二 兵庫県尼崎市若王寺3丁目11番20号 (72)発明者 服部 雅俊 愛知県名古屋市緑区大高町字北関山20番地 の1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuzo Yamamoto 3-20-23 Kozobe-cho, Takatsuki-shi, Osaka Prefecture No. 203 Tohoku Apartment 203 (72) Takehisa Fukui 3-28-6, Kyowa-cho, Obu-shi, Aichi Prefecture Maple Town SAKANO (72) Inventor Shinji Takeuchi 3-11-20 Wakaoji, Amagasaki City, Hyogo Prefecture (72) Inventor Masatoshi Hattori 1 of 20 Kitakanzan, Otakamachi, Midori-ku, Aichi Prefecture Nagoya City

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル,コバルト及びルテニウムの群
から選ばれた一種以上の物質のイオンを含む水溶液と、
酸化ジルコニウム又は酸化セリウム又はその両方を含む
ゾルとを混合し、これを熱処理して粉末を得ることを特
徴とした固体電解質型燃料電池用燃料極材料の作製方
法。
1. An aqueous solution containing ions of one or more substances selected from the group of nickel, cobalt and ruthenium,
A method for producing a fuel electrode material for a solid oxide fuel cell, comprising mixing zirconium oxide, cerium oxide, or a sol containing both of them and heat-treating the mixture to obtain a powder.
【請求項2】 ニッケルのイオン、又はニッケルのイオ
ン及びマグネシウムのイオンを含む水溶液と、酸化イッ
トリウム及び酸化ジルコニウムからなるゾルとを混合
し、これを熱処理して粉末を得ることを特徴とした固体
電解質型燃料電池用燃料極材料の作製方法。
2. A solid electrolyte characterized in that an aqueous solution containing nickel ions or nickel ions and magnesium ions is mixed with a sol composed of yttrium oxide and zirconium oxide and heat-treated to obtain a powder. For producing a fuel electrode material for a flat fuel cell.
【請求項3】 ランタンのイオンと、マンガン・鉄・コ
バルト・ニッケル及びクロムの群から選ばれた一種以上
の物質のイオンを含む水溶液と、酸化ジルコニウム又は
酸化セリウム又はその両方を含むゾルとを混合し、これ
を熱処理して粉末を得ることを特徴とした固体電解質型
燃料電池用空気極材料の作製方法。
3. An aqueous solution containing ions of lanthanum and ions of one or more substances selected from the group of manganese, iron, cobalt, nickel and chromium, and a sol containing zirconium oxide or cerium oxide or both of them. Then, a method for producing an air electrode material for a solid oxide fuel cell, which comprises subjecting this to heat treatment to obtain a powder.
【請求項4】 ランタンのイオンとマンガンのイオン
と、ストロンチウムまたはカルシウムのイオンを含む水
溶液と、酸化イットリウム及び酸化ジルコニウムからな
るゾルとを混合し、これを熱処理して粉末を得ることを
特徴とした固体電解質型燃料電池用空気極材料の作製方
法。
4. A powder is obtained by mixing an aqueous solution containing lanthanum ions and manganese ions, strontium or calcium ions, and a sol composed of yttrium oxide and zirconium oxide, and heat-treating the mixture. A method for producing an air electrode material for a solid oxide fuel cell.
JP04093516A 1992-03-18 1992-03-18 Method for producing electrode material for solid oxide fuel cell Expired - Fee Related JP3117781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04093516A JP3117781B2 (en) 1992-03-18 1992-03-18 Method for producing electrode material for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04093516A JP3117781B2 (en) 1992-03-18 1992-03-18 Method for producing electrode material for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH05266892A true JPH05266892A (en) 1993-10-15
JP3117781B2 JP3117781B2 (en) 2000-12-18

Family

ID=14084509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04093516A Expired - Fee Related JP3117781B2 (en) 1992-03-18 1992-03-18 Method for producing electrode material for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3117781B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011618A1 (en) * 1996-09-13 1998-03-19 Forschungszentrum Jülich GmbH Production of an anode for high-temperature fuel cells by a sol-gel method
WO1998028808A1 (en) * 1996-12-20 1998-07-02 Tokyo Gas Co., Ltd. Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
KR100512474B1 (en) * 2002-11-08 2005-09-05 이득용 Ceramic coating solution and the mathod for superconductivity wire
JP2011098848A (en) * 2009-11-04 2011-05-19 Sumitomo Osaka Cement Co Ltd Zirconia-based composite ceramic fine particles, method for producing the same and zirconia-based composite ceramic fine particle dispersion
JP2013079190A (en) * 2004-07-13 2013-05-02 Hyundai Motor Co Ltd Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011618A1 (en) * 1996-09-13 1998-03-19 Forschungszentrum Jülich GmbH Production of an anode for high-temperature fuel cells by a sol-gel method
WO1998028808A1 (en) * 1996-12-20 1998-07-02 Tokyo Gas Co., Ltd. Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
US6790474B1 (en) 1996-12-20 2004-09-14 Tokyo Gas Co., Ltd. Fuel electrode of solid oxide fuel cell and process for the production of the same
KR100512474B1 (en) * 2002-11-08 2005-09-05 이득용 Ceramic coating solution and the mathod for superconductivity wire
JP2013079190A (en) * 2004-07-13 2013-05-02 Hyundai Motor Co Ltd Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode
JP2011098848A (en) * 2009-11-04 2011-05-19 Sumitomo Osaka Cement Co Ltd Zirconia-based composite ceramic fine particles, method for producing the same and zirconia-based composite ceramic fine particle dispersion

Also Published As

Publication number Publication date
JP3117781B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
CN103811772B (en) Composite containing perovskite structure oxide and its production and use
Yamaura et al. Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell
JP3527099B2 (en) Cathode composition for solid oxide fuel cell
CN112186201B (en) Metal oxide cathode material, composite cathode material and battery
CN111477881A (en) A kind of NiFe alloy nano-particles coated Pr0.8Sr1.2(FeNi)O4-δ material and preparation method thereof
Guo et al. Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells
CN103208634A (en) Composite cathode materials for medium and low temperature proton transport solid oxide fuel cells
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
CN102208662A (en) Rare earth element-doped BaFeO3-δ based ABO3 type perovskite fuel cell cathode material and its application
Qi et al. Enhancing the catalytic activity of PrBaFe2O5+ δ double perovskite with BaCoO3-δ modification as an electrode material for symmetrical solid oxide fuel cells
Zhu et al. Performance evaluation of Ca3Co4O9-δ cathode on Sm0. 075Nd0. 075Ce0. 85O2-δ electrolyte for solid oxide fuel cells
JP4524791B2 (en) Solid oxide fuel cell
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
Sukhanov et al. Functional properties and structure-size factor in La1. 4A0. 6Ni0. 6Fe0. 4O4+ δ (A= Ca, Sr, Ba)
CN106876755B (en) A method for low-temperature firing of composite cathodes on cerium-based electrolyte separators
CN104934613A (en) Anode material of high-temperature solid oxide electrolysis cell and composite anode material
JP5283500B2 (en) Fuel cell cathode with large surface area
JP3117781B2 (en) Method for producing electrode material for solid oxide fuel cell
CN102683720A (en) Gradient composite cathode for solid oxide fuel cell and preparation method thereof
JP3121993B2 (en) Method for producing conductive ceramics
Sameera Devi et al. Development of Nano-Structured and Nano-Porous BSCF Cathode for Low Temperature Solid Oxide Fuel Cell Application
JP2005259518A (en) Electrochemical cell assembly and electrochemical cell
CN114657579A (en) A solid oxide electrolytic cell working electrode modified by binary alloy nanoparticles and its preparation method and application

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees