JPH05266783A - Cathode for electron tube - Google Patents
Cathode for electron tubeInfo
- Publication number
- JPH05266783A JPH05266783A JP2408884A JP40888490A JPH05266783A JP H05266783 A JPH05266783 A JP H05266783A JP 2408884 A JP2408884 A JP 2408884A JP 40888490 A JP40888490 A JP 40888490A JP H05266783 A JPH05266783 A JP H05266783A
- Authority
- JP
- Japan
- Prior art keywords
- earth metal
- metal oxide
- electron
- cathode
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 54
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 229910052788 barium Inorganic materials 0.000 claims abstract description 12
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011777 magnesium Substances 0.000 claims description 16
- 229910052749 magnesium Inorganic materials 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 claims description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 239000003638 chemical reducing agent Substances 0.000 description 9
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 208000018459 dissociative disease Diseases 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- -1 alkaline earth metal carbonate Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
- Solid Thermionic Cathode (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はTV用ブラウン管など
に用いられる電子管用陰極に関し、特に電子放射性物質
層の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode for an electron tube used in a TV cathode ray tube and the like, and more particularly to improvement of an electron emissive material layer.
【0002】[0002]
【従来の技術】図2は従来のTV用ブラウン管や撮像管
に用いられている陰極を示すものであり、図において1
はシリコン(Si)、マグネシウム(Mg)などの還元性元素を
微量含む主成分がニッケルからなる有底筒状の基体、2
はこの基体の底部上面に被着され、少なくともバリウム
(Ba)を含み、他にストロンチウム(Sr)あるいは/及びカ
ルシウム(Ca)を含むアルカリ土類金属酸化物からなる電
子放射物質層、3は上記基体1内に配設されたヒータ3
で、加熱により上記電子放射物質層2から熱電子を放出
させるためのものである。2. Description of the Related Art FIG. 2 shows a cathode used in a conventional TV cathode ray tube or image pickup tube.
Is a bottomed cylindrical substrate made of nickel as a main component containing a trace amount of reducing elements such as silicon (Si) and magnesium (Mg).
Is deposited on the top surface of the bottom of this substrate and contains at least barium.
An electron emitting material layer 3 made of an alkaline earth metal oxide containing (Ba) and additionally containing strontium (Sr) and / or calcium (Ca) is a heater 3 disposed in the substrate 1.
The above is for emitting thermoelectrons from the electron emitting material layer 2 by heating.
【0003】この様に構成された電子管用陰極におい
て、基体1への電子放射物質層2の被着は次の様にして
行なわれるものである。まずアルカリ土類金属(Ba、S
r、Ca)の炭酸塩からなる懸濁液を基体1に塗布し、真
空排気工程中にヒータ3によって加熱する。この時、ア
ルカリ土類の炭酸塩はアルカリ土類金属の酸化物に変わ
る。その後、アルカリ土類金属の酸化物の一部を還元し
て半導体的性質を有するように活性化を行なうことによ
り、基体1上にアルカリ土類金属の酸化物からなる電子
放射物質層2を被着せしめているものである。In the electron tube cathode thus constructed, the electron emitting material layer 2 is deposited on the substrate 1 in the following manner. First, alkaline earth metals (Ba, S
A suspension of a carbonate of r, Ca) is applied to the substrate 1 and heated by the heater 3 during the vacuum evacuation process. At this time, the alkaline earth carbonate is converted to an oxide of an alkaline earth metal. After that, a part of the alkaline earth metal oxide is reduced and activated so as to have a semiconductor property, so that the electron emitting material layer 2 made of the alkaline earth metal oxide is coated on the substrate 1. It's dressed up.
【0004】この活性化工程において、アルカリ土類金
属の酸化物の一部は次の様に反応しているものである。
つまり基体1中に含有されたシリコン、マグネシウム等
の還元性元素は拡散によりアルカリ土類金属の酸化物と
基体1の界面に移動し、アルカリ土類金属酸化物と反応
する。例えばアルカリ土類酸化物として酸化バリウム(B
aO) であれば次式(1) 、(2) の様に反応するものであ
る。In this activation step, a part of the alkaline earth metal oxide is reacted as follows.
That is, the reducing elements such as silicon and magnesium contained in the substrate 1 move to the interface between the alkaline earth metal oxide and the substrate 1 by diffusion and react with the alkaline earth metal oxide. For example, barium oxide (B
If it is aO), it reacts as in the following equations (1) and (2).
【0005】[0005]
【化1】 [Chemical 1]
【0006】この反応の結果、基体1上に被着形成され
たアルカリ土類金属酸化物の一部が還元され、酸素欠乏
型の半導体となり、陰極温度 700〜 800℃の動作温度で
0.5〜 0.8A/cm2 の電子放射が得られることになる。
しかるに、この様にして形成された電子管用陰極にあっ
ては電子放射が 0.5〜 0.8A/cm2 以上の電流密度は取
り出せないものである。その理由としては次の様なもの
である。つまり、アルカリ土類金属酸化物の一部を還元
反応させた場合、上記(1)(2)式からも明らかな如く基体
1とアルカリ土類金属酸化物との界面にSiO2、MgO ある
いは BaO・SiO2なる複合酸化物層(中間層)が形成さ
れ、この中間層が高抵抗層となって電流の流れを妨げる
こと、また上記中間層が基体1中の還元元素が電子放射
物質層2の表面側へ拡散するのを妨げ十分なバリウム(B
a)が生成されないことが考えられている。As a result of this reaction, a part of the alkaline earth metal oxide deposited on the substrate 1 is reduced to become an oxygen-deficient semiconductor, and the cathode temperature is 700 to 800 ° C.
An electron emission of 0.5 to 0.8 A / cm 2 will be obtained.
However, the electron tube cathode thus formed cannot take out a current density of electron emission of 0.5 to 0.8 A / cm 2 or more. The reason is as follows. That is, when a part of the alkaline earth metal oxide is subjected to a reduction reaction, SiO 2 , MgO or BaO is formed at the interface between the substrate 1 and the alkaline earth metal oxide, as is clear from the above equations (1) and (2). A composite oxide layer (intermediate layer) made of SiO 2 is formed, and this intermediate layer serves as a high resistance layer to prevent current flow, and the intermediate layer serves to reduce the reducing element in the substrate 1 to the electron emitting material layer 2 Sufficient barium (B
It is considered that a) is not generated.
【0007】また、従来の電子管用陰極としては特開昭
59-20941号公報に、上記した図2のものと同様の構成を
しており、陰極の速動性を得るために基体1の板厚を薄
くし、寿命中の還元剤の涸濁を防止しかつ基板1の強度
低下を防止する目的で、基体1にランタンがLaNi5 及び
La2O3 の形で分散含有させたものが示されている。A conventional cathode for an electron tube is disclosed in
In JP-A-59-20941, the same structure as that of FIG. 2 described above is used, and the plate thickness of the substrate 1 is made thin in order to obtain the fast motion of the cathode, and the suspension of the reducing agent during the life is prevented. For the purpose of preventing the strength of the substrate 1 from decreasing, lanthanum is added to the substrate 1 as LaNi 5 and
Dispersed inclusions in the form of La 2 O 3 are shown.
【0008】[0008]
【発明が解決しようとする課題】この様に構成された電
子管用陰極においては、動作中に基体1と電子放射物質
層2の界面近傍、特に基体1表面近傍のニッケル結晶粒
界と上記界面より10μm程度電子放射物質層2内側の位
置に前述の中間層が偏析するため、電流の流れ及び電子
放射物質層2表面側への還元性元素の拡散が妨げられ、
高電流密度下の十分な電子放出特性が得られないという
問題があった。また、後者に示したものにおいては、ニ
ッケルを主成分とする基体1の製作時にLaNi5 及びLa2O
3 を含有させるため、基体1内のLaNi5 及びLO2O3 の含
有状態のばらつきなどが生じ易かつた。In the cathode for an electron tube having such a structure, during operation, from the nickel crystal grain boundary near the interface between the substrate 1 and the electron-emitting substance layer 2, especially near the surface of the substrate 1 and the above interface. Since the above-mentioned intermediate layer is segregated at a position inside the electron emitting material layer 2 by about 10 μm, current flow and diffusion of the reducing element to the surface side of the electron emitting material layer 2 are hindered,
There is a problem that sufficient electron emission characteristics cannot be obtained under high current density. Further, in the latter case, when LaNi 5 and La 2 O are produced when the substrate 1 containing nickel as a main component is manufactured.
Since 3 was contained, variations in the content of LaNi 5 and LO 2 O 3 in the substrate 1 were likely to occur.
【0009】この発明は上記した点に鑑みてなされたも
のであり、高電流密度下において基体と電子放射物質層
との界面近傍の複合酸化物からなる中間層が集中して形
成されることを防止し、長時間にわたって安定したエミ
ッション特性を有し、かつ生産性、信頼性の高い電子管
用陰極を得ることを目的とする。The present invention has been made in view of the above points, and it is possible to concentrate formation of an intermediate layer composed of a composite oxide in the vicinity of the interface between a substrate and an electron emitting material layer under a high current density. It is an object of the present invention to obtain a cathode for an electron tube which is prevented, has stable emission characteristics for a long time, and has high productivity and reliability.
【0010】[0010]
【課題を解決するための手段】この発明に係る電子管用
陰極は、少なくともバリウムを含むアルカリ土類金属酸
化物とを主成分とし、0.1 〜20重量%の希土類金属酸化
物を含んだ電子放射物質層をニッケルを主成分とし、還
元性元素を含んだ基体上に被着形成し、1.32A/cm2 〜
2.64A/cm2 の範囲内の高電流密度下で動作させたもの
である。また、その電子管用陰極としてテレビ用陰極に
用いたものである。A cathode for an electron tube according to the present invention is an electron-emitting substance containing, as a main component, an alkaline earth metal oxide containing at least barium, and containing 0.1 to 20% by weight of a rare earth metal oxide. A layer containing nickel as a main component and deposited on a substrate containing a reducing element, and having a thickness of 1.32 A / cm 2 ~
It was operated at a high current density within the range of 2.64 A / cm 2 . Further, the cathode for a television is used as the cathode for the electron tube.
【0011】さらに、この発明に係る電子管用陰極は、
0.3 〜20重量%の希土類金属酸化物の成分を含み、該希
土類金属酸化物が酸化スカンジウムあるいは酸化イツト
リウムの少なくとも一方とした電子放射物質層を、ニッ
ケルを主成分とし、還元性元素を含んだ基体上に被着形
成させたものである。さらにまた、0.3 〜15重量%の希
土類金属酸化物の成分を含んだ電子放射物質層を、ニッ
ケルを主成分とし、シリコンあるいはマグネシウムの少
なくとも一方を含む還元性元素を含んだ基体上に被着形
成させたものである。Further, the cathode for an electron tube according to the present invention is
A substrate containing 0.3 to 20% by weight of a rare earth metal oxide component, the rare earth metal oxide containing at least one of scandium oxide or yttrium oxide, an electron-emitting substance layer containing nickel as a main component and a reducing element. It is deposited on the top. Furthermore, an electron emitting material layer containing 0.3 to 15% by weight of a rare earth metal oxide component is formed on a substrate containing nickel as a main component and a reducing element containing at least one of silicon and magnesium. It was made.
【0012】[0012]
【作用】この発明においては、電子放射物質層中に含有
された0.1 〜20重量%の希土類金属酸化物が、電子放射
物質層を基体に被着形成する際の活性化時に、アルカリ
土類金属の炭酸塩が分解する際、あるいは陰極としての
動作中に酸化バリウムが解離反応を起こす際に基体が酸
化する反応を防止するとともに、電子放射物質層中への
基体に含有された還元性元素の拡散を適度に制御し、還
元性元素による複合酸化物からなる中間層が基体と電子
放射物質層との界面近傍に集中的に形成されることを防
止し、中間層を電子放射物質層内に分散させるものであ
る。In the present invention, 0.1 to 20% by weight of the rare earth metal oxide contained in the electron-emitting substance layer is an alkaline earth metal oxide during activation when the electron-emitting substance layer is deposited on the substrate. Of the reducing element contained in the substrate into the electron-emitting substance layer while preventing the reaction of the substrate to be oxidized when the carbonate of is decomposed or when barium oxide causes a dissociation reaction during the operation as a cathode. The diffusion layer is appropriately controlled to prevent the intermediate layer composed of the complex oxide of the reducing element from being intensively formed in the vicinity of the interface between the substrate and the electron emitting material layer, and the intermediate layer is formed in the electron emitting material layer. It is to disperse.
【0013】[0013]
実施例1.以下にこの発明の一実施例を図1に基づいて
説明する。図において、2は基体1の底部上面に被着さ
れ、少なくともバリウムを含み、他にストロンチウムあ
るいは/及びカルシウムを含むアルカリ土類金属酸化物
11を主成分とし、0.1 〜20重量%の酸化スカンジウム、
酸化イツトリウム等の希土類金属酸化物12を含んだ電子
放射物質層である。Example 1. An embodiment of the present invention will be described below with reference to FIG. In the figure, 2 is an alkaline earth metal oxide deposited on the upper surface of the bottom of the substrate 1, containing at least barium, and further containing strontium and / or calcium.
11 as the main component, 0.1 to 20% by weight of scandium oxide,
An electron emitting material layer containing a rare earth metal oxide 12 such as yttrium oxide.
【0014】次に、この様に構成された電子管用陰極に
おいて、基板1への電子放射物質層2の被着方法につい
て説明すると、まず、バリウム、ストロンチウム、カル
シウムの三元炭酸塩に酸化スカンジウム粉末あるいは酸
化イツトリウム粉末を所望の重量%(上記三元炭酸塩が
全て酸化物になるとしての重量%)添加混合し、懸濁液
を作成する。この懸濁液をニッケルを主成分とする基体
1上にスプレイにより約80ミクロンの厚みで塗布し、そ
の後、従来のものと同様に、炭酸塩から酸化物への分解
過程及び酸化物の一部を還元する活性化過程を経て、電
子放射物質層2を基体1に被着せしめるものである。Next, in the electron tube cathode thus constructed, a method of depositing the electron-emitting material layer 2 on the substrate 1 will be described. First, ternary carbonate of barium, strontium and calcium, and scandium oxide powder. Alternatively, a desired weight% of yttrium oxide powder (weight% assuming that all the ternary carbonates become oxides) is added and mixed to prepare a suspension. This suspension was applied by spraying on a substrate 1 containing nickel as a main component to a thickness of about 80 μm, and thereafter, as in the conventional case, the decomposition process from carbonate to oxide and a part of the oxide. The electron emissive material layer 2 is applied to the substrate 1 through an activation process of reducing the.
【0015】この様な方法で方法で被着される電子放射
物質層2に含有される希土類金属酸化物 (Sc2O3 、Y
2O3) の含有量を種々変えた電子管用陰極を種々作成
し、この電子管用陰極を用いて2極管真空管を作成し、
種々の電流密度で寿命試験を行ない、エミツシヨン電流
の変化を調べた結果、図3及び図4の結果を得た。図3
は従来のテレビ用陰極としての電流密度0.66A/cm2 の
3.1倍(2.05A/cm2 )で動作させた時の5重量%のSc
2O3 が含有された電子放射物質層2を有した電子管用陰
極、12重量%のY2O3が含有された電子放射物質層2を有
した電子管用陰極の寿命特性と希土類金属酸化物が全く
含有されていない電子放射物質層2を有した従来の寿命
特性との関係を示したものである。この図3から明らか
なように希土類金属酸化物が含有された本実施例のもの
は従来例のものに対して高電流密度動作でのエミツシヨ
ン劣化が少ないものである。The rare earth metal oxide (Sc 2 O 3 , Y) contained in the electron-emitting material layer 2 deposited by the method described above is used.
Various cathodes for electron tubes with various contents of 2 O 3 ) were made, and a cathode vacuum tube was made using this cathode for electron tubes,
As a result of conducting a life test at various current densities and examining changes in the emission current, the results shown in FIGS. 3 and 4 were obtained. Figure 3
Has a current density of 0.66 A / cm 2 as a conventional TV cathode.
5 wt% Sc when operated at 3.1 times (2.05 A / cm 2 ).
2 O 3 -containing electron emitting material cathode 2 for electron tube cathode, 12 wt% Y 2 O 3 containing electron emitting material layer 2 electron cathode cathode life characteristics and rare earth metal oxide 3 shows the relationship with the conventional life characteristics of the electron emitting material layer 2 that does not contain any element. As is clear from FIG. 3, the rare earth metal oxide-containing material of the present embodiment is less susceptible to emission deterioration at high current density operation than the conventional one.
【0016】また、図4は希土類金属酸化物であるSc2O
3 及びY2O3の添加比率を種々変えた電子放射物質層2を
有した電子管用陰極において電流密度0.66A/cm2 (1
とする)に対し、電流密度が2倍、 3.1倍、4倍である
条件で寿命テストを行い、電流密度と初期エミツシヨン
電流に対する6000時間でのエミツシヨン電流の比との関
係を示したものである。この図4から判るように、希土
類金属酸化物であるSc2O3 、Y2O3が 0.1重量%以上の添
加率になると、高電流密度動作下でのエミツシヨン低下
を防止する効果があり、図示していないがSc2O3 、Y2O3
は20wt%の添加率までこの効果が確認できた。次に、希
土類金属酸化物であるSc2O3 の添加比率を0.1 、1、
5、10、20、25重量%の6種類に変化させた電子放射物
質層2を有した陰極を各々TV用ブラウン管に組込んで
所定の工程を経てTV用ブラウン管を作成した。Further, FIG. 4 shows Sc 2 O which is a rare earth metal oxide.
In the cathode for an electron tube having the electron emitting material layer 2 in which the addition ratios of 3 and Y 2 O 3 are variously changed, the current density is 0.66 A / cm 2 (1
, And a life test was conducted under conditions where the current density was 2, 3, and 4 times, and the relationship between the current density and the ratio of the emission current at 6000 hours to the initial emission current was shown. .. As can be seen from FIG. 4, when the rare earth metal oxides Sc 2 O 3 and Y 2 O 3 are added in an amount of 0.1% by weight or more, there is an effect of preventing a decrease in emission under high current density operation. Not shown, Sc 2 O 3 , Y 2 O 3
This effect was confirmed up to the addition rate of 20 wt%. Next, the addition ratio of Sc 2 O 3 which is a rare earth metal oxide is 0.1, 1,
The cathode having the electron-emitting substance layer 2 of 5, 10, 20, 25% by weight, which was changed to 6 kinds, was incorporated into each TV cathode ray tube, and a TV cathode ray tube was produced through a predetermined process.
【0017】図5は初期電子放射電流特性の測定結果を
示す図で、縦軸は最大陰極電流、横軸は酸化スカンジウ
ムの添加比率を示す。図5から明らかなように、酸化ス
カンジウムの添加比率が20wt%を越えると、初期の電子
放射電流の低下が著しくなる。すなわち、これら希土類
金属酸化物であるSc2O3 及びY2O3の添加率が20重量%を
越えると、製造工程を経た後新たに長時間のエージング
を行わないとエミツシヨン電流の安定な取り出しが困難
となり、実用的でなかった。従って、電子放射物質層2
における希土類金属酸化物の含有量は 0.1〜20重量%の
範囲にする必要があるものである。特に 0.3〜15重量%
の範囲で上記した効果が顕著であった。FIG. 5 is a graph showing the measurement results of the initial electron emission current characteristics, in which the vertical axis represents the maximum cathode current and the horizontal axis represents the scandium oxide addition ratio. As is clear from FIG. 5, when the addition ratio of scandium oxide exceeds 20 wt%, the initial reduction of electron emission current becomes remarkable. That is, if the addition rate of these rare earth metal oxides Sc 2 O 3 and Y 2 O 3 exceeds 20% by weight, stable emission of the emission current is required unless a new aging is performed after the manufacturing process. Was difficult and impractical. Therefore, the electron emitting material layer 2
The content of the rare earth metal oxide in is required to be in the range of 0.1 to 20% by weight. Especially 0.3 to 15% by weight
Within the range, the above-mentioned effects were remarkable.
【0018】このように電子放射物質層2に希土類金属
酸化物を含有した効果を詳細に調査するために、図3の
実験結果において6000時間でのエミツシヨン電流測定
後、従来品及び5重量%のSc2O3 を含有した電子放射物
質層2を有した電子管用陰極の断面を電子ビームX線マ
イクロアナライザー(EPMA)によって分析を行った結
果、図6及び図7の結果を得た。図6は従来の希土類金
属酸化物が全く含有されていない電子放射物質層2を有
した電子管用陰極の実験結果を示すものであり、図6か
ら明らかなように、基板1であるニッケルと電子放射物
質層2との界面近傍に、基体1内に含有された還元剤で
ある、Si、Mgが偏析しており、この偏析状態は基体1と
電子放射物質層2の界面より基体1側の約5μの深さの
位置及び上記界面より電子放射物質層2への約3〜5μ
の位置に還元剤であるSi及びMgのピークが同時に確認さ
れ、Siはさらに上記界面より電子放射物質層2側への約
13μの位置に最大のピークが観察された。In order to investigate in detail the effect of containing the rare earth metal oxide in the electron emitting material layer 2 as described above, after measuring the emission current at 6000 hours in the experimental result of FIG. The cross section of the cathode for an electron tube having the electron emitting material layer 2 containing Sc 2 O 3 was analyzed by an electron beam X-ray microanalyzer (EPMA), and the results shown in FIGS. 6 and 7 were obtained. FIG. 6 shows experimental results of a cathode for an electron tube having an electron emitting material layer 2 containing no conventional rare earth metal oxide, and as is clear from FIG. In the vicinity of the interface with the emissive material layer 2, the reducing agents contained in the substrate 1, Si and Mg, are segregated, and this segregation state is on the substrate 1 side from the interface between the substrate 1 and the electron emissive material layer 2. Approximately 3 to 5 μm from the depth of about 5 μm and the above interface to the electron emitting material layer 2.
The peaks of the reducing agents, Si and Mg, were simultaneously confirmed at the position of, and Si was further transferred to the electron emitting material layer 2 side from the above interface.
The largest peak was observed at 13 μ.
【0019】図示していないが電子放射物質中のこれら
Mg、Siのピークの位置と同一箇所でBaのピークの存在も
確認された。これら、Si、Mg、Baのピークは酸素のピー
クとほぼ一致するので、これらの金属は酸化物あるいは
複合酸化物として存在していると考えられる。さらに、
基体1中には少量のSiの存在が確認された。このよう
に、高電流密度動作の従来品においては、基体1と電子
放射物質層2との界面近傍で、基体1内の結晶粒界で
は、SiO2、MgO 及びこれらの複合酸化物層が形成され、
さらに上記界面から電子放射物質層2の位置には BaO、
MgO 、SiO2の複合酸化物層が形成されていることがわか
るものである。上記したSiO2・MgO 層及び BaO・SiO2層
は基体1内から電子放射物質層2内への還元剤であるS
i、Mgの拡散速度を抑制するとともに高絶縁であるため
に電流の流れを阻害し、ついには電子放射物質内での絶
縁破壊による損耗をもたらすことになるものである。Although not shown, these in the electron emitting material
The presence of Ba peaks was also confirmed at the same positions as the Mg and Si peak positions. Since these Si, Mg, and Ba peaks almost coincide with the oxygen peak, it is considered that these metals exist as oxides or complex oxides. further,
It was confirmed that a small amount of Si was present in the substrate 1. As described above, in the conventional product operating at high current density, SiO 2 , MgO and a composite oxide layer of these are formed in the crystal grain boundary in the substrate 1 near the interface between the substrate 1 and the electron emitting material layer 2. Was
Further, from the above interface to the position of the electron emitting material layer 2, BaO,
It can be seen that a composite oxide layer of MgO and SiO 2 is formed. The above-mentioned SiO 2 · MgO layer and BaO · SiO 2 layer are reducing agents from the inside of the substrate 1 to the inside of the electron emitting material layer S.
In addition to suppressing the diffusion rate of i and Mg, the high insulation hinders the flow of current and eventually causes wear due to dielectric breakdown in the electron emitting material.
【0020】これに対して、本実施例である希土類金属
酸化物であるSc2O3 を含有した電子放射物質層2を有す
る電子管用陰極においては、図7にその実験結果を示す
ように基体1内に含有された還元剤であるSi、Mgは平均
的に分散されており、上記図6に示した従来例のものの
ように基体1と電子放射物質層2との界面近傍に、これ
ら還元剤のピークが全く存在していないものである。こ
のことは次の理由によるものと判断される。つまり活性
化時にアルカリ土類金属の炭酸塩が酸化物へと分解する
場合、あるいは電子管用陰極の動作時に BaOなどが解離
反応を起こす場合において、希土類金属酸化物が基体1
の酸化を防ぐことに起因しているものと考えられる。On the other hand, in the cathode for an electron tube having the electron emitting material layer 2 containing Sc 2 O 3 which is the rare earth metal oxide of the present embodiment, the substrate is as shown in FIG. The reducing agents Si and Mg contained in 1 are dispersed evenly, and these reducing agents exist near the interface between the substrate 1 and the electron-emitting substance layer 2 as in the conventional example shown in FIG. The peak of the agent does not exist at all. This is considered to be due to the following reasons. In other words, when the alkaline earth metal carbonate is decomposed into an oxide during activation, or when BaO or the like undergoes a dissociation reaction during the operation of the cathode for an electron tube, the rare earth metal oxide is used as the substrate 1.
It is thought that this is due to the prevention of the oxidation of
【0021】例えば、希土類金属酸化物が基体1の酸化
を防ぐことに起因しているものと考えられる。例えば、
希土類金属酸化物が酸化スカンジウム(Sc2O3)である場
合の反応は次式(4)(6)の様になるものである。For example, it is considered that the rare earth metal oxide is caused by preventing the base 1 from being oxidized. For example,
The reaction when the rare earth metal oxide is scandium oxide (Sc 2 O 3 ) is as shown in the following equations (4) and (6).
【0022】[0022]
【化2】 [Chemical 2]
【0023】従って、上式(3)(5)から明らかなように、
希土類金属酸化物を含有していない電子放射物質層2を
有した電子管用陰極においては、寿命初期において既に
基体1と電子放射物質層2との界面に形成されたニッケ
ルの酸化物と基体1中の還元剤であるSi、Mgとが反応
し、SiO2・MgO2が界面の最表層及びその近傍の粒界中に
形成されることになる。そのため、還元剤であるSi、Mg
の電子放射物質層2中への拡散は上記SiO2・MgO の酸化
物層に律速され、反応1,2のサイト(場所)は該酸化
物層の近傍に形成される。Therefore, as is clear from the above equations (3) and (5),
In the cathode for an electron tube having the electron emitting material layer 2 containing no rare earth metal oxide, in the substrate 1 and the nickel oxide already formed at the interface between the substrate 1 and the electron emitting material layer 2 at the beginning of the life. Reacting with Si and Mg, which are reducing agents, to form SiO 2 .MgO 2 in the outermost layer of the interface and in the grain boundaries in the vicinity thereof. Therefore, reducing agents such as Si and Mg
Diffusion into the electron-emitting substance layer 2 is controlled by the SiO 2 .MgO 2 oxide layer, and the sites of the reactions 1 and 2 are formed in the vicinity of the oxide layer.
【0024】そのため、特に高電流密度で動作する場
合、(1)(2)の反応が活発に行われ、還元剤による酸化物
SiO2・MgO が上記酸化物層の近傍に集中して生成され、
(1)(2)の反応が進むとともに還元元素であるSi、Mgの電
子放射物質中への拡散がますます抑制され、エミツシヨ
ン低下が著しくなる。Therefore, particularly when operating at a high current density, the reactions (1) and (2) are actively carried out and the oxides produced by the reducing agent are used.
SiO 2 · MgO is generated concentrated near the oxide layer,
As the reactions of (1) and (2) proceed, the diffusion of reducing elements Si and Mg into the electron-emitting material is further suppressed, and the reduction in emission becomes remarkable.
【0025】一方、本発明の実施例である希土類金属酸
化物を含有した電子放射物質層2を有した電子管用陰極
においては、電子放射物質層2中の希土類金属酸化物が
基体1のニッケルの酸化反応を防止するので、還元元素
であるSi、Mgは基体1内の結晶粒界またはその近傍で酸
化物層を形成せず、電子放射物質層中へと容易に拡散し
ていき、(1)(2)の反応サイトは電子放射物質層2内の粒
界に形成され、従来例よりも分散された場所に反応サイ
トがある。On the other hand, in the cathode for an electron tube having the electron emitting material layer 2 containing the rare earth metal oxide according to the embodiment of the present invention, the rare earth metal oxide in the electron emitting material layer 2 is the nickel of the substrate 1. Since the oxidation reaction is prevented, the reducing elements Si and Mg do not form an oxide layer at or near the crystal grain boundaries in the substrate 1, and easily diffuse into the electron emitting material layer. (2) The reaction site of (2) is formed at the grain boundary in the electron emitting material layer 2, and the reaction site is located more dispersedly than in the conventional example.
【0026】さらに、電子放射物質層2中の希土類金属
酸化物が上記還元元素の電子放射物質層中への拡散を適
度に律速するので、長時間高電流密度下の動作後におい
ても安定で良好なエミツシヨン特性を維持できる。従っ
て、 0.1重量%未満の希土類金属酸化物の添加では基体
1の粒界近傍でSiO2・MgO の酸化物層を形成するのを抑
制する効果が不十分で、エミツシヨン特性の低下が現れ
始める。また、20重量%より多い添加では電子放射物質
内での還元元素の拡散を抑制する機能が大になり、エミ
ツシヨン電流の安定な取り出しに長時間のエージングが
必要となる。Furthermore, since the rare earth metal oxide in the electron emitting material layer 2 appropriately controls the diffusion of the reducing element into the electron emitting material layer, it is stable and good even after operation for a long time under high current density. It can maintain excellent emission characteristics. Therefore, the addition of less than 0.1% by weight of the rare earth metal oxide is insufficient in the effect of suppressing the formation of the oxide layer of SiO 2 .MgO in the vicinity of the grain boundaries of the substrate 1, and the emission characteristics start to deteriorate. Further, if it is added in an amount of more than 20% by weight, the function of suppressing the diffusion of the reducing element in the electron emitting substance becomes large, and aging for a long time is necessary for the stable extraction of the emission current.
【0027】また、 0.1〜20重量%の希土類金属酸化物
の添加範囲であれば、基体1中への希土類金属の固溶現
象が確認され、かつ6000時間動作後(電流密度2.05A/
cm2)に電子放射物質層2の基体1からのはくり現象が
皆無であった。因みに、従来の希土類金属酸化物が含有
されていない電子放射物質層2を有した電子管用陰極で
のはくり現象の発生ひん度は30%であった。In the range of addition of 0.1 to 20% by weight of rare earth metal oxide, the solid solution phenomenon of rare earth metal in the substrate 1 was confirmed, and after operation for 6000 hours (current density 2.05 A /
There was no peeling phenomenon of the electron emitting material layer 2 from the substrate 1 in cm 2 . Incidentally, the occurrence frequency of the peeling phenomenon was 30% in the cathode for an electron tube having the electron emitting material layer 2 containing no conventional rare earth metal oxide.
【0028】なお、上記実施例においては、希土類金属
酸化物としてSc2O3 及びY2O3を用いたものを説明したが
他の希土類金属酸化物でも同様の効果は得られたもの
の、特にSc2O3 、Y2O3、Ce2O3 においてその効果が顕著
であった。このように本発明は従来とほぼ同等の製造条
件で陰極を製造することができ、希土類金属酸化物の分
散状態なども比較的容易に制御できる。In the above examples, Sc 2 O 3 and Y 2 O 3 were used as rare earth metal oxides, but other rare earth metal oxides have similar effects, but The effect was remarkable in Sc 2 O 3 , Y 2 O 3 , and Ce 2 O 3 . As described above, according to the present invention, the cathode can be manufactured under substantially the same manufacturing conditions as the conventional one, and the dispersion state of the rare earth metal oxide can be controlled relatively easily.
【0029】[0029]
【発明の効果】この発明は以上のように述べたように還
元性元素を含有した基体又はシリコンあるいはマグネシ
ウムの少なくとも一方を含む基体に被着される少なくと
もバリウムを含むアルカリ土類金属酸化物を主成分とす
る電子放射物質層に 0.1〜20重量%の希土類金属酸化物
を含有させたもの、さらに希土類金属酸化物が酸化スカ
ンジウムあるいは酸化イツトリウムの少なくとも一方と
したものとしたので、希土類金属酸化物が電子放射物質
層に含まれていない従来のものに対して2〜4倍、つま
り1.32A/cm2 (=0.66×2)〜2.64A/cm2 (=0.66
×4)の高電流密度動作下での長寿命を実現し、安価で
製造の制約の少ない信頼性の高い電子管用陰極が得られ
るという効果を有するものである。また、テレビ用陰極
に用いた場合には、従来の酸化物陰極と同様な動作温度
で使用できるため、TV用ブラウン管内の陰極部品の熱
変形に新たな影響を与えない。従って信頼性の高い陰極
が得られる。As described above, the present invention mainly comprises an alkaline earth metal oxide containing at least barium, which is deposited on a substrate containing a reducing element or a substrate containing at least one of silicon and magnesium. Since the electron emitting material layer as a component contains 0.1 to 20% by weight of a rare earth metal oxide, and the rare earth metal oxide is at least one of scandium oxide or yttrium oxide , the rare earth metal oxide is Electron emitting material
2 to 4 times that of the conventional one not included in the layer, that is, 1.32 A / cm 2 (= 0.66 × 2) to 2.64 A / cm 2 (= 0.66)
The effect of achieving a long life under high current density operation of (4) and obtaining a highly reliable cathode for an electron tube, which is inexpensive and has few restrictions on production. Further, when it is used as a cathode for a television, it can be used at the same operating temperature as that of a conventional oxide cathode, so that it does not newly affect the thermal deformation of the cathode component in the cathode ray tube for TV. Therefore, a highly reliable cathode can be obtained.
【図1】この発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.
【図2】従来の電子管用陰極を示す断面図である。FIG. 2 is a sectional view showing a conventional cathode for an electron tube.
【図3】寿命試験時間とエミツシヨン電流との関係を示
す特性図である。FIG. 3 is a characteristic diagram showing a relationship between a life test time and an emission current.
【図4】電流密度とエミツシヨン電流比との関係を示す
特性図である。FIG. 4 is a characteristic diagram showing a relationship between a current density and an emission current ratio.
【図5】酸化スカンジンム含有率と最大陰極電流との関
係を示す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the scandium oxide content and the maximum cathode current.
【図6】図2のものの6000時間でのエミツシヨン電流測
定後の断面をEPMAによって測定した結果を示す特性図で
ある。FIG. 6 is a characteristic diagram showing a result of measuring a cross section of the device of FIG. 2 after measuring the emission current at 6000 hours by EPMA.
【図7】図1のものを図6と同様に測定した結果を示す
特性図である。FIG. 7 is a characteristic diagram showing the result of measurement of the device of FIG. 1 in the same manner as in FIG.
1 基体 2 電子放射物質層 1 substrate 2 electron emitting material layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 金治郎 京都府長岡京市馬場図所1番地 三菱電機 株式会社京都製作所内 (72)発明者 鎌田 豊一 京都府長岡京市馬場図所1番地 三菱電機 株式会社京都製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kinjiro Sano, No. 1 Baba Institute, Nagaokakyo, Kyoto Prefecture Mitsubishi Electric Corporation, Kyoto Works (72) Toyoichi Kamada, No. 1, Baba Institute, Nagaokakyo, Kyoto Mitsubishi Electric Corporation Inside the Kyoto Works
Claims (4)
を含む基体上に、少なくともバリウムを含むアルカリ土
類金属酸化物を主成分とし、 0.1〜20重量%の希土類金
属酸化物の成分を含んだ電子放射物質層を、被着形成
し、1.32A/cm2 〜2.64A/cm2 の範囲内の高電流密度
下で動作されることを特徴とする電子管用陰極。1. A main component of which is composed of nickel and which contains, on a substrate containing a reducing element, an alkaline earth metal oxide containing at least barium as a main component and 0.1 to 20% by weight of a rare earth metal oxide component. A cathode for an electron tube, which is formed by depositing an electron emission material layer and is operated under a high current density in the range of 1.32 A / cm 2 to 2.64 A / cm 2 .
を含む基体上に、少なくともバリウムを含むアルカリ土
類金属酸化物を主成分とし、 0.1〜20重量%の希土類金
属酸化物の成分を含んだ電子放射物質層を、被着形成
し、1.32A/cm2 〜2.64A/cm2 の範囲内の高電流密度
下で動作されるテレビ用陰極に用いられることを特徴と
する電子管用陰極。2. The main component is nickel, the alkaline earth metal oxide containing at least barium is contained as a main component on a substrate containing a reducing element, and 0.1 to 20% by weight of a rare earth metal oxide component is contained. A cathode for an electron tube, which is used as a cathode for a television operated under a high current density in the range of 1.32 A / cm 2 to 2.64 A / cm 2 by depositing an electron emission material layer.
含有した基体上に、少なくともバリウムを含むアルカリ
土類金属酸化物を主成分とし、 0.3〜20重量%の希土類
金属酸化物の成分を含み、該希土類金属酸化物が酸化ス
カンジウムあるいは酸化イツトリウムの少なくとも一方
とした電子放射物質層を、被着形成したことを特徴とす
る電子管用陰極。3. A substrate comprising nickel as a component, a reducing element-containing substrate, an alkaline earth metal oxide containing at least barium as a main component, and 0.3 to 20% by weight of a rare earth metal oxide component. A cathode for an electron tube, wherein an electron emitting material layer in which the rare earth metal oxide is at least one of scandium oxide or yttrium oxide is deposited.
るいはマグネシウムの少なくとも一方を含む還元性元素
を含有した基体上に、少なくともバリウムを含むアルカ
リ土類金属酸化物を主成分とし、 0.3〜15重量%の希土
類金属酸化物の成分を含んだ電子放射物層を、被着形成
したことを特徴とする電子管用陰極。4. A main component is nickel, and an alkaline earth metal oxide containing at least barium is contained as a main component on a substrate containing a reducing element containing at least one of silicon and magnesium. A cathode for an electron tube, wherein an electron emission layer containing a component of the rare earth metal oxide is formed by deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40888490A JPH0775140B2 (en) | 1990-12-28 | 1990-12-28 | Electron tube cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40888490A JPH0775140B2 (en) | 1990-12-28 | 1990-12-28 | Electron tube cathode |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60160851A Division JPS6222347A (en) | 1985-07-19 | 1985-07-19 | Cathode for electron tube |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2940995A Division JP2718389B2 (en) | 1995-02-17 | 1995-02-17 | Cathode for electron tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05266783A true JPH05266783A (en) | 1993-10-15 |
JPH0775140B2 JPH0775140B2 (en) | 1995-08-09 |
Family
ID=18518281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40888490A Expired - Lifetime JPH0775140B2 (en) | 1990-12-28 | 1990-12-28 | Electron tube cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0775140B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07211222A (en) * | 1995-02-17 | 1995-08-11 | Mitsubishi Electric Corp | Cathode for electron tube |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1794298A (en) * | 1926-09-21 | 1931-02-24 | Gen Electric | Thermionic cathode |
JPS5645542A (en) * | 1979-09-20 | 1981-04-25 | Matsushita Electric Ind Co Ltd | Oxide cathode and its preparation |
JPS56102033A (en) * | 1980-01-17 | 1981-08-15 | Matsushita Electric Ind Co Ltd | Hot cathode |
JPS6222347A (en) * | 1985-07-19 | 1987-01-30 | Mitsubishi Electric Corp | Cathode for electron tube |
-
1990
- 1990-12-28 JP JP40888490A patent/JPH0775140B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1794298A (en) * | 1926-09-21 | 1931-02-24 | Gen Electric | Thermionic cathode |
JPS5645542A (en) * | 1979-09-20 | 1981-04-25 | Matsushita Electric Ind Co Ltd | Oxide cathode and its preparation |
JPS56102033A (en) * | 1980-01-17 | 1981-08-15 | Matsushita Electric Ind Co Ltd | Hot cathode |
JPS6222347A (en) * | 1985-07-19 | 1987-01-30 | Mitsubishi Electric Corp | Cathode for electron tube |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07211222A (en) * | 1995-02-17 | 1995-08-11 | Mitsubishi Electric Corp | Cathode for electron tube |
Also Published As
Publication number | Publication date |
---|---|
JPH0775140B2 (en) | 1995-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0210805B1 (en) | Cathode for electron tube | |
CA2037675C (en) | Electron tube cathode | |
EP0204477B1 (en) | Cathode for electron tube and manufacturing method thereof | |
JPS645417B2 (en) | ||
JPH05266783A (en) | Cathode for electron tube | |
JPH0765694A (en) | Cathode for electron tube | |
KR100244175B1 (en) | Cathode for cathode ray tube | |
JP2718389B2 (en) | Cathode for electron tube | |
JPH0546653B2 (en) | ||
JPH0782804B2 (en) | Electron tube cathode | |
JPS6290821A (en) | Cathode for electron tube | |
JPS62165832A (en) | Cathode for electron tube | |
JPH0743995B2 (en) | Electron tube cathode | |
JPS62165833A (en) | Cathode for electron tube | |
KR900003175B1 (en) | Cathode in cathode ray tube | |
JPH0626096B2 (en) | Electron tube cathode | |
JPH0546652B2 (en) | ||
JPH0750586B2 (en) | Electron tube cathode | |
JP2730260B2 (en) | Cathode for electron tube | |
JPH01315926A (en) | Cathode for electron tube | |
JPH01213931A (en) | Cathode of electron tube | |
JPH07107825B2 (en) | Electron tube cathode | |
JPH03219524A (en) | Cathode for electron tube | |
JPH0237645A (en) | Cathode for electron tube | |
JPH09185939A (en) | Electron tube cathode, and manufacture of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |